第一篇:小学数学应用题解题策略归纳
小学数学应用题解题策略归纳
解答应用题一直是许多孩子做数学题的“心头大患”,因为它既要综合应用小学数学中的概念性质、法则、公式、数量关系和解题方法等最基本的知识,还要具有分析、综合、判断、推理的能力。这也是为什么孩子觉得难的原因。以下是总结的小孩子数学应用题解决方法。
方法一:数量关系分析法
数量关系是指应用题中已知数量和未知数量之间的关系,只有搞清数量关系,才能根据四则运算的意义恰当的选择算法,把数学问题转化为数学式子,通过计算进行解答。数量关系分析法分为三步:
(一)寻找题中的数量。
(二)明确各数量间的关系。
(三)解决各个产生的问题。下面以一道例题的教学从以下几方面来谈数量关系分析法的运用。
家长在家辅导孩子作业可以参考老师的引导方法教导孩子思考的角度和方法,养成孩子独立思考、快速解答的好习惯:
例题:“学校举行运动会,三年级有35人参加比赛,四年级参加的人数是三年级3倍,五年级参加的人数比三、四年级参加的总人数多12人,五年级参加比赛的有多少人?”
解题思路:
师:题中有几个数量呢? 生:三个。
师:哪两个数量之间有直接关系呢?
生:三年级有35人参加比赛,四年级参加的人数是三年级3倍。师:这两个数量间的关系让我们头脑中产生一个什么问题呢? 生:四年级有多少人参加比赛? 师:怎样列式解答这个问题呢? 生:用乘法35 ×3=105(人)。师:现在又多了一个数量:四年级有105人参加比赛,那么哪两个数量间又存在关系呢?根据他们的关系可以产生一个怎样的问题? 生:三年级有35人参加比赛,四年级有105人参加比赛。问题是:三四年级参加比赛一共有多少人? 师:所以第二步算式怎样列呢? 生:105+35=140(人)。
师:根据现在已经产生的数量,又有哪两个数量间的关系存在呢?
生:
三、四年级参加比赛一共有多140人,五年级参加的人数比三、四年级参加的总人数多12人。
师:这两个数量间的关系能帮助我们解决什么问题呢? 生:五年级参加比赛的有多少人?
师:那么解决最后问题的算式怎样列出呢? 生:140+12=152(人)
方法二:问题中心散射倒推法
所谓的“问题中心散射法”就是根据分析法这一思路模式,让孩子从最后的问题出发,不断地逆向推理,层层解决。
即从问题所要求的量开始探究,先要想一下,要知道所求的量,就必须知道的条件是什么,要使这些条件成立,又必须具备另外哪些条件,这样推究下去,直到所需要的条件都是题目中所给的已知条件时,问题就解决了。还是以上面这一道应用题为例来谈谈吧。
解题思路:
师:这道题的问题是“五年级参加比赛的有多少人?”要想解决这个问题,在题里面寻找那一句关键的信息提示呢?
生:五年级参加的人数比三、四年级参加的总人数多12人。
师:看来,现在要解决三、四年级参加比赛的总人数才是更关键的。那么这个问题能一下子解决吗? 生:不能,因为三年级参加比赛的人数知道了,可四年级参加比赛的人数不知道。师:那么四年级参加比赛的人数又怎么求呢?根据题中的什么数学信息呢? 生:三年级有35人参加比赛,四年级参加的人数是三年级3倍。列式是35 ×3=105(人)。
师:根据我们刚才的分析,接下来第二步求什么/怎样列式? 生:
三、四年级参加比赛的总人数是多少?105+35=140(人)。师:接下来呢?
生:五年级参加的人数是多少?140+12=152(人)
方法三:线段图示助解分析法
运用图示法解析应用题,是培养孩子思维能力的有效方法之一。图示法不仅可以形象地、直观地反映应用题的数量关系,启发孩子的解题思路,帮助孩子找到解题的途径,而且通过画图的训练,可以调动孩子思维的积极性,提高孩子分析问题和解决问题的能力。
在解答应用题时,可以先把应用题中的已知条件和所求的问题用图表示出来,然后通过图去寻找解答应用题的方法。
除此之外还可以采用许多方法。如列表法、比较法、方程法等,注重教给孩子学习的方法,使孩子能逐步独立地分析和解决问题。我们帮助孩子形成正确的思维规律,掌握了正确的思维方法,做到举一反三,切实提高解答应用题的能力。
如下四种具体应用题题型详解 1.一般应用题
一般应用题没有固定的结构,也没有解题规律可循,完全要依赖分析题目的数量关系找出解题的线索。
要点:从条件入手?从问题入手?
从条件入手分析时,要随时注意题目的问题 从问题入手分析时,要随时注意题目的已知条件。
例题:某五金厂一车间要生产1100个零件,已经生产了5天,平均每天生产130个。剩下的如果平均每天生产150个,还需几天完成? 思路分析:
已知“已经生产了5天,平均每天生产130个”,就可以求出已经生产的个数。已知“要生产1100个机器零件”和已经生产的个数,已知“剩下的平均每天生产150个”,就可以求出还需几天完成。
2.典型应用题
用两步或两步以上运算解答的应用题中,有的题目由于具有特殊的结构,因而可以用特定的步骤和方法来解答,这样的应用题通常称为典型应用题。
(1)求平均数应用题
解答求平均数问题的规律是:总数量÷对应总份数=平均数
注:在这类应用题中,我们要抓住的是对应关系,可根据总数量来划分成不同的子数量,再一一地根据子数量找出各自的份数,最终得出对应关系。
例题:一台碾米机,上午4小时碾米1360千克,下午3小时碾米1096千克,这天平均每小时碾米约多少千克?
思路分析:
要求这天平均每小时碾米约多少千克,需解决以下三个问题: ①这一天总共碾了多少米?(一天包括上午、下午)。
②这一天总共工作了多少小时?(上午的4小时,下午的3小时)。③这一天的总数量是多少?这一天的总份数是多少?(从而找出了对应关系,问题也就得到了解决。)(2)归一问题
归一问题的题目结构是:
题目的前部分是已知条件,是一组相关联的量;
题目的后半部分是问题,也是一组相关联的量,其中有一个量是未知的。
解题规律:先求出单一的量,然后再根据问题,或求单一量的几倍是多少,或求有几个单一量。例题:6台拖拉机4小时耕地300亩,照这样计数,8台拖拉机7小时可耕地多少亩?
思路分析:
先求出单一量,即1台拖拉机1小时耕地的亩数,再求8台拖拉机7小时耕地的亩数。
3.相遇问题
指两运动物体从两地以不同的速度作相向运动。
相遇问题的基本关系是:
①相遇时间=相隔距离(两个物体运动时)÷速度和
例题:两地相距500米,小红和小明同时从两地相向而行,小红每分钟行60米,小明每分钟行65米,几分钟相遇?
②相隔距离(两物体运动时)=速度之和×相遇时间
例题:一列客车和一列货车分别从甲乙两地同时相对开出,10小时后在途中相遇。已知货车平均每小时行45千米,客车每小时的速度比货车快20﹪,求甲乙相距多少千米?
③甲速=相隔距离(两个物体运动时)÷相遇时间-乙速
例题:一列货车和一列客车同时从相距648千米的两地相对开出,4.5小时相遇。客车每小时行80千米,货车每小时行多少千米?
相遇问题可以有不少变化。
如两个物体从两地相向而行,但不同时出发; 或者其中一个物体中途停顿了一下;
或两个运动的物体相遇后又各自继续走了一段距离等,都要结合具体情况进行分析。
另:相遇问题可以引申为工程问题:即工效和×合做时间=工作总量
4.工程问题
工程问题是研究工作效率、工作时间和工作总量的问题。
题目特点:
工作总量没有给出实际数量,把它看做“1”,工作效率用来表示,所求问题大多是合作时间。
例题:一件工程,甲工程队修建需要8天,乙工程队修建需要12天,两队合修4天后,剩下的任务,有乙工程队单独修,还需几天?
思路分析:
把一件工程的工作量看作“1”,则甲的工作效率是1/8,乙的工作效率是1/12。已知两队合修了4天,就可求出合修的工作量,进而也就能求出剩下的工作量。用剩下的工作量除以乙的工作效率,就是还需要几天完成。
第二篇:小学数学应用题分类解题(整理)
小学数学应用题分类解题大全
求平均数应用题是在“把一个数平均分成几份,求一份是多少”的简单应用题的基础上发展而成的。它的特征是已知几个不相等的数,在总数不变的条件下,通过移多补少,使它们完全相等。最后所求的相等数,就叫做这几个数的平均数。
解答这类问题的关键,在于确定“总数量”和与总数量相对应的“总份数”。计算方法:总数量÷总份数=平均数平均数×总份数=总数量
总数量÷平均数=总份数
例1:东方小学六年级同学分两个组修补图书。第一组28人,平均每人修补图书15本;第二组22人,一共修补图书280本。全班平均每人修补图书多少本?
要求全班平均每人修补图书多少本,需要知道全班修补图书的总本数和全班的总人数。(15×28+280)÷(28+22)=14本
例2:有水果糖5千克,每千克2.4元;奶糖4千克,每千克3.2元;软糖11千克,每千克4.2元。将这些糖混合成什锦糖。这种糖每千克多少元?
要求什锦糖每千克多少元,要先出这几种糖的总价和总重量最后求得平均数,即每千克什锦糖的价钱。
(2.4×5+3.2×4+4.2×11)÷(5+4+11)=3.55元
例
3、要挖一条长1455米的水渠,已经挖了3天,平均每天挖285米,余下的每天挖300米。这条水渠平均每天挖多少米?
已知水渠的总长度,平均每天挖多少米,就要先求出一共挖了多少天。1455÷(3+(1455-285×3)÷300)=291米
例
4、小华的期中考试成绩在外语成绩宣布前,他四门功课的平均分是90分。外语成绩宣布后,他的平均分数下降了2分。小华外语成绩是多少分?
解法一:先求出四门功课的总分,再求出一门功课的的总分,然后求得外语成绩。(90–2)×5–90×4=80分
例
5、甲乙丙三人在银行存款,丙的存款是甲乙两人存款的平均数的1.5倍,甲乙两人存款的和是2400元。甲乙丙三人平均每人存款多少元?
要求甲乙丙三人平均每人存款多少元,先要求得三人存款的总数。(2400÷2×1.5+2400)÷3=1400元
例
6、甲种酒每千克30元,乙种酒每千克24元。现在把甲种酒13千克与乙种酒8千克混合卖出,当剩余1千克时正好获得成本,每千克混合酒售价多少元?
要求每千克混合酒售价多少元,要先求得两种酒的总价钱和两种酒的总千克数。因为当剩余1千克时正好获得成本,所以在总千克数中要减去1千克。
(30×13+24×8)÷(13+8–1)=29.1元
例
7、甲乙丙三人各拿出相等的钱去买同样的图书。分配时,甲要22本,乙要23本,丙要30本。因此,丙还给甲13.5元,丙还要还给乙多少元?
