高三数学专题复习——数列不等式(放缩法)

时间:2019-05-13 09:01:58下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《高三数学专题复习——数列不等式(放缩法)》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《高三数学专题复习——数列不等式(放缩法)》。

第一篇:高三数学专题复习——数列不等式(放缩法)

高三数学专题复习——数列不等式(放缩法)

教学目标:学会利用放缩法证明数列相关的不等式问题 教学重点:数列的构造及求和 教学难点:放缩法的应用

证明数列型不等式,因其思维跨度大、构造性强,需要有较高的放缩技巧而充满思考性和挑战性,能全面而综合地考查学生的潜能与后继学习能力,因而成为高考压轴题及各级各类竞赛试题命题的极好素材。这类问题的求解策略往往是:通过多角度观察所给数列通项的结构,深入剖析其特征,抓住其规律进行恰当地放缩;其放缩技巧主要有以下几种: 例1求

k1n

24k

2

1的值例2.求证:1

2



1(2n1)

12(2n1)

(n2)

例3求证:1

4116

136



14n

14n

例4求证:1

4



1n

n

例5已知an4n2n,Tn

a1a2an,求证:T1T2T3Tn

.直接放缩

1、放大或缩小“因式”:

例1.设数列an的前n项和为Sn,对任意的正整数n,都有an5Sn1成立,记bn(I)求数列bn的通项公式;

(II)记cnb2nb2n1(nN*),设数列cn的前n项和为Tn,求证:对任意正整数n都有Tn

例2.已知数列an满足a11,an12an1nN(Ⅰ)求数列an的通项公式;(Ⅲ)证明:

例3.设数列{an}满足a12,an1an

4an1an

*

(nN)。

32;

1a2

1a3



1an

1

nN3

1an

(n1,2,).证明an

2n1对一切正整数n成立

例4.已知数列an满足a1

4,an

an1

(1)an12

n

(n2,nN)。

(Ⅰ)求数列an的通项公式;(Ⅲ)设cnansin

anN. 例5.数列xn由下列条件确定:x1a0,xn11xn,

2

xn

(2n1),数列cn的前n项和Tn,求证:对nN,Tn

47。

(I)证明:对n2总有xn

圆锥曲线:

a

;(II)证明:对n2总有xnxn1

1.已知将圆xy8上的每一点的纵坐标压缩到原来的22

12,对应的横坐标不变,得到曲线C;设M(2,1),平行于OM的直线l在y轴上的截距为m(m≠0),直线l与曲线C交于A、B两个不同点.(1)求曲线C的方程;(2)求m的取值范围.2.设椭圆C1:

xa

2

yb

1(ab0),抛物线C2:xbyb.(1)若C2经过C1的两个焦点,求C1的离心率;(2)

设A(0,b),Q

54又M、N为C1与C2不在y轴上的两个交点,若AMN的垂心为B(0,b),3

4且Qb),MN的重心在C2上,求椭圆C1和抛物线C2的方程

3.已知椭圆C的焦点在x轴上,它的一个顶点恰好是抛物线y

(1)求椭圆C的方程;

x

2

(2)设A、B为椭圆上的两个动点,OAOB0,过原点O作直线AB的垂线OD,垂足为D,求点D的轨迹方程.

4.设双曲线C:

21(a>0,b>0)的离心率为e,若准线l与两条渐近线相交于P、Q两点,F为右焦点,2ab

△FPQ为等边三角形.

(1)求双曲线C的离心率e的值;

x

y

(2)若双曲线C被直线y=ax+b截得的弦长为

bea

2求双曲线c的方程.

课后作业: 1.求证:

2.已知数列{a}的前n项和S满足Sn2an(1),n1.n

n

1

3

1n

4n

(Ⅰ)写出数列{a}的前3项a1,a2,a3(Ⅱ)求数列{an}的通项公式

n

3.已知a为正实数,n为自然数,抛物线yx线在y轴上的截距,用a和n表示f(n);

圆锥曲线作业: 1.已知椭圆

C1:

xa

a

n

与x轴正半轴相交于点A,设f(n)为该抛物线在点A处的切

yb

1(a>b>0)

与双曲线

C1:x

y

1

有公共的焦点,C1的一条渐近线与以

C1的长轴为直径的圆相

交于A,B两点,若

A.

a

C1

恰好将线段AB三等分,则()

B.a13

132

C.

b

D.b2

=4:3:2,则曲线r的离心率等

2.设圆锥曲线r的两个焦点分别为F1,F2,若曲线r上存在点P满足于()

1或3

PF1:F1F2:PF2

A.22B.3或2C.2

2D.3

3.若点O和点F(2,0)分别是双曲线的取值范围为()

xa



y1(a>0)的中心和左焦点,点P为双曲线右支上的任意一点,则OPFP

A.)