先求买来图书如果平均分,每人应得多少本,甲少得了多少本,从而求得每本图书多少元。1.平均分,每人应得多少本?(22+23+30)÷3=25本
2.甲少得了多少本?25–22=3本 3.乙少得了多少本?25–23=2本 4.每本图书多少元?13.5÷3=4.5元 5. 丙应还给乙多少元? 4.5×2=9元
13.5÷[(22+23+30)÷3–22]×[(22+23+30)÷3–23]=9元
例
8、小荣家住山南,小方家住山北。山南的山路长269米,山北的路长370米。小荣从家里出发去小方家,上坡时每分钟走16米,下坡时每分钟走24米。求小荣往返一次的平均速度。在同样的路程中,由于是下坡的不同,去时的上坡,返回时变成了下坡;去时的下坡,回来时成了上坡,因此,所用的时间也不同。要求往返一次的平均速度,需要先求得往返的总路程和总时间。
1、往返的总路程(260+370)×2=1260米
2、往返的总时间(260+370)÷16+(260+370)÷24=65.625分
3、往返平均速度 1260÷65.625=19.2米
(260+370)×2÷[(260+370)÷16+(260+370)÷24]=19.2米
例
9、草帽厂有两个草帽生产车间,上个月两个车间平均每人生产草帽185顶。已知第一车间有25人,平均每人生产203顶;第二车间平均每人生产草帽170顶,第二车间有多少人?
解法一:可以用“移多补少获得平均数”的思路来思考。
第一车间平均每人生产数比两个车间平均每人平均数多几顶?203–185=18顶;第一车间有25人,共比按两车间平均生产数计算多多少顶?18×25=450。将这450顶补给第二车间,使得第二车间平均每人生产数达到两个车间的总平均数。
6. 第一车间平均每人生产数比两个车间平均顶数多几顶? 203–185=18顶 7.第一车间共比按两车间平均数逆运算,多生产多少顶?18×25=450顶 8. 第二车间平均每人生产数比两个车间平均顶数少几顶?185–170=15顶 9. 第二车间有多少人:450÷15=30人(203–185)×25÷(185–170)=30人 例
10、一辆汽车从甲地开往乙地,去时每小时行45千米,返回时每小时行60千米。往返一次共用了3.5小时。求往返的平均速度。(得数保留一位小数)解法一:要求往返的平均速度,要先求得往返的距离和往返的时间。
去时每小时行45千米,1千米要 小时;返回时每小时行60千米,1千米要 小时。往返1千米要(+)小时,进而求得甲乙两地的距离。
1、甲乙两地的距离 3.5÷(+)=90千米
2、往返平均速度 90×2÷3.5≈52.4千米 3.5÷(+)×2÷3.5≈52.4千米
解法二:把甲乙两地的距离看作“1”。往返距离为2个“1”,即1×2=2。去时每千米需 小时,返回时需 小时,最后求得往返的平均速度。
1÷(+)≈51.4千米
在解答某一类应用题时,先求出一份是多少(归一),然后再用这个单一量和题中的有关条件求出问题,这类应用题叫做归一应用题。
归一,指的是解题思路。
归一应用题的特点是先求出一份是多少。归一应用题有正归一应用题和反归一应用题。在求出一份是多少的基础上,再求出几份是多产,这类应用题叫做正归一应用题;在求出一份是多少的基础上,再求出有这样的几份,这类应用题叫做反归一应用题。
根据“求一份是多少”的步骤的多少,归一应用题也可分为一次归一应用题,用一步就能求出“一份是多少”的归一应用题;两次归一应用题,用两步到处才能求出“一份是多少”的归一应用题。
解答这类应用题的关键是求出一份的数量,它的计算方法: 总数÷份数=一份的数
例1、24辆卡车一次能运货物192吨,现在增加同样的卡车6辆,一次能运货物多少吨? 先求1辆卡车一次能运货物多少吨,再求增加6辆后,能运货物多少吨。这是一道正归一应用题。192÷24×(24+6)=240吨
例
2、张师傅计划加工552个零件。前5天加工零件345个,照这样计算,这批零件还要几天加工完?
这是一道反归一应用题。
例3、3台磨粉机4小时可以加工小麦2184千克。照这样计算,5台磨粉机6小时可加工小麦多少千克?
这是一道两次正归一应用题。
例
4、一个机械厂和4台机床4.5小时可以生产零件720个。照这样计算,再增加4台同样的机床生产1600个零件,需要多少小时?
这是两次反归一应用题。要先求一台机床一小时可以生产零件多少个,再求需要多少小时。1600÷[720÷4÷4.5×(4+4)]=5小时
例
5、一个修路队计划修路126米,原计划安排7个工人6天修完。后来又增加了54米的任务,并要求在6天完工。如果每个工人每天工作量一定,需要增加多少工人才如期完工? 先求每人每天的工作量,再求现在要修路多少米,然后求要5天完工需要工人多少人,最后求要增加多少人。
(126+54)÷(126÷7÷6×5)–7=5人
例
6、用两台水泵抽水。先用小水泵抽6小时,后用大水泵抽8小时,共抽水624立方米。已知小水泵5小时的抽水量等于大水泵2小时的抽水量。求大小水泵每小时各抽水多少立方米?
解法一:根据“小水泵5小时的抽水量等于大水泵2小时的抽水量”,可以求出大水泵1小时的抽水量相当于小水泵几小时的抽水量。把不同的工作效率转化成某一种水泵的工作效率。
1、大水泵1小时的抽水量相当于小水泵几小时的抽水量?5÷2=2.5小时
2、大水泵8小时的抽水量相当于小水泵几小时的抽水量2.5×8=20小时
3、小水泵1小时能抽水多少立方米?642÷(6+20)=24立方米
4、大水泵1小时能抽水多少立方米?24×2.5=60立方米 解法二:
1、小水泵1小时的抽水量相当于大水泵几小时的抽水量2÷5=0.4小时
2、小水泵6小时的抽水量相当于大水泵几小时的抽水量0.4×6=2.4小时
3、大水泵1小时能抽水多少立方米?624÷(8+2.4)=60立方米
4、小水泵1小时能抽水多少立方米?60×0.4=24立方米
例
7、东方小学买了一批粉笔,原计划29个班可用40天,实际用了10天后,有10个班外出,剩下的粉笔,够有校的班级用多少天?
先求这批粉笔够一个班用多少天,剩下的粉笔够一个班用多少天,然后求够在校班用多少天。
1、这批粉笔够一个班用多少天 40×20=800天
2、剩下的粉笔够一个班用多少天 800–10×20=600天
3、剩下几个班 20–10=10个
4、剩下的粉笔够10个班用多少天 600÷10=60天(40×20–10×20)÷(20–10)=60天
例
8、甲乙两个工人加工一批零件,甲4.5小时可加工18个,乙1.6小时可加工8个,两个人同时工作了27小时,只完成任务的一半,这批零件有多少个?
先分别求甲乙各加工一个零件所需的时间,再求出工作了27小时,甲乙两工人各加工了零件多少个,然后求出一半任务的零件个数,最后求出这批零件的个数。
[27÷(4.5÷18)+27÷(1.6÷8)]×2=486个
在解答某一类应用题时,先求出总数是多少(归总),然后再用这个总数和题中的有关条件求出问题。这类应用题叫做归总应用题。
归总,指的是解题思路。
归总应用题的特点是先总数,再根据应用题的要求,求出每份是多少,或有这样的几份。例
1、一个工程队修一条公路,原计划每天修450米。80天完成。现在要求提前20天完成,平均每天应修多少米?
450×80÷(80–20)=600米
例
2、家具厂生产一批小农具,原计划每天生产120件,28天完成任务;实际每天多生产了20件,可以几天完成任务?
要求可以提前几天,先要求出实际生产了多少天。要求实际生产了多少天,要先求这批小农具一共有多少件。
28–120×28÷(120+20)=4天
例
3、装运一批粮食,原计划用每辆装24袋的汽车9辆,15次可以运完;现在改用每辆可装30袋的汽车6辆来运,几次可以运完?
24×9×15÷30÷6=18次
例
4、修整一条水渠,原计划由8人修,每天工作7.5小时,6天完成任务,由于急需灌水,增加了2人,要求4天完成,每天要工作几小时?
一个工人一小时的工作量,叫做一个“工时”。要求每天要工作几小时,先要求修整条水渠的工时总量。
1、修整条水渠的总工时是多少?7.5×8×6=360工时
2、参加修整条水渠的有多少人 8+2=10人
3、要求 4天完成,每天要工作几小时 4、360÷4÷10=9小时 7.5×8×6÷4÷(8+2)=9小时
例
5、一项工程,预计30人15天可以完成任务。后来工作的天后,又增加3人。每人工作效率相同,这样可以提前几天完成任务?
一个工人工作一天,叫做一个“工作日”。
要求可以提前几天完成,先要求得这项工程的总工作量,即总工作日。
1、这项工程的总工作量是多少?15×30=450工作日 2、4天完成了多少个工作日?4×30=120工作日
3、剩下多少个工作日?450–120=330工作日
4、剩下的要工作多少天?330÷(30+3)=10天
5、可以提前几天完成?15–(4+10)=1天 15–[(15×30–4×30)÷(30+3)+4]=1天
例
6、一个农场计划28天完成收割任务,由于每天多收割7公顷,结果18天就完成 了任务。实际每天收割多少公顷?
要求实际每天收割多少公顷,要先求原计划每天收割多少公顷。要求原计划每天收割多少公顷,要先求18天多收割了多少公顷。18天多收割的就是原计划(28–18)天的收割任务。
1、18天多收割了多少公顷? 7×18=126公顷
2、原计划每天收割多少公顷? 126÷(28–18)=12.6公顷
3、实际每天收割多少公顷? 12.6+7=19.6公顷 7×18÷(28–18)+7=19.6公顷 例
7、休养准备了120人30天的粮食。5天后又新来30人。余下的粮食还够用多少天?
先要求出准备的粮食1人能吃多少天,再求5天后还余下多少粮食,最后求还够用多少天。
1、准备的粮食1人能吃多少天?300×120=3600天 2、5天后还余下的粮食够1人吃多少天?3600–5×120=3000天
3、现在有多少人?120+30=150人
4、还够用多少天? 3000÷150=20天(300×120–5×120)÷(120+30)=20天
例
8、一项工程原计划8个人,每天工作6小时,10天可以完成。现在为了加快工程进度,增加22人,每天工作时间增加2小时,这样,可以提前几天完成这项工程?
要求可以几天完成,要先求现在完成这项工程多少天。要求现在完成这项工程多少天,要先求这项工程的总工时数是多少。
10–6×10×8÷(8+22)÷(6+2)=8天
已知两个数以及它们之间的倍数关系,要求这两个数各是多少的应用题,叫做和倍应用题。解答方法是:和÷(倍数+1)=1份的数 1份的数×倍数=几倍的数
例
1、有甲乙两个仓库,共存放大米360吨,甲仓库的大米数是乙仓库的3倍。甲乙两个仓库各存放大米多少吨?
例
2、一个畜牧场有绵羊和山羊共148只,绵羊的只数比山羊只数的2倍多4只。两种羊各有多少只?
山羊的只数:(148-4)÷(2+1)=48只 绵羊的只数:48×2+4=100只
例
3、一个饲养场养鸡和鸭共3559只,如果鸡减少60只,鸭增加100只,那么,鸡的只数比鸭的只数的2倍少1只。原来鸡和鸭各有多少只?
鸡减少60只,鸭增加00只后,鸡和鸭的总数是3559-60+100=3599只,从而可求出现在鸭的只数,原来鸭的只数。
1、现在鸡和鸭的总只数:3559-60+100=3599只
2、现在鸭的只数:(3599-1)÷(2+1)=1200只
3、原来鸭的只数:1200-100=1100只
4、原来鸡的只数:3599-1100=2459只
例
4、甲乙丙三人共同生产零件1156个,甲生产的零件个数比乙生产的2倍还多15个;乙生产的零件个数比丙生产的2倍还多21个。甲乙丙三人各生产零件多少个?
以丙生产的零件个数为标准(1份的数),乙生产的零件个数=丙生产的2倍-21个;甲生产的零件个数=丙的(2×2)倍+(21×2+15)个。
丙生产零件多少个?(1156-21-21×2-15)÷(1+2+2×2)=154个 乙:154×2+21=329个 甲:329×2+15=673个
例
5、甲瓶有酒精470毫升,乙瓶有酒精100毫升。甲瓶酒精倒入乙瓶多少毫升,才能使甲瓶酒精是乙瓶的2倍?
要使甲瓶酒精是乙瓶的2倍,乙瓶 是1份,甲瓶是2份,要先求出一份是多少,再求还要倒入多少毫升。
1、一份是多少?(470+100)÷(2+1)=190毫升
2、还要倒入多少毫升?190-100=90毫升
例
6、甲乙两个数的和是7106,甲数的百位和十位上的数字都是8,乙数百位和十位上的数字都是2。用0代替这两个数里的这些8和2,那么,所得的甲数是乙数的5倍。原来甲乙两个数各是多少?
把甲数中的两个数位上的8都用0代替,那么这个数就减少了880;把乙数中的两个数位上的2都用0代替,那么这个数就减少了220。这样,原来两个数的和就一共减少了(880+220)[7106-(880+220)]÷(5+1)+220=1221„„乙数 7106-1221=5885„„甲数 已知两个数的差以及它们之间的倍数关系,要求这两个数各是多少的应用题,叫做差倍应用题。
解答方法是:差÷(倍数-1)=1份的数 1份的数×倍数=几倍的数
例
1、甲仓库的粮食比乙仓多144吨,甲仓库的粮食吨数是乙仓库的4倍,甲乙两仓各存有粮食多少吨?
以乙仓的粮食存放量为标准(即1份数),那么,144吨就是乙仓的(4-1)份,从而求得一份是多少。
114÷(4-1)=48吨„„乙仓
例
2、参加科技小组的人数,今年比去年多41人,今年的人数比去年的3倍少35人。两年各有多少人参加?
由“今年的人数比去年的3倍少35人”,可以把去年的参加人数作为标准,即一份的数。今年参加人数如果再多35人,今年的人数就是去年的3倍。(41+35)就是去年的(3-1)份
去年:(41+35)÷(3-1)=38人
例
3、师傅生产的零件的个数是徒弟的6倍,如果两人各再生产20个,那么师傅生产的零件个数是徒弟的4倍。两人原来各生产零件多少个?
如果徒弟再生产20个,师傅再生产20×6=120个,那么,现在师傅生产的个数仍是徒弟的6倍。可见20×6-20=100个就是徒弟现有个数的6-2=4倍。
(20×6-20)÷(6-4)-20=30个„„徒弟原来生产的个数 30×6=180个师傅原来生产个数
例
4、第一车队比第二车队的客车多128辆,再起从第一车队调出11辆客车到第二车队服务,这时,第一车队的客车比第二车队的3倍还多22辆。原来两车队各有客车多少辆? 要求“原来两车队各有客车多少辆”,需要求“现在两车队各有客车多少辆”;要求“现在两车队各有客车多少辆”,要先求现在第一车队比第二车队的客车多多少辆。
1、现在第一车队比第二车队的客车多多少辆? 128-11×2=106辆
2、现在第二车队有客车多少辆?(106-22)÷(3-1)=42辆
3、第二车队原有客车多少辆?42-11=31辆
4、第一车队原有客车多少辆?31+128=159辆
例
5、小华今年12岁,他父亲46岁,几年以后,父亲的年龄是儿子年龄的3倍? 父亲的年龄与小华年龄的差不变。
要先求当父亲的年龄是儿子年龄的3倍时小华多少岁,再求还要多少年。(46-12)÷(3-1)-12=5年
例
6、甲仓存水泥64吨,乙仓存水泥114吨。甲仓每天存入8吨,乙仓每天存入18吨。几天后乙仓存放水泥吨数是甲仓的2倍?
现在甲仓的2倍比乙仓多(64×2-114)吨,要使乙仓水泥吨数是甲仓的2倍,每天乙仓实际只多存入了(18-2×8)吨。
(64×2-114)÷(18-2×8)=7天
例
7、甲乙两根电线,甲电线长63米,乙电线长29米。两根电线剪去同样的长度,结果甲电线所剩下长度是乙电线的3倍。各剪去多少米?
要求“各剪去多少米”,要先求得甲乙两根电线所剩长度各是多少米。两根电线的差不变,甲电线的长度是乙电线的3倍。从而可求得甲乙两根电线所剩下的长度。
1、乙电线所剩的长度?(63-29)÷(3-1)=17米
2、剪去长度?29-17=12米
例
8、有甲乙两箱橘子。从甲箱取10只放入乙箱,两箱的只数相等;如果从乙箱取15只放入甲箱,甲箱橘子的只数是乙箱的3倍。甲乙两箱原来各有橘子多少只?
要求“甲乙两箱原来各有橘子多少只”,先求甲乙两箱现在各有橘子多少只。
已知现在“甲箱橘子的只数是乙箱的3倍”,要先求现在甲箱橘子比乙箱多多少只。原来甲箱比乙箱多10×2=20只,“从乙箱取15只放入甲箱”,又多了15×2=30只。现在两箱橘子相差(10×2+15×2)只。
(10×2+15×2)÷(3-1)+15=40只„„乙箱 40+10×2=60只„„甲箱 已知两个数的和与它们的差,要求这,叫做和差应用题。解答方法是:(和+差)÷2=大数(和-差)÷2=小数
例
1、果园里有苹果树和梨树共308棵,苹果树比梨树多48棵。苹果树和梨树各有多少棵?
例
2、甲乙两仓共存货物1630吨。如果从甲仓调出6吨放入乙仓,甲仓的货物比乙仓的货物还多10吨。甲乙两仓原来各有货物多少吨?
从甲仓调出6吨放入乙仓,甲仓的货物比乙仓的货物还多10吨,可知原来两仓货物相差6×2+10=22吨,由此,可根据两仓货物的和与差,求得两仓原有货物的吨数。
例
3、某公司甲班和乙班共有工作人员94人,因工作需要临时从乙班调46人到甲班工作,这时,乙班比甲班少12人,原来甲班和乙班各有工作人员多少人?
总人数不变。即原来和现在两班工作人员的和都是94人。现在两班人数相差12人。要求原来甲班和乙班各有工作人员多少人,先要求现在甲班和乙班各有工作人员多少人?
1、现在甲班有工作人员多少人?(94+12)÷2=53人
2、现在乙班有工作人员多少人?(94-12)÷2=41人
3、原来甲班有工作人员多少人?53-46=7人
4、原来乙班有工作人员多少人?41+46=87人
例
4、甲乙丙三人共装订同一种书刊508本。甲比乙多装订42本,乙比丙多装订26本。他们三人各装订多少本?
先确定一个人的装订本数为标准。如果我们选定乙的装订本数为标准,从总数508中减去甲比乙多装订4的2本,加上丙比乙少装订的26本,得到的就是乙装订本数的3倍。由此,可求得乙装订的本数。
乙:(508-42+26)÷3=164本 甲丙略
例
5、三辆汽车共运砖9800块,第一辆汽车比其余两车运的总数少1400块,第二辆比第三辆汽车多运200块。三辆汽车各运砖多少块?
根据“三辆汽车共运砖9800块”和“第一辆汽车比其余两车运的总数少1400块”,可求得第一辆汽车和其余两车各运砖多少块。
根据“其余两车共运砖块数”和“第二辆比第三辆汽车多运200块”可求得第二辆和第三辆各运砖多少块。
1、第一辆:(9800-1400)÷2=4200块
2、第二辆和第三辆共运砖块数:9800-4200=5600块
3、第二辆:(5600+200)÷2=2900块
4、第三辆:5600-2900=2700块
例
6、甲乙丙三人合做零件230个。已知甲乙两人做的总数比丙多38个;甲丙两人做的总数比乙多74个。三人各做零件多少个?
先把跽两人做的零件总数看成一个数,从而求出丙做零件的个数,再把甲丙两人做的零件总数看作一个数,从而求出乙做零件的个数。丙:(230-38)÷2=96个 乙:(230-38)÷2=78个 甲略
例
7、一列客车长280米,一列货车长200米,在平行的轨道上相向而行,两车从两车头相遇到两车尾相离共经过15秒;两列车在平行轨道上同向而行,货车在前,客车在后,从两车相遇(货车车尾和客车车头)到两车相离(货车车头和客车车尾)经过2分钟。两列车的速度各是多少?
由相向而行从相遇到相离经过15秒,可求得两列车的速度和(280+200)÷15;由同向而行从相遇到相离经过2分钟,可求得两列车的速度差(280-200)÷(60×2)。从而求得两列车的速度。
例
8、五年级三个班共有学生148人。如果把1班的3名学生调到2班,两班人数相等;如果把2班的1名学生调到3班,3班还比2班少3人。三个班原来各有学生多少人? 由“如果把1班的3名学生调到2班,两班人数相等”,可知,1班学生人数比2班多3×2=6人;由“如果把2班的1名学生调到3班,3班还比2班少3人”可知,2班学生人数比3班多1×2+3=5人。如果确定以2班学生人数为标准,由“三个班共有学生148人”和“1班学生人数比2班多3×2=6人,2班学生人数比3班多1×2+3=5人”可先求得2班的学生人数。
(148-3×2+1×2+3)÷3=49人„„2班 甲丙班略
已知两人的年龄,求他们之间的某种数量关系;或已知两人年龄之间的数量关系,求他们的年龄等,这类问题叫做年龄应用题问题。
年龄问题的主要特点是:大小年龄差是个不变量。差是定值的两个量,随时间的变化,倍数关系也会发生变化。
这类应用题往往是和差应用题、和倍应用题、差倍应用题的综合应用。
例
1、小方今年11岁,他爸爸今年43岁,几年以后,爸爸的年龄是小方年龄的3倍? 因为小方与爸爸的年龄差43-11=32不变。以几年后小方的年龄为1份数,爸爸的年龄就是3份的数。根据差倍应用题的解法,可求出小方几年后的年龄。
(43-11)÷(3-1)=16岁 16-11=5年
例
2、妈妈今年比儿子大24岁,4年后妈妈年龄是儿子的5倍。今年儿子几岁? “妈妈今年比儿子大24岁“,4年后也同样大24岁,根据差倍应用题的解法,可求得4年后儿子的年龄,进而求得今年儿子的年龄。
24÷(5-1)-4=2岁
例
3、今年甲乙两人年龄和为50岁,再过5年,甲的年龄是乙的4倍。今年甲乙两人各几岁?
今年甲乙两人年龄和为50岁,再过5年,两人的年龄和是50+5×2=60岁。根据和倍应用题的解法。可求得5年后乙的年龄,从而求得今年乙的年龄和甲的年龄。
例
4、小高5年前的年龄等于小王7年后的年龄。小高4年后与小王3年前的年龄和是35岁。今年两人各是多少岁?
由“小高5年前的年龄等于小王7年后的年龄“可知,小高比小王大5+7岁;他们俩今年年龄的和为:35+3-4=30岁,根据和差应用题的解法,可求得今年两人各是多少岁。由第一个条件可知,小高比小王在5+7=12岁。由第二个条件可知,他们的年龄和为35+3-4=34岁。
“根据两个差求未知数”是指分析问题的思考方法。“两个差”是指题目中有这样的数量关系。例如:总量之差与单位量之差;时间之差与速度之差或距离之差等等。解题时可以找出题目中的两个差,再根据两个这间的相应关系使总量得到解决。
例
1、百货商场上午卖出洗衣机8台,下午卖出同样的洗衣机12台,下午比上午多收售货款6600元,每台洗衣机售价多少元?6600÷(12-8)=1650元
例
2、一辆汽车上午行驶120千米,下午行驶210千米。下午比上午多行驶1.5小时。平均每小时行驶多少千米?(210-120)÷1.5=60千米
例
3、新建一个图书室和一个办公室。室内地面共有234平方米。已知办公室比图书室小54平方米。用同样的砖铺地,图书室比办公室多用864块。图书室和办公室地面各用砖多少块?