B.[3)C.[-

74,)D.[

74,)

4.已知双曲线E的中心为原点,过F的直线l与E相交于A,B两点,且AB的中点为N(12,15),F(3,0)是E的焦点,则E的方程式为()(A)

x

y

61(B)

x

y

1(C)

x

y

1(D)

x

y

1

5.点A(x0,y0)在双曲线

x

y

1的右支上,若点A到右焦点的距离等于2x0,则x0

6.已知点A、B的坐标分别是(1,0),(1,0).直线AM,BM相交于点M,且它们的斜率之积为-2.(Ⅰ)求动点M的轨迹方程;

(Ⅱ)若过点N(,1)的直线l交动点M的轨迹于C、D两点, 且N为线段CD的中点,求直线l的方程.21

第二篇:高三数学数列放缩法

数列与不等式的综合问题常常出现在高考的压轴题中,是历年高考命题的热点,这类问题能有效地考查学生综合运用数列与不等式知识解决问题的能力.本文介绍一类与数列和有关的不等式问题,解决这类问题常常用到放缩法,而求解途径一般有两条:一是先求和再放缩,二是先放缩再求和. 一.先求和后放缩 例1.正数数列(1)数列的前项的和,满足,试求: 的通项公式;

(2)设解:(1)由已知得,数列的前项的和为,所以

时,求证:,作差得:,又因为,得

为正数数,所列,所以以,即是公差为2的等差数列,由(2),所以

注:一般先分析数列的通项公式.如果此数列的前项和能直接求和或者通过变形后求和,则采用先求和再放缩的方法来证明不等式.求和的方式一般要用到等差、等比、差比数列(这里所谓的差比数列,即指数列倒序相加等方法来求和. 二.先放缩再求和

1.放缩后成等差数列,再求和 例2.已知各项均为正数的数列的前项和为,且

.满足条件)求和或者利用分组、裂项、(1)求证:;

(2)求证: 解:(1)在条件中,令有,得,上述两式相减,注意到

,又由条件得

所以,所以

(2)因为,所以,所以

;2.放缩后成等比数列,再求和 例3.(1)设a,n∈N*,a≥2,证明:(2)等比数列{an}中,;,前n项的和为An,且A7,A9,A8成等差数列.设,数列{bn}前n项的和为Bn,证明:Bn<.

解:(1)当n为奇数时,an≥a,于是,当n为偶数时,a-1≥1,且an≥a2,于是

. .

(2)∵,,∴公比.

∴. . ∴3.放缩后为差比数列,再求和

例4.已知数列满足:,.求证:

证明:因为,所以

同号,又因为,所以,即,即.所以数列为递增数列,所以,即,累加得:.

令,所以,两式相减得:,所以,所以,故得.

4.放缩后为裂项相消,再求和

例5.在m(m≥2)个不同数的排列P1P2…Pn中,若1≤i<j≤m时Pi>P(即前面某数大于后面某数),则称Pi与Pj构成一个逆序.一个排列的全部逆序的总数称为该排列的逆序数.记排列.j

(1)求a4、a5,并写出an的表达式; 的逆序数为an,如排列21的逆序数,排列321的逆序数(2)令,证明,n=1,2,….(2)因为,所以.又因为,所以

=综上,..注:常用放缩的结论:(1)

(2).

在解题时朝着什么方向进行放缩,是解题的关键,一般要看证明的结果是什么形式.如例2要证明的结论、为等差数列求和结果的类型,则把通项放缩为等差数列,再求和即可;如例3要证明的结论为等比数列求和结果的类型,则把通项放缩为等比数列,再求和即可;如例4要证明的结论为差比数列求和结果的类型,则把通项放缩为差比数列,再求和即可;如例5要证明的结论裂项相消求和结果的类型,则把通项放缩为相邻两项或相隔一项的差,再求和即可.

为虽然证明与数列和有关的不等式问题是高中数学中比较困难的问题,但是我们通过仔细分析它的条件与要证明的结论之间的内在关系,先确定能不能直接求和,若不能直接求和则要考虑把通项朝什么方向进行放缩.如果我们平时能多观测要证明结论的特征与数列求和之间的关系,则仍然容易找到解决这类问题的突破口.