由“办公室比图书室小54平方米”和“图书室比办公室多用864块”可求得“平均每平方米需用砖多少块”;由“室内地面共有234平方米”和“办公室比图书室小54平方米”,可求得“”。从而求得各用砖多少块。
例
4、甲乙两人同时从东村出发去西村,甲每分钟行76米,乙每分钟行68米。到达西村时,乙比甲多用了4分钟。东西两村间的路程是多少米?
甲乙两人同时从东村出发,当甲到达西村时,乙距西村还有4分钟的路程。乙每分钟行68米,4分钟能行68×4=272米。也就是说,在相同的时间内,甲比乙多行272米。这是路程这差。每分钟甲比惭多行76-68=8米,这是速度这差。根据这两个差,可以求出甲走完全程所用的时间,从而求得两村之间的路程。
76×[68×4÷(76-68)]=2584米
例
5、冰箱厂原计划每天生产电冰箱40台,改进工艺后,实际每天比原计划多生产5台这样,提前2天完成了这批生产任务外,还比原计划多生产了35台。实际生产电冰箱多少台?
要求“实际生产电冰箱多少台”,需要知道“实际每天生产多少台”和“实际生产了多少天”。
如果实际上再生产 2 天后话,还能生产(40+5)×2=90台,双知比原计划还多生产35台,实际上比原计划多生产了90+35=125台,这是一个总量之差。又知实际每天比原计划多生产5台,这是生产效率之差。根据这两个差可以求出原计划生产的天数。从而求得实际生产电冰箱的台数:40×{[(40+5)×2+35]÷5}+35=1035台
例
6、食品厂运来一批煤,原计划每天生产480千克,烧了预定的时间后,还剩下1680千克;改进烧煤方法后,实际每天烧400千克,烧了同样的时间后,还剩下4080千克。这批煤共有多少千克?
要求这批煤共有多少千克,先要求出预定烧的天数。计划烧后还剩1680千克,实际烧后还剩4080千克可求得实际比坟墓多剩多少千克,这是剩下总量之差,实际每天烧400千克,计划每天烧480千克,可求得每天烧煤量之差。根据这两个差,可求得烧了多少天。进而可求得烧了多少千克,这批煤共有多少千克。
400×[(4080-1680)÷(480-400)]+4080=16080千克
有关栽树以及与栽树相似的一类应用题,叫做植树问题。植树问题通常有两种形式。一种是在不封闭的线路上植树,另一种是在封闭的线路上植树。
1、不封闭线路上植树
如果在一条不封闭的线路上可不可能,而且两端都植树,那么,植树的棵数比段数多。其数量关系如下:
棵数=总长÷株距+1 总长=株距×(棵数-1)株距=总长÷(棵数-1)
2、在封闭的线路上植树,那么植树的棵数与段数相等。其数量关系如下: 棵数=总长÷株距 总长=株距×棵数 株距=总长÷棵数
例
1、有一条公路全长500米,从头至尾每隔5米种一棵松树。可种松树多少棵? 500÷5 +1=101棵
例
2、从校门口到街口,一共插有30面红旗,相邻两面红旗相隔6米。从校门口到街口长多少米? 6×(30-1)=174米
例
3、在一条长150米的大路两旁各栽一行树,起点和终点都栽,一共栽了102棵。每相邻两棵树之间的距离相等。相邻两棵树之间的距离有多少米? 150÷(102÷2-1)=3米 例
4、在一个周长为600米的池塘周围植树,每隔10米栽一棵杨树,在相邻两棵杨树之间每隔2米栽1棵柳树。杨树和柳树各栽了多少棵?
根据“棵数=总长÷株距”,可以求出杨树的棵数
在每两棵杨树之间可分为10÷2=5段,栽柳树4-1=4棵。由此,可以求得柳树的棵数。杨树:600÷10=60棵 柳树:(10÷2-1)×60=240棵
例
5、一条马路一侧,原有木电线杆97根,每相邻的两根相距40米。现在计划全部换用大型水泥电线杆,每相邻两根相距60米。需要大型水泥电线杆多少根?
1、这条路全长多少米?40×(97-1)=3840米
2、需要大型水泥电线杆多少根?3840÷60+1=65根
例
6、一座大桥长200米,计划在大桥两侧的栏杆上共安装32块图案,每块图案长2米,靠近桥两端的图案离桥端10.5米。相邻两图案之间的距离是多少米?
在桥两侧共装32块图案,即每侧装16块,图案之间的间隔有16-1=15个。用总长减去16块图案的距离就可以知道15个间隔的长度。
相向运动问题
同向运动问题(追及问题)背向运动问题(相离问题)
在行车、行船、行走时,按照速度、时间和距离之间的相依关系,已知其中的两个量,要求第三个量,这类应用题,叫做行程应用题。也叫行程问题。
行程应用题的解题关键是掌握速度、时间、距离之间的数量关系: 距离=速度×时间 速度=距离÷时间 时间=距离÷速度 按运动方向,行程问题可以分成三类:
1、相向运动问题(相遇问题)
2、同向运动问题(追及问题)
3、背向运动问题(相离问题)
十、行程应用题
相向运动问题(相遇问题),是指地点不同、方向相对所形成的一种行程问题。两个运动物体由于相向运动而相遇。
解答相遇问题的关键,是求出两个运动物体的速度之和。
基本公式有:两地距离=速度和×相遇时间 相遇时间=两地距离÷速度和 速度和=两地距离÷相遇时间
例
1、两列火车同时从相距540千米的甲乙两地相向而行,经过3.6小时相遇。已知客车每小时行80千米,货车每小时行多少千米?
例
2、两城市相距138千米,甲乙两人骑自行车分别从两城出发,相向而行。甲每小时行13千米,乙每小时行12千米,乙在行进中因修车候车耽误1小时,然后继续行进,与甲相遇。求从出发到相遇经过几小时?
因为乙在行进中耽误1小时。而甲没有停止,继续行进。也可以说,甲比乙多行1小时。如果从总路程中把甲单独行进的路程减去,余下的路程就是跽两人共同行进的。
(138-13)÷(13+12)+1=6小时
例
3、计划开凿一条长158米的隧道。甲乙两个工程队从山的两边同时动工,甲队每天挖2.5米,乙队每天挖进1.5米。35天后,甲队调往其他工地,剩下的由乙队单独开凿,还要多少天才能打通隧道?
要求剩下的乙队开凿的天数,需要知道剩下的工作量和乙队每天的挖进速度。要求剩下的工作量,要先求两队的挖进速度的和,35天挖进的总米数,然后求得剩下的工作量。[158-(2.5+1.5)×35]÷1.5=12天
例
4、一列客车每小时行95千米,一列货车每小时的速度比客车慢14千米。两车分别从甲乙两城开出,1.5小时后两车相距46.5千米。甲乙两城之间的铁路长多少千米? 已知1.5小时后两车还相距46.5千米,要求甲乙两城之间的铁路长,需要知道1.5小时两车行了多少千米?要求1.5小时两车共行了多少千米。需要知道两车的速度。
(95-14+95)×1.5+46.5=310.5千米
例
5、客车从甲地到乙地需8小时,货车从乙地到甲地需10小时,两车分别从甲乙两地同时相向开出。客车中途因故停开2小时后继续行驶,货车从出发到相遇共用多少小时? 假设客车一出发即发生故障,且停开2小时后才出发,这时货车已行了全程的 ×2=,剩下全程的1-=,由两车共同行驶。(1-×2)÷()-10分钟
例
5、甲乙两人骑自行车同时从学校出发,同方向前进,甲每小时行15千米,乙每小时行10千米。出发半小时后,甲因事又返回学校,到学校后又耽搁1小时,然后动身追乙。几小时后可追上乙?
先要求得甲先后共耽搁了多少小时,甲开始追时,两人相距多少千米 10×(0.5×2+1)÷(15-10)=4小时
例
6、甲乙丙三人都从甲地到乙地。早上六点甲乙两人一起从甲地出发,甲每小时行5千米,乙每小时行4千米。丙上午八点才从甲地出发,傍晚六点,甲、丙同时到达乙地。问丙什么时候追上乙?
要求“两追上乙的时间”,需要知道“丙与乙的距离差”和“速度差”。要先求丙每小时行多少千米,再求丙追上乙要多少时间
1、丙行了多少小时18-8=10小时
2、丙每小时比甲多行多少千米5×2÷10=1千米
3、丙每小时行多少千米5+1=6千米
4、丙追上乙要用多少小时4×2÷(6-4)=4小时
例
7、快中慢三辆车同时从同一地点出发,沿着同一条公路追赶前面的一个骑车人。这三辆车分别用6分钟、10分钟、12分钟追上骑车人。现在知道快车每小时行24千米,中车每小时行20千米,那么慢车每小时行多少千米?
快中慢三辆车出发时与骑车人的距离相同,根据快车和中车追上骑车人的路程差和时间差可求得骑车人的速度,进而求慢车每小时行多少千米。
单位换算略。6分钟= 小时 10分钟= 小时 12分钟= 小时
1、快车 小时行多少千米24× =2.4千米
2、中车 小时行多少千米20× = 千米
3、骑车人每小时行多少千米(-2.4)÷()=20天 解法二:
假定甲与乙一样工作3天,完成的工作量为 ×3=,这时工作量必定超过20%,超过部分 +20%,就是甲队一天的工作量。
甲队单独完成这项工作所需时间1÷(×3-20%)=20天 乙队单独完成这项工作所需时间1÷()=60天
5、乙队单独运完这批货物所需天数 1÷[-()=
例
3、一项工程,原定100人,工作90天完成;工程进行15天后,由于采用先进工具和技术,平均每人工效提高了50%。完成这项工程可提前几天?
要求完成这项工程,可以提前几天,先要求出实际所用的天数;要求实际所用的天数,先要求出完成余下的工程所用的天数。全工程原定100人90天完成,那么,平均每人每天要完成全工程的 ;100人工作15天完成了全工程量的 ×100×15。余下全工程的(1-×100×15)。采用先进技术后,每人工作效率是:[ ×(1+50%)],进而求得余下的工程所用的天数。1、100人工作15天后,还余下全工程的几分之几?1-×100×15=
2、改进技术后,100人1天可以完成这项工程的几分之几?×(1+50%)×100=
3、余下的工程要用多少天?÷ =50天
4、可提前多少天?90-15-50=25天
综合算式:90-15-(1-×100×15)÷[ ×(1+50%)×100]=25天
例
4、有一水池,装有甲乙两个注水管,下面装有丙管排水。空池时,单开甲管5分钟可注满;单开乙管10分钟可注满。水池注满水后,单开丙管15分钟可将水放完。如果在空池时,将甲乙丙三管齐开,2分钟后关闭乙管,还要几分钟可以注满水池?
分析与解:先求出甲乙丙三管齐开2分钟后,注满了水池的几分之几,还余下几分之几。再求余下的要几分钟。
1、三管齐开2分钟,注满了水池的几分之几?(+)=4分钟
例
5、一队割麦工人要把两块麦地的麦割去。大的一块麦地比小的一块大一倍。全队成员先用半天时间割大的一块麦地,到下午,他们对半分开,一半仍留在大麦地上,到傍晚时正 33 好把大麦地的麦割完;另一半到小麦地去割,到傍晚时还剩下一小块,这一小块第二天由1人去割,正好1天割完。这个割麦队共有多少人?
分析与解:把大的一块麦地算作单位“1”,小的一块麦地为。根据题意,一半成员半天割了,一天割了,全队成员一天可割 ×2=。
1、全队成员一天可割几分之几? ×2=
2、所剩的一小块面积是几分之几?-(-1)=
3、全队有多少人?(1+×3=
4、一个女工独做需要多少天 1÷ =18天
例
8、一项工程,甲独做10天完成,乙独做12天可以完成,丙独做15天完成。现在三人合作甲中途因病休息了几天,结果6天完成任务。甲休息了几天?
如果甲没有休息,那么甲乙丙都工作了6天,完成了工程量的几分之几,超过了几分之几,然后求得甲休息了几天。
1、三人合做6天,完成了工程量的几分之几?(+ +)×6=
2、超额完成了工程的几分之几?-1=
3、甲休息了几天? ÷ =5天
牛顿问题也叫牛吃草问题。由于这个问题是由伟大的科学家牛顿提出来的,所以以后就把这类问题叫做牛顿问题。牛顿问题的特点是随着时间的增长所研究的量也等量地增加,解答时,要抓住这个关键问题,也就是要求出原来的量和增加的量各是多少。
牧场上长满牧草,每天匀速生长。这片牧场可供10头牛吃20天,可供15头牛吃10天。供25头牛吃几天?
牧草的总量不定,它是随时间的增加而增加。但是不管它怎样增长,草的总量总是由牧场原有草量和每天长出的草量相加得来的。
10头牛20天吃的总草量比15头牛10天吃的草量多,多出部分相当于10天新长出的草量。
设法求出一天新长出的草量和原有草量。1、10头牛20天吃的草可供多少牛吃一天?10×20=200头、2、15头牛10天吃的草可供多少 头牛吃一天15×10=150头
3、(20–10)天新长出的 草可供多少头牛吃一天?50÷10=5头
4、每天新长出的草可供多少头牛吃一天?50÷10=5头 5、20天(或10天)新长出的草可供多少头牛吃一天?5×20=100头
或5×10=50头
6、原有的草可供多少头牛吃一天?200–100=100头
或150–50=100头
7、每天25头牛中,如果有5头牛去吃新长出的草,其余的牛吃原有的草,可吃几天?
100÷(25–5)=5天
例
2、有一水井,连续不断涌出泉水,每分钟涌出的水量相等。如果用3 台抽水机抽水,36分钟可以抽完;如果用5台抽水机抽水,20分钟可以抽完。现在12分钟要抽完井水,需要抽水机多少台?
随着时间的增长涌出的泉水也不断增多,但原来水量和每分钟涌出的水量不变。
1、3台抽水机的抽水量。3×36=108台分 2、5台抽水机的抽水量。5×20=100台分
3、使用3 台抽水机比用5台抽水机多用多少分钟?36–20=16分
4、使用3台抽水机比用5台抽水机少抽的水量。108–100=8台分
5、泉水每分钟涌出的水量,算出需要抽水机多少台?8÷16= 台
6、水井分钟涌出的水量。×36=18台分
7、水井原有的水量。108–18=90台分
8、水井原有水量加上12分钟涌出的水量。×12=6台分
9、水井原有水量加上12分钟涌出的水量。90+6、12台分
10、需要抽水机多少台?96÷12=8台
例
3、一片青草,每天生长速度相等。这片青草可共10头牛吃20天,或共60只羊吃10天。如果1头牛吃的草量等于4 只羊吃的草量,那么10头牛与60只羊一起吃,可以吃多少天?
先把题目进行转化。因为1头牛吃的草量等于4 只羊吃的草量。由此,题目可以转换成:这片青草可供(4×10)只羊吃20天,或供60只羊吃10天,问(4×10+60)只羊吃多少天?
1、(4×10)只羊20天吃的草可供多少只羊一天?4×10×20=800只天 2、60只羊10天吃的草可供多少只羊吃一天?60×10=600只天
3、(20–10)天新长出的草可供多少只羊吃一天?800–600=200只
4、每天的新长出的草可供多少只羊吃一天?200÷10=20只 5、20天新长出的草可供多少只羊吃一天?20×20=400只
6、原有草可供多少只羊吃一天?800–400=400只
7、可吃多少天?400÷(4×10+60–20)=5天
汉朝大将韩信善于用兵。据说韩信每当部队集合,他只要求部下士兵作1~3、1~5、1~7报数后,报告一下特各次的余数,便可知道出操公倍数和缺额。
这个问题及其解法,大世界数学史上颇负盛名,中外数学家都称之为“孙子定理”或“中国剩余定理”。
这类问题的解题依据是:
1、如果被除数增加(或减少)除数的若干倍,除数不变,那么余数不变。例如: 20÷3=6„„2(20-3×5)÷3=21„„2(20+3×15)÷3=1„„2
2、如果被除数扩大(缩小)若干倍,除数不变,那么余数也扩大(缩小)同样的倍数。例如: 20÷9=2„„2(20×3)÷9=6„„6(20÷2)÷9=1„„1
例
1、一个数除以3余2,除以5余3,除以7余2。求适合这些条件的最小的数。
1、求出能被5和7整除,而被3除余1的数,并把这个数乘以2。70×2=140
2、求出能被3和7整除,而被5除余1的数,并把这个数乘以3。21×3=63
3、求出能被5和3整除,而被7除余1的数,并把这个数乘以2。15×2=30
4、求得上面三个数的和 140+63+30=233
5、求3、57的最小公倍数 [3、5、7]=105
6、如果和大于最小公倍数,要从和里减去最小公倍数的若干倍:233–105×2=23 例
2、一个数除以3余2,除以5余2,除以7余4,求适合这些条件的最小的数。解法一: 70×2+21×2+15×4=242 [3、5、7]=105 242–105×2=32 解法
二、35+21×2+15×4=137 [3、5、7]=105 137–105=32 例
3、一个数除以5余3,除以6余4,除以7余1,求适合这些条件的最小的数。
1、因为[
6、7]=42,而42÷5余2,根据第二个依据,42×4÷5应余8(2×4),实际余3,所以取42×4=168
2、因为[
7、5]=35,而35÷6余5,则取35×2=70
3、[
5、6]=30,30÷7余2,则取30×4=120
4、[5、6、7、]=210 5、168+70+120–210=148 例
4、我国古代算书上有一道韩信点兵的算题:卫兵一队列成五行纵队,末行一人;列成六行纵队末行五人;列成七行纵队,末行四人;列成十一行纵队,末行十人。求兵数。
1、[6、7、11]=462 462÷5余2 462×3÷5余1 取462×3=1386
2、[7、11、5]=385 385÷6余5 385×5÷6余5 取385×5=1925
3、[11、5、6]=330 330÷7余1 220×4÷7余4 取330×4=1320
4、[5、6、7]=210 210÷11余1 210×10÷11余10 取210×10=2100
5、求四个数的和 1386+1925+1320+2100=6731
6、[5、6、7、11]=2310 7、6731–2310×2=2111
第三篇:小学数学解决问题解题策略
小学数学解决问题解题步骤
防城区峒中镇小学 韦达良
【内容摘要】:在小学数学教育教学中,解决问题(也说应用题)顾名思义就是利用数学方法去解决一些实际问题,最简单的建模就是我们做的应用题。在整个小学数学教学中,解决问题占有相当大的比例(约为25%~32%),所以如何解答好应用题是学习好数学的一个关键的环节。本文主要是由笔者平时教学中如何解决应用题的一些心得体会,从中总结了读(弄清题意)、分(应用题分类)、解(做出解答)三个步骤。通过以下所述,希望可以帮助学生更容易的解答应用题,使解题能够起到事半功倍。
【关键词】:解决问题 读 分 解
在小学数学的学习生活中,解决问题所占的比例很大,约为25%~32%,同时在现实生活中,我们也可以用所学到的应用题来解决实际的问题,例如:几个家庭聚会用餐,习惯AA制,按人数分摊费用,因此也可以这么说解决问题是生活的需要,数学来源于生活,而服务于生活。其实解决问题的学习是对小学生进行思维训练,小学生通过学习,起到培养数学逻辑思维能力,提高其数学素质。
笔者认为应用题的教学,一定要加强学生思维能力的训练,语言的训练,强化学生归类应用题的能力,并通过对题目的阅读理解基础上,迅速对所做的题目进行有效的分类,根据应用题各种类型题,对准问题做出相应的解答。这样才能提高学生灵活解决实际问题的能力。为此,总结我多年的数学应用题的教学心得,在常见的数学几种应用题中,得出解决应用题的以下步骤:读――分――解。现分述如下,希望可以帮助学生更好地学习小学数学应用题。
一、读
小学数学应用题上所谓的读,我是指读懂题目,弄清题意。应用题是用语言 表述的一类题型,对数学语言的理解能力要求非常高。因此,读题便成为解答应用题的一个重要环节,它是学生自己感知信息数据的过程,弄清题意是把不相关的语言精简掉,整理出有用的信息数据进行下一步的分析理解。现在很多应用题不但考的是数学常识,还考查了语文的阅读能力,还有转化问题的能力。可能有些人会说数学的读看起来很简单,平时不太注意的去强调和有意识的去训练,造成学生在解答应用题时,没有充分理解题目的基本含义,解题就没有方法可论,甚至是无从下手。所以我们在教学应用题时,有必要的加强读。但数学应用题的读并非泛泛而读,它要求讲究一定的方式,数学中的读不讲究抑扬顿挫、优美动听,但需要用心、用脑、集中注意的读,一般来讲要读三遍:第一遍初读,对题目有初步印象;第二遍应逐字逐句的读,重点理解每个词、数学术语的实际含义;第三遍连贯起来读,重点掌握题目的已知条件和所求问题。
例:人教版六年级数学十一册第38页上的例5,小明的体重是35kg,他的体重比爸爸的体重轻8/15,小明爸爸的体重是多少千克?
在读这个题目的时候需要通过大脑反映弄清四个问题:
1、这道题叙述的是什么事?
2、题目第一条件是什么?
3、第二条件是什么?关键词是什么:谁和谁比?比什么?比的结果怎样?
4、问题是什么?按题目的题型格式,属于哪种应用题?
通过四问,读懂了题目,弄清了题意,掌握了已知条件和所求问题,更加重要的是把应用题进行了归类,为下面的解答扫清了障碍。
二、分
分,笔者认为,在我们整个小学阶段的数学应用题学习中,出现了很多种类型的应用题,有些是平时应用得比较广泛的,在日常学习中就应该注意归纳总结出典型题的特征,题目中所包含的主要特点,分类训练,强化记忆。如:
1、总数应用题
我这里所说的总数应用题泛指是应用题中出现的总数、路程的全长、单位“1” 所对应的数,“占”字、“是”字、“相当于”后面的数、分数(指的是分率,分数后面没有数量单位)的前面的数等,它们也叫做单位“1”。如男同学占全班人数的2/3,全班人数就是总数;甲数是乙数的4/5,乙数是总数;平时按照这些特征归类成总数应用题,它的一般解答方法是:单位“1”知道的用乘法,单位“1”不知道的用除法,前提是单位“1”×对应的分率,所得的结果是分率所对应的数,除的时候要对应的数量÷对应的分率,所得的结果是单位“1”所对应的数。例,甲数是乙数的2/3,甲数是20,乙数是多少?乙数是单位“1”,它不知道,所以用除法,甲数是20,它所对应的分率是2/3,计算可为20÷2/3。
2、“比”字应用题
“比”字应用题是指:一个数(简称甲数)比另一个数(简称乙数)多(或少)几分之几的类型题。如甲数比乙数多1/5,乙数是20,求甲数。同样先找单位“1”,它的单位“1”都是在“比”字的后面,如上题乙数是单位“1”。“比”应用题的解题方法是:一个数(已知)×或÷(1+或-几/几),意思就是说,单位“1”知道的用乘法,单位“1”不知道的用除法,括号里面列式可为,比多的是1+几/几,比少的是1-几/几。
例:人教版十一册38页上的例5,小明的体重是35kg,他的体重比爸爸的体重轻8/15,小明爸爸的体重是多少千克?这题中爸爸的体重就是单位“1”,现在不知道,所以用除法,列式是35÷(1-8/15),又如上面提到的甲数和乙数,计算为20×(1+1/5)。
3、比较量÷标准量 此题的特征是:已知一个数和另一个数,求一个数是另一个数的几分之几或百分之几。如:甲数是5,乙数是4,求甲数是乙数的几分之几?这里的字眼是“是”字,“是”字的前面是比较量(作被除数),后面是标准量(作除数),列式为比较量÷标准量,这题正确列式就是5÷4;还有一种题型是甲数是5,乙数是4,求甲数比乙数多几分之几?这里的字眼是“比”字,比较量为甲数比乙数多的部分,“比”字后面乙数是标准量,解题方法为:(甲数-乙数)÷乙数,上题可列式为(5-4)÷4。
4、两个未知数
人教版十一册41页例6:我们班全场得了42分,下半场得分只有上半场的一半,上半场和下半场各得多少分?