第三篇:放缩法证明数列不等式

放缩法证明数列不等式

基础知识回顾:

放缩的技巧与方法:

(1)常见的数列求和方法和通项公式特点:

① 等差数列求和公式:错误!未找到引用源。,错误!未找到引用源。(关于错误!未找到引用源。的一次函数或常值函数)

② 等比数列求和公式:错误!未找到引用源。,错误!未找到引用源。(关于错误!未找到引用源。的指数类函数)③ 错位相减:通项公式为“等差错误!未找到引用源。等比”的形式

④ 裂项相消:通项公式可拆成两个相邻项的差,且原数列的每一项裂项之后正负能够相消,进而在求和后式子中仅剩有限项

(2)与求和相关的不等式的放缩技巧:

① 在数列中,“求和看通项”,所以在放缩的过程中通常从数列的通项公式入手

② 在放缩时要看好所证不等式中不等号的方向,这将决定对通项公式是放大还是缩小(应与所证的不等号同方向)

③ 在放缩时,对通项公式的变形要向可求和数列的通项公式靠拢,常见的是向等比数列与可裂项相消的数列进行靠拢。

④ 若放缩后求和发现放“过”了,即与所证矛盾,通常有两条道路选择:第一个方法是微调:看能否让数列中的一些项不动,其余项放缩。从而减小放缩的程度,使之符合所证不等式;第二个方法就是推翻了原有放缩,重新进行设计,选择放缩程度更小的方式再进行尝试。

(3)放缩构造裂项相消数列与等比数列的技巧:

① 裂项相消:在放缩时,所构造的通项公式要具备“依项同构”的特点,即作差的两项可视为同一数列的相邻两项(或等距离间隔项)

② 等比数列:所面对的问题通常为“错误!未找到引用源。常数”的形式,所构造的等比数列的公比也要满足错误!未找到引用源。,如果题目条件无法体现出放缩的目标,则可从所证不等式的常数入手,常数可视为错误!未找到引用源。的形式,然后猜想构造出等比数列的首项与公比,进而得出等比数列的通项公式,再与原通项公式进行比较,看不等号的方向是否符合条件即可。例如常数错误!未找到引用源。,即可猜想该等比数列的首项为错误!未找到引用源。,公比为错误!未找到引用源。,即通项公式为错误!未找到引用源。

注:此方法会存在风险,所猜出的等比数列未必能达到放缩效果,所以是否选择利用等比数列进行放缩,受数列通项公式的结构影响

(4)与数列中的项相关的不等式问题:

① 此类问题往往从递推公式入手,若需要放缩也是考虑对递推公式进行变形

② 在有些关于项的不等式证明中,可向求和问题进行划归,即将递推公式放缩变形成为可“累加”或“累乘”的形式,即错误!未找到引用源。或错误!未找到引用源。(累乘时要求不等式两侧均为正数),然后通过“累加”或“累乘”达到一侧为错误!未找到引用源。,另一侧为求和的结果,进而完成证明 应用举例:

类型一:与前n项和相关的不等式 例1.【2017届江苏泰州中学高三摸底考试】已知数列错误!未找到引用源。的前错误!未找到引用源。项和错误!未找到引用源。满足:错误!未找到引用源。(错误!未找到引用源。为常数,且错误!未找到引用源。,错误!未找到引用源。).

(1)求错误!未找到引用源。的通项公式;

(2)设错误!未找到引用源。,若数列错误!未找到引用源。为等比数列,求错误!未找到引用源。的值;(3)在满足条件(2)的情形下,设错误!未找到引用源。,数列错误!未找到引用源。的前错误!未找到引用源。项和为错误!未找到引用源。,若不等式错误!未找到引用源。对任意的错误!未找到引用源。恒成立,求实数错误!未找到引用源。的取值范围.

例2.记错误!未找到引用源。.对数列错误!未找到引用源。和错误!未找到引用源。的子集错误!未找到引用源。,若错误!未找到引用源。,定义错误!未找到引用源。;若错误!未找到引用源。,定义错误!未找到引用源。.例如:错误!未找到引用源。时,错误!未找到引用源。.现设错误!未找到引用源。是公比为3的等比数列,且当错误!未找到引用源。时,错误!未找到引用源。.错误!未找到引用源。

(1)求数列的通项公式;错误!未找到引用源。错误!未找到引用源。错误!未找到引用源。(2)对任意正整数,若,求证:;错误!未找到引用源。错误!未找到引用源。(3)设,求证:.类型

二、与通项运算相关的不等式 例3.设函数错误!未找到引用源。,数列错误!未找到引用源。满足:错误!未找到引用源。.(1)求证:错误!未找到引用源。时,错误!未找到引用源。;(2)求证:错误!未找到引用源。(错误!未找到引用源。);(3)求证:错误!未找到引用源。(错误!未找到引用源。).