这题的特征是只懂得总数,上半场和下半场都是未知数。做这种题型的关键是先找出全题的数量关系式,作为总列式的依据,上题就可以列为 上半场+下半场=42分,然后找出上、下半场中谁作为单位“1”设为X,同样的道理分率的前面(上面的红字),绿色部分上半场为单位“1”,所以此题上半场得分设为X,则下半场为1/2X,全题列式:X+1/2X=42
5、按比例分配
有这样的一条题目:一个长方形的周长是40厘米,长和宽的比为3:2,长 和宽各是多少厘米?很多学生往往都会做成这样40×3/(3+2)=24(厘米),40×2/(3+2)=16(厘米),很显然这是错误的解题。原因就是把总数看成了周长。我平时的教学是先根据比求出总份数,第二步找出这个比相对应的总数,因此要让学生牢记这句话——谁和谁的比,相对应的总数就是谁和谁的和,这题的比是长和宽的比,相对应的总数只能是长和宽的和,而不是周长,第三步再用总数×相对应的份比=相对应的部分数。那么这题可列式为:
1、3+2=5,2、40÷2=20(厘米),3、20×3/5=12(厘米),20×2/5=8(厘米)。
小学阶段数学的学习,应用题的种类很多,细分的话可分40来种,如工程问题、归一问题、行程问题、鸡兔同笼、和差问题、几何形体等等(在以后的论文里再叙)。我这里罗列的只是在平常的学习中经常会用到,学生做起来又感到比较困惑的。像这5种类型的应用题,解题的方法也多样化,如何让学生在解题中行之有效呢?在平常的教学中,让学生牢记类型的特征,自主归类,形成解题步骤,久而久之,学生在大脑中就会自然而然的形成应用题的分类,在解答应用题的时候,就会有“形”而依,得心应手,从而达到学习的事半功倍。所以“分”就成为解答应用题的重要组成部分。
三、解
解,指的是学生解答。或许学生认为这一部分他们是最拿得出手的。学生解 题的最终结果就是把计算完整的写下来,让老师批改。同样这个也需要锻炼。学生需要把刚才读题思考、分类形成解答的方法的过程用数字的形式表示出来。所写的式子,要让别人看了也完全明白你的思路,这样才是一个成功的式子。应用题写的时候要注意:如果是方程,学生的解设就是不可或缺的,所列的方程未知数后面并不需要有单位名称,如果是一般的列式,计算结果单位名称要写上去,求分率、比率是没有单位名称的。最后是写上完整的答句。
综上所述,要完成每一道应用题,每一部分都是不可忽略的,而要做到以上步骤的前提是掌握数学的基础知识和各种基本计算法则,这要靠平时的积累巩固,需要教师在日常的教学中不断训练与督导,每每讲完一条应用题后,引导学生进行反思,对该类型题进行再分析,形成分类归纳,举一反三,融会贯通。
总之,应用题的教学,让学生形成读、分、解的步骤,只要学生做到“功夫”深,让学生的思路清析,解题方法也就越丰富灵活,可以让学生做到一题多解,做到活学活用,也只有这样才能满足于学生的求知欲,使其在数学上得到更好的发展。
参考文献:
《教师教学用书》数学六年级上册 2014年 人民教育出版社
第四篇:小学数学应用题解题的十大方法
小学数学应用题解题的十大方法 1.观察法
观察法,是通过观察题目中数字的变化规律及位置特点、条件与结论之间的关系、题目的结构特点及图形的特征,从而发现题目中的数量关系,把题目解答出来的一种解题方法。观察要有次序,要看得仔细、看得真切,在观察中要动脑,要想出道理、找出规律。
2.尝试法
解应用题时,按照自己认为可能的想法,通过尝试,探索规律,从而获得解题方法,叫做尝试法。尝试法也叫做“尝试探索法”。在尝试时可以提出假设、猜想,无论是假设还是猜想,都要目的明确,尽可能恰当、合理,都要知道在假设、猜想和尝试过程中得到的结论是什么,从而减少尝试的次数,提高解题的效率。
3.列举法
解应用题时,为了解题的方便,把问题分为不重复、不遗漏的有限情况,一一列举出来加以分析、解决,最终达到解决整个问题的目的。这种分析、解决问题的方法叫做列举法。列举法也叫枚举法或穷举法。用列举法解应用题时,往往把题中的条件以列表的形式排列起来,有时也要画图。
4.综合法
从已知数量和未知数量的关系入手,逐步分析出已知数量和未知数量间的关系,一起到求出未知数量的解题方法叫做综合方法。
以综合法解应用题时,先选择两个已知数量,并通过这两个已知数量解出一个问题,然后将这个解出的问题作为一个新的已知条件,与其它已知条件配合,再解出一个问题„„一直到解出应用题所求解的未知数量。
运用综合法解应用题时,应明确通过两个已知条件可以解决什么问题,然后才能从已知逐步推到未知,使问题得到解决。这种思考方法适用于已知条件比较少,数量关系比较简单的应用题。
5.分析法
从求解的问题出发,正确选择所需要的两个条件,依次推导,一直到问题得到解决的解题方法,叫做分析法。用分析法解应用题时,如果解题所需要的两个条件(或其中一个条件)是未知的,就要分别求解找出这两个(或一个)条件,一直到所需要的条件都是已知的为止。分析法适用于解答数量关系比较复杂的应用题。
6.综合-分析法
综合法和分析法是解应用题时常用的两种基本方法。在解比较复杂的应用题时,由于单纯用综合法或分析法时,思维会出现障碍,所以要把综合法和分析法结合起来使用把这一方
法叫做综合-分析法。
7.归一法
先求出单位数量(如单价、工效、单位面积的产量等),再以单位数量为标准,计算出所求数量的解题方法叫做归一法。
8.归总法
已知单位数量和单位数量的个数,先求出总数量,再按另一个单位数量或单位数量的个数求未知数量的解题方法叫妆总法。
解答这类问题的基本原理是:
(1)总数量=单位数量×单位数量的个数;
(2)另一单位数量(或个数)=总数量÷单位数量的个数(或单位数量)。
9.分解法
“由整体到部分、由部分到整体”是认识事物的规律。一道多步复杂的应用题是由几道一步的基本应用题组成。在分析应用题时,可把一道复杂的应用题拆分成几道基本应用题,从中找到解题的线索。把这种解题的思考方法称作分解法。
10.假设法
当应用题用一般方法很难解答时,可假设题目中的情节发生了变化,假设题目中两个或几个数量相等、假设题目中某个数量增加了或减少了,然后在假设的基础上推理调整由于假设而引发的变化的数量的大小,题目中隐藏的数量关系就可能变得明显,从而找到解题方法。这种解题方法就叫做假设法。
当应用题中没有解题必须的具体数量,且已有数量间的关系很抽象,如果假设题中有个具体的数量,或假设题目中某个未知数的数量是单位1,题目数量之间的关系就会变得清晰明确,从而便于找到解决问题的方法,这种解题的方法叫做设数法。
在用设数法解答应用题设具体数量时,要注意两点:一是所设数量要尽量小一些;二是所设的数量要便于分析数量关系和计算。
解决问题的四大策略
1. 画图 2. 列表
3. 猜想与尝试
4. 从简单处入手寻找解决问题的规律
第五篇:小学数学50道经典应用题解题思路
小学数学50道经典应用题解题思路+模板
已知一张桌子的价钱是一把椅子的10倍,又知一张桌子比一把椅子多288元,一张桌子和一把椅子各多少元?
解题思路:
由已知条件可知,一张桌子比一把椅子多的288元,正好是一把椅子价钱的(10-1)倍,由此可求得一把椅子的价钱。再根据椅子的价钱,就可求得一张桌子的价钱。
答题:
解:一把椅子的价钱:
288÷(10-1)=32(元)
一张桌子的价钱:
32×10=320(元)
答:一张桌子320元,一把椅子32元。
3箱苹果重45千克。一箱梨比一箱苹果多5千克,3箱梨重多少千克?
解题思路:
可先求出3箱梨比3箱苹果多的重量,再加上3箱苹果的重量,就是3箱梨的重量。
答题:
解:45+5×3=45+15=60(千克)
答:3箱梨重60千克。
甲乙二人从两地同时相对而行,经过4小时,在距离中点4千米处相遇。甲比乙速度快,甲每小时比乙快多少千米?
解题思路:
根据在距离中点4千米处相遇和甲比乙速度快,可知甲比乙多走4×2千米,又知经过4小时相遇。即可求甲比乙每小时快多少千米。
答题:
解:4×2÷4=8÷4=2(千米)
答:甲每小时比乙快2千米。
李军和张强付同样多的钱买了同一种铅笔,李军要了13支,张强要了7支,李军又给张强0.6元钱。每支铅笔多少钱?
解题思路:
根据两人付同样多的钱买同一种铅笔和李军要了13支,张强要了7支,可知每人应该得(13+7)÷2支,而李军要了13支比应得的多了3支,因此又给张强0.6元钱,即可求每支铅笔的价钱。
答题:
解:0.6÷[13-(13+7)÷2]=0.6÷[13—20÷2]=0.6÷3=0.2(元)
答:每支铅笔0.2元。
甲乙两辆客车上午8时同时从两个车站出发,相向而行,经过一段时间,两车同时到达一条河的两岸。由于河上的桥正在维修,车辆禁止通行,两车需交换乘客,然后按原路返回各自出发的车站,到站时已是下午2点。甲车每小时行40千米,乙车每小时行
45千米,两地相距多少千米?(交换乘客的时间略去不计)
解题思路:
根据已知两车上午8时从两站出发,下午2点返回原车站,可求出两车所行驶的时间。根据两车的速度和行驶的时间可求两车行驶的总路程。
答题:
解:下午2点是14时。
往返用的时间:14-8=6(时)
两地间路程:(40+45)×6÷2=85×6÷2=255(千米)
答:两地相距255千米。
学校组织两个课外兴趣小组去郊外活动。第一小组每小时走4.5千米,第二小组每小时行3.5千米。两组同时出发1小时后,第一小组停下来参观一个果园,用了1小时,再去追第二小组。多长时间能追上第二小组?
解题思路:
第一小组停下来参观果园时间,第二小组多行了[3.5-(4.5-3.5)]?千米,也就是第一组要追赶的路程。又知第一组每小时比第二组快(?4.5-3.5)千米,由此便可求出追赶的时间。
答题:
解:第一组追赶第二组的路程:
3.5-(4.5-?3.5)=3.5-1=2.5(千米)
第一组追赶第二组所用时间:
2.5÷(4.5-3.5)=2.5÷1=2.5(小时)
答:第一组2.5小时能追上第二小组。
有甲乙两个仓库,每个仓库平均储存粮食32.5吨。甲仓的存粮吨数比乙仓的4倍少5吨,甲、乙两仓各储存粮食多少吨?
解题思路:
根据甲仓的存粮吨数比乙仓的4倍少5吨,可知甲仓的存粮如果增加5吨,它的存粮吨数就是乙仓的4倍,那样总存粮数也要增加5吨。若把乙仓存粮吨数看作1倍,总存粮吨数就是(4+1)倍,由此便可求出甲、乙两仓存粮吨数。
答题:
解:乙仓存粮:
(32.5×2+5)÷(4+1)=(65+5)÷5=70÷5=14(吨)
甲仓存粮:
14×4-5=56-5=51(吨)
答:甲仓存粮51吨,乙仓存粮14吨。
甲、乙两队共同修一条长400米的公路,甲队从东往西修4天,乙队从西往东修5天,正好修完,甲队比乙队每天多修10米。甲、乙两队每天共修多少米?
解题思路:
根据甲队每天比乙队多修10米,可以这样考虑:如果把甲队修的4天看作和乙队4天修的同样多,那么总长度就减少4个10米,这时的长度相当于乙(4+5)天修的。由此可求出乙队每天修的米数,进而再求两队每天共修的米数。
答题:
解:乙每天修的米数:
(400-10×4)÷(4+5)=(400-40)÷9=360÷9=40(米)
甲乙两队每天共修的米数:
40×2+10=80+10=90(米)
答:两队每天共修90米。
学校买来6张桌子和5把椅子共付455元,已知每张桌子比每把椅子贵30元,桌子和椅子的单价各是多少元?
解题思路:
已知每张桌子比每把椅子贵30元,如果桌子的单价与椅子同样多,那么总价就应减少30×6元,这时的总价相当于(6+5)把椅子的价钱,由此可求每把椅子的单价,再求每张桌子的单价。
答题:
解:每把椅子的价钱:
(455-30×6)÷(6+5)=(455-180)÷11=275÷11=25(元)
每张桌子的价钱:
25+30=55(元)
答:每张桌子55元,每把椅子25元。
一列火车和一列慢车,同时分别从甲乙两地相对开出。快车每小时行75千米,慢车每小时行65千米,相遇时快车比慢车多行了40千米,甲乙两地相距多少千米?
解题思路:
根据已知的两车的速度可求速度差,根据两车的速度差及快车比慢车多行的路程,可求出两车行驶的时间,进而求出甲乙两地的路程。
答题:
解:(7+65)×[40÷(75-
65)]=140×[40÷10]=140×4=560(千米)
答:甲乙两地相距560千米。
某玻璃厂托运玻璃250箱,合同规定每箱运费20元,如果损坏一箱,不但不付运费还要赔偿100元。运后结算时,共付运费4400元。托运中损坏了多少箱玻璃?
解题思路:
根据已知托运玻璃250箱,每箱运费20元,可求出应付运费总钱数。根据每损坏一箱,不但不付运费还要赔偿100元的条件可知,应付的钱数和实际付的钱数的差里有几个(100+20)元,就是损坏几箱。
答题:
解:(20×250-4400)÷(10+20)=600÷120=5(箱)
答:损坏了5箱。
五年级一中队和二中队要到距学校20千米的地方去春游。第一中队步行每小时行4千米,第二中队骑自行车,每小时行12千米。第一中队先出发2小时后,第二中队再出发,第二中队出发后几小时才能追上一中队?
解题思路:
因第一中队早出发2小时比第二中队先行4×2千米,而每小时第二中队比第一中队多行(12-4)千米,由此即可求第二中队追上第一中队的时间。
答题:
解:4×2÷(12-4)=4×2÷8
=1(时)
答:第二中队1小时能追上第一中队。
某厂运来一堆煤,如果每天烧1500千克,比计划提前一天烧完,如果每天烧1000千克,将比计划多烧一天。这堆煤有多少千克?
解题思路:
由已知条件可知道,前后烧煤总数量相差(1500+1000)千克,是由每天相差(1500-1000)千克造成的,由此可求出原计划烧的天数,进而再求出这堆煤的数量。
答题:
解:原计划烧煤天数:
(1500+1000)÷(1500-1000)=2500÷500=5(天)
这堆煤的重量:
1500×(5-1)=1500×4=6000(千克)
答:这堆煤有6000千克。
妈妈让小红去商店买5支铅笔和8个练习本,按价钱给小红3.8元钱。结果小红却买了8支铅笔和5本练习本,找回0.45元。求一支铅笔多少元?
解题思路:
小红打算买的铅笔和本子总数与实际买的铅笔和本子总数量是相等的,找回0.45元,说明(8-5)支铅笔当作(8-5)本练习本计算,相差0.45元。由此可求练习本的单价比铅笔贵的钱数。从总钱数里去掉8个练习本比8支铅笔贵的钱数,剩余的则是(5+8)支铅笔的钱数。进而可求出每支铅笔的价钱。
答题:
解:每本练习本比每支铅笔贵的钱数:
0.45÷(8-5)=0.45÷3=0.15(元)
8个练习本比8支铅笔贵的钱数:
0.15×8=1.2(元)
每支铅笔的价钱:
(3.8-1.2)÷(5+8)=2.6÷13=0.2(元)
答:每支铅笔0.2元。
学校组织外出参观,参加的师生一共360人。一辆大客车比一辆卡车多载10人,6辆大客车和8辆卡车载的人数相等。都乘卡车需要几辆?都乘大客车需要几辆?
解题思路:
根据一辆客车比一辆卡车多载10人,可求6辆客车比6辆卡车多载的人数,即多用的(8-6)辆卡车所载的人数,进而可求每辆卡车载多少人和每辆大客车载多少人。
答题:
解:卡车的数量:
360÷[10×6÷(8-6)]=360÷[10×6÷2]=360÷30=12(辆)
客车的数量:
360÷[10×6÷(8-6)+10]=360÷[30+10]=360÷40=9(辆)
答:可用卡车12辆,客车9辆。
某筑路队承担了修一条公路的任务。原计划每天修720米,实际每天比原计划多修80米,这样实际修的差1200米就能提前3天完成。这条公路全长多少米?
解题思路:
根据计划每天修720米,这样实际提前的长度是(720×3-1200)米。根据每天多修80米可求已修的天数,进而求公路的全长。
答题:
解:已修的天数:
(720×3-1200)÷80=960÷80=12(天)
公路全长:
(720+80)×12+1200=800×12+1200=9600+1200=10800(米)
答:这条公路全长10800米。
某鞋厂生产1800双鞋,把这些鞋分别装入12个纸箱和4个木箱。如果3个纸箱加2个木箱装的鞋同样多。每个纸箱和每个木箱各装鞋多少双?
解题思路:
根据已知条件,可求12个纸箱转化成木箱的个数,先求出每个木箱装多少双,再求每个纸箱装多少双。
答题:
解:12个纸箱相当木箱的个数:
2×(12÷3)=2×4=8(个)
一个木箱装鞋的双数:
1800÷(8+4)=18000÷12=150(双)
一个纸箱装鞋的双数:
150×2÷3=100(双)
答:每个纸箱可装鞋100双,每个木箱可装鞋150双。
某工地运进一批沙子和水泥,运进沙子袋数是水泥的2倍。每天用去30袋水泥,40袋沙子,几天以后,水泥全部用完,而沙子还剩120袋,这批沙子和水泥各多少袋?
解题思路:
由已知条件可知道,每天用去30袋水泥,同时用去30×2袋沙子,才能同时用完。但现在每天只用去40袋沙子,少用(30×2-40)袋,这样才累计出120袋沙子。因此看120袋里有多少个少用的沙子袋数,便可求出用的天数。进而可求出沙子和水泥的总袋数。
答题:
解:水泥用完的天数:
120÷(30×2-40)=120÷20=6(天)
水泥的总袋数:
30×6=180(袋)
沙子的总袋数:
180×2=360(袋)
答:运进水泥180袋,沙子360袋。
学校里买来了5个保温瓶和10个茶杯,共用了90元钱。每个保温瓶是每个茶杯价钱的4倍,每个保温瓶和每个茶杯各多少元?
解题思路:
根据每个保温瓶的价钱是每个茶杯的4倍,可把5个保温瓶的价钱转化为20个茶杯的价钱。这样就可把5个保温瓶和10个茶杯共用的90元钱,看作30个茶杯共用的钱数。
答题:
解:每个茶杯的价钱:
90÷(4×5+10)=3(元)
每个保温瓶的价钱:
3×4=12(元)
答:每个保温瓶12元,每个茶杯3元。
两个数的和是572,其中一个加数个位上是0,去掉0后,就与第二个加数相同。这两个数分别是多少?
解题思路:
已知一个加数个位上是0,去掉0,就与第二个加数相同,可知第一个加数是第二个加数的10倍,那么两个加数的和572,就是第二个加数的(10+1)倍。
答题:
解:第一个加数:
572÷(10+1)=52
第二个加数:
52×10=520
答:这两个加数分别是52和520。
一桶油连桶重16千克,用去一半后,连桶重9千克,桶重多少千克?
解题思路:
由已知条件可知,16千克和9千克的差正好是半桶油的重量。9千克是半桶油和桶的重量,去掉半桶油的重量就是桶的重量。
答题:
解:9-(16-9)=9-7=2(千克)
答:桶重2千克。
一桶油连桶重10千克,倒出一半后,连桶还重5.5千克,原来有油多少千克?
解题思路:
由已知条件可知,10千克与5.5千克的差正好是半桶油的重量,再乘以2就是原来油的重量。
答题:
解:(10-5.5)×2=9(千克)
答:原来有油9千克。
用一只水桶装水,把水加到原来的2倍,连桶重10千克,如果把水加到原来的5倍,连桶重22千克。桶里原有水多少千克?
解题思路:
由已知条件可知,桶里原有水的(5-2)倍正好是(22-10)千克,由此可求出桶里原有水的重量。
答题:
解:(22-10)÷(5-2)=12÷3=4(千克)
答:桶里原有水4千克。
小红和小华共有故事书36本。如果小红给小华5本,两人故事书的本数就相等,原来小红和小华各有多少本?
解题思路:
从“小红给小华5本,两人故事书的本数就相等”这一条件,可知小红比小华多(5×2)本书,用共有的36本去掉小红比小华多的本数,剩下的本数正好是小华本数的2倍。
答题:
解:小华有书的本数:
(36-5×2)÷2=13(本)
小红有书的本数:
13+5×2=23(本)
答:原来小红有23本,小华有13本。
有5桶油重量相等,如果从每只桶里取出15千克,则5只桶里所剩下油的重量正好等于原来2桶油的重量。原来每桶油重多少千克?
解题思路:
由已知条件知,5桶油共取出(15×5)千克。由于剩下油的重量正好等于原来2桶油的重量,可以推出(5-2)桶油的重量是(15×5)千克。
答题:
解:15×5÷(5-2)=25(千克)
答:原来每桶油重25千克。
把一根木料锯成3段需要9分钟,那么用同样的速度把这根木料锯成5段,需要多少分?
解题思路:
把一根木料锯成3段,只锯出了(3-1)个锯口,这样就可以求出锯出每个锯口所需要的时间,进一步即可以求出锯成5段所需的时间。
答题:
解:9÷(3-1)×(5-1)=18(分)
答:锯成5段需要18分钟。
一个车间,女工比男工少35人,男、女工各调出17人后,男工人数是女工人数的2倍。原有男工多少人?女工多少人?
解题思路:
女工比男工少35人,男、女工各调出17人后,女工仍比男工少35人。这时男工人数是女工人数的2倍,也就是说少的35人是女工人数的(2-1)倍。这样就可求出现在女工多少人,然后再分别求出男、女工原来各多少人。
答题:
解:35÷(2-1)=35(人)
女工原有:
35+17=52(人)
男工原有:
52+35=87(人)
答:原有男工87人,女工52人。
李强骑自行车从甲地到乙地,每小时行12千米,5小时到达,从乙地返回甲地时因逆风多用1小时,返回时平均每小时行多少千米?
解题思路:
由每小时行12千米,5小时到达可求出两地的路程,即返回时所行的路程。由去时5小时到达和返回时多用1小时,可求出返回时所用时间。
答题:
解:12×5÷(5+1)=10(千米)
答:返回时平均每小时行10千米。
甲、乙二人同时从相距18千米的两地相对而行,甲每小时行走5千米,乙每小时走4千米。如果甲带了一只狗与甲同时出发,狗以每小时8千米的速度向乙跑去,遇到乙立即回头向甲跑去,遇到甲又回头向飞跑去,这样二人相遇时,狗跑了多少千米?
解题思路:
由题意知,狗跑的时间正好是二人的相遇时间,又知狗的速度,这样就可求出狗跑了多少千米。
答题:
解:18÷(5+4)=2(小时)
8×2=16(千米)
答:狗跑了16千米。
有红、黄、白三种颜色的球,红球和黄球一共有21个,黄球和白球一共有20个,红球和白球一共有19个。三种球各有多少个?
解题思路:
由条件知,(21+20+19)表示三种球总个数的2倍,由此可求出三种球的总个数,再根据题目中的条件就可以求出三种球各多少个。
答题:
解:总个数:
(21+20+19)÷2=30(个)
白球:30-21=9(个)
红球:30-20=10(个)
黄球:30-19=11(个)
答:白球有9个,红球有10个,黄球有11个。
在一根粗钢管上接细钢管。如果接2根细钢管共长18米,如果接5根细钢管共长33米。一根粗钢管和一根细钢管各长多少米?
解题思路:
根据题意,33米比18米长的米数正好是3根细钢管的长度,由此可求出一根细钢管的长度,然后求一根粗钢管的长度。
答题:
解:(33-18)÷(5-2)=5(米)
18-5×2=8(米)
答:一根粗钢管长8米,一根细钢管长5米。
水泥厂原计划12天完成一项任务,由于每天多生产水泥4.8吨,结果10天就完成了任务,原计划每天生产水泥多少吨?
解题思路:
由题意知,实际10天比原计划10天多生产水泥(4.8×10)吨,而多生产的这些水泥按原计划还需用(12-10)天才能完成,也就是说原计划(12-10)天能生产水泥(4.8×10)吨。
答题:
解:4.8×10÷(12-10)=24(吨)
答:原计划每天生产水泥24吨。
学校举办歌舞晚会,共有80人参加了表演。其中唱歌的有70人,跳舞的有30人,既唱歌又跳舞的有多少人?
解题思路:
由题意知唱歌的70人中也有跳舞的,同样跳舞的30人中也有唱歌的,把两者相加,这样既唱歌又跳舞的就统计了两次,再减去参加表演的80人,就是既唱歌又跳舞的人数。
答题:
解:70+30—80=20(人)
答:既唱歌又跳舞的有20人。
学校举办语文、数学双科竞赛,三年级一班有59人,参加语文竞赛的有36人,参加数学竞赛的有38人,一科也没参加的有5人。双科都参加的有多少人?
解题思路:
参加语文竞赛的36人中有参加数学竞赛的,同样参加数学竞赛的38人中也有参加语文竞赛的,如果把两者加起来,那么既参加语文竞赛又参加数学竞赛的人数就统计了两次,所以将参加语文竞赛的人数加上参加数学竞赛的人数再加上一科也没参加的人数减去全班人数就是双科都参加的人数。
答题:
解:36+38+5-59=20(人)
答:双科都参加的有20人。
学校买了4张桌子和6把椅子,共用640元。2张桌子和5把椅子的价钱相等,桌子和椅子的单价各是多少元?
解题思路:
由“2张桌子和5把椅子的价钱相等”这一条件,可以推出4张桌子就相当于10把椅子的价钱,买4张桌子和6把椅子共用640元,也就相当于买16把椅子共用640元。
答题:
解:5×(4÷2)+6=16(把)
640÷16=40(元)
40×5÷2=10O(元)
答:桌子和椅子的单价分别是100元、40元。
父亲今年45岁,5年前父亲的年龄是儿子的4倍,今年儿子多少岁?
解题思路:
5年前父亲的年龄是(45-5)岁,儿子的年龄是(45-5)÷4岁,再加上5就是今年儿子的年龄。
答题:
解:(45-5)÷4+5
=10+5
=15(岁)
答:今年儿子15岁。
有两桶油,甲桶油重是乙桶油重的4倍,如果从甲桶倒入乙桶18千克,两桶油就一样重,原来每桶各有多少千克油?
解题思路:
“如果从甲桶倒入乙桶18千克,两桶油就一样重”可推出:甲桶油的重量比乙桶多(18×2)千克,又知“甲桶油重是乙桶油重的4倍”,可知(18×2)千克正好是乙桶油重量的(4-1)倍。
答题:
解:18×2÷(4-1)=12(千克)
12×4=48(千克)
答:原来甲桶有油48千克,乙桶有油12千克。
光明小学举办数学知识竞赛,一共20题。答对一题得5分,答错一题扣3分,不答得0分。小丽得了79分,她答对几道,答错几道,有几题没答?
解题思路:
根据题意,20题全部答对得100分,答错一题将失去(5+3)分,而不答仅失去5分。小丽共失去(100-79)分。再根据(100-79)÷8=2(题)……5(分),分析答对、答错和没答的题数。
答题:
解:(5×20-75)÷8=2(题)……5(分)
20-2-1=17(题)
答:答对17题,答错2题,有1题没答。
甲列火车长240米,每秒行20米;乙列火车长264米,每秒行16米,两车相向而行,从两车头相遇到两车尾相离需要几秒?
解题思路:
“从两车头相遇到两车尾相离”,两车所行的路程是两车身长之和,即(240+264)米,速度之和为(20+16)米。根据路程、速度和时间的关系,就可求得所需时间。
答题:
解:(240+264)÷(20+16)=504÷30
=14(秒)
答:从两车头相遇到两车尾相离,需要14秒。
一列火车长600米,通过一条长1150米的隧道,已知火车的速度是每分700米,问火车通过隧道需要几分?
解题思路:
火车通过隧道是指从车头进入隧道到车尾离开隧道,所行的路程正好是车身与隧道长度之和。
答题:
解:(600+1150)÷700
=1750÷700
=2.5(分)
答:火车通过隧道需2.5分。
小明从家里到学校,如果每分走50米,则正好到上课时间;如果每分走60米,则离上课时间还有2分。问小明从家里到学校有多远?
解题思路:
在每分走50米的到校时间内按两种速度走,相差的路程是(60×2)米,又知每秒相差(60-50)米,这就可求出小明按每分50米的到校时间。
答题:
解:60×2÷(60-50)=12(分)
50×12=600(米)
答:小明从家里到学校是600米。
有一周长600米的环形跑道,甲、乙二人同时、同地、同向而行,甲每分钟跑300米,乙每分钟跑400米,经过几分钟二人第一次相遇?
解题思路:
由已知条件可知,二人第一次相遇时,乙比甲多跑一周,即600米,又知乙每分钟比甲多跑(400-300)米,即可求第一次相遇时经过的时间。
答题:
解:600÷(400-300)=600÷100
=6(分)
答:经过6分钟两人第一次相遇
有一个长方形纸板,如果只把长增加2厘米,面积就增加8平方米;如果只把宽增加2厘米,面积就增加12平方厘米。这个长方形纸板原来的面积是多少?
解题思路:
由“只把宽增加2厘米,面积就增加12平方厘米”,可求出原来的长是:(12÷2)厘米,同理原来的宽就是(8÷2)厘米,求出长和宽,就能求出原来的面积。
答题:
解:(12÷2)×(8÷2)=24(平方厘米)
答:这个长方形纸板原来的面积是24平方厘米。
妈妈买苹果和梨各3千克,付出20元找回7.4元。每千克苹果2.4元,每千克梨多少元?
解题思路:
用去的钱数除以3就是1千克苹果和1千克梨的总钱数。从这个总钱数里去掉1千克苹果的钱数,就是每千克梨的钱数。
答题:
解:(20-7.4)÷3-2.4
=12.6÷3-2.4
=4.2-2.4
=1.8(元)
答:每千克梨1.8元。
甲乙两人同时从相距135千米的两地相对而行,经过3小时相遇。甲的速度是乙的2倍,甲乙两人每小时各行多少千米?
解题思路:
由题意知,甲乙速度和是(135÷3)千米,这个速度和是乙的速度的(2+1)倍。
答题:
解:135÷3÷(2+1)=15(千米)
15×2=30(千米)
答:甲乙每小时分别行30千米、15千米。
盒子里有同样数目的黑球和白球。每次取出8个黑球和5个白球,取出几次以后,黑球没有了,白球还剩12个。一共取了几次?盒子里共有多少个球?
解题思路:
两种球的数目相等,黑球取完时,白球还剩12个,说明黑球多取了12个,而每次多取(8-5)个,可求出一共取了几次。
答题:
解:12÷(8-5)=4(次)
8×4+5×4+12=64(个)
或8×4×2=64(个)
答:一共取了4次,盒子里共有64个球。
上午6时从汽车站同时发出1路和2路公共汽车,1路车每隔12分钟发一次,2路车每隔18分钟发一次,求下次同时发车时间。
解题思路:
1路和2路下次同时发车时,所经过的时间必须既是12分的倍数,又是18分的倍数。也就是它们的最小公倍数。
答题:
解:12和18的最小公倍数是36
6时+36分=6时36分
答:下次同时发车时间是上午6时36分。
父亲今年45岁,儿子今年15岁,多少年前父亲的年龄是儿子年龄的11倍?
解题思路:
父、子年龄的差是(45-15)岁,当父亲的年龄是儿子年龄的11倍时,这个差正好是儿子年龄的(11-1)倍,由此可求出儿子多少岁时,父亲是儿子年龄的11倍。又知今年儿子15岁,两个岁数的差就是所求的问题。
答题:
解:(45-15)÷(11-1)=3(岁)
15-3=12(年)
答:12年前父亲的年龄是儿子年龄的11倍。
王老师有一盒铅笔,如平均分给2名同学余1支,平均分给3名同学余2支,平均分给4名同学余3支,平均分给5名同学余4支。问这盒铅笔最少有多少支?
解题思路:
根据题意,可以将题中的条件转化为:平均分给2名同学、3名同学、4名同学、5名同学都少一支,因此,求出2、3、4、5的最小公倍数再减去1就是要求的问题。
答题:
解:2、3、4、5的最小公倍数是60
60-1=59(支)
答:这盒铅笔最少有59支。
一块平行四边形地,如果只把底增加8米,或只把高增加5米,它的面积都增加40平方米。求这块平行四边形地原来的面积?
解题思路:
根据只把底增加8米,面积就增加40平方米,?可求出原来平行四边形的高。根据只把高增加5米,面积就增加40平方米,可求出原来平行四边形的底。再用原来的底乘以原来的高就是要求的面积。
答题:
解:(40÷5)×(40÷8)=40(平方米)
答:平行四边形地原来的面积是40平方米。