例4.已知错误!未找到引用源。是数列错误!未找到引用源。的前错误!未找到引用源。项和,且对任意错误!未找到引用源。,有错误!未找到引用源。.其中错误!未找到引用源。为实数,且错误!未找到引用源。.(1)当错误!未找到引用源。时,①求数列错误!未找到引用源。的通项;

②是否存在这样的正整数错误!未找到引用源。,使得错误!未找到引用源。成等比数列?若存在,给出错误!未找到引用源。满足的条件,否则,请说明理由.(2)当错误!未找到引用源。时,设错误!未找到引用源。,① 判定错误!未找到引用源。是否为等比数列;

②设错误!未找到引用源。,若错误!未找到引用源。对错误!未找到引用源。恒成立,求错误!未找到引用源。的取值范围.方法、规律归纳: 常见的放缩变形:

(1)错误!未找到引用源。,(2)错误!未找到引用源。

注:对于错误!未找到引用源。还可放缩为:错误!未找到引用源。(3)分子分母同加常数:错误!未找到引用源。(4)错误!未找到引用源。

错误!未找到引用源。可推广为:错误!未找到引用源。

错误!未找到引用源。实战演练: 1.【江苏省无锡市普通高中2018届高三上学期期中】已知数列错误!未找到引用源。满足错误!未找到引用源。记数列错误!未找到引用源。的前错误!未找到引用源。项和为错误!未找到引用源。,错误!未找到引用源。

(1)求证:数列错误!未找到引用源。为等比数列,并求其通项错误!未找到引用源。;

(2)求错误!未找到引用源。;

(3)问是否存在正整数错误!未找到引用源。,使得错误!未找到引用源。成立?说明理由.2.【江苏省常州市2018届高三上学期武进区高中数学期中试卷】在数列错误!未找到引用源。中,错误!未找到引用源。,错误!未找到引用源。,错误!未找到引用源。,其中错误!未找到引用源。.

⑴ 求证:数列错误!未找到引用源。为等差数列;

⑵ 设错误!未找到引用源。,错误!未找到引用源。,数列错误!未找到引用源。的前错误!未找到引用源。项和为错误!未找到引用源。,若当错误!未找到引用源。且错误!未找到引用源。为偶数时,错误!未找到引用源。恒成立,求实数错误!未找到引用源。的取值范围;

⑶ 设数列错误!未找到引用源。的前错误!未找到引用源。项的和为错误!未找到引用源。,试求数列错误!未找到引用源。的最大值.【答案】⑴见解析⑵错误!未找到引用源。⑶错误!未找到引用源。

3.【江苏省徐州市2018届高三上学期期中考试】已知数列的前项和为,满足,.数列

满足(1)求数列(2)若和,且. 的通项公式;,数列的前项和为,对任意的,(,都有,求实数的取值范围;

(3)是否存在正整数,使,请说明理由.)成等差数列,若存在,求出所有满足条件的,若不存在,4.已知数列错误!未找到引用源。、错误!未找到引用源。,其中,错误!未找到引用源。,数列错误!未找到引用源。满足错误!未找到引用源。,错误!未找到引用源。,数列错误!未找到引用源。满足错误!未找到引用源。.

(1)求数列错误!未找到引用源。、错误!未找到引用源。的通项公式;

(2)是否存在自然数错误!未找到引用源。,使得对于任意错误!未找到引用源。有错误!未找到引用源。恒成立?若存在,求出错误!未找到引用源。的最小值;

(3)若数列错误!未找到引用源。满足错误!未找到引用源。,求数列错误!未找到引用源。的前错误!未找到引用源。项和错误!未找到引用源。.

5.【江苏省启东中学2018届高三上学期第一次月考】设数列错误!未找到引用源。的前错误!未找到引用源。项和为错误!未找到引用源。,且满足错误!未找到引用源。,错误!未找到引用源。为常数.

(1)是否存在数列错误!未找到引用源。,使得错误!未找到引用源。?若存在,写出一个满足要求的数列;若不存在,说明理由.(2)当错误!未找到引用源。时,求证: 错误!未找到引用源。.

(3)当错误!未找到引用源。时,求证:当错误!未找到引用源。时,错误!未找到引用源。.

6.【江苏省泰州中学2018届高三上学期开学考试】已知两个无穷数列

分别满足,其中(1)若数列(2)若数列①若数列②若数列,设数列的前项和分别为的通项公式;,使得,称数列

.都为递增数列,求数列满足:存在唯一的正整数“坠点数列”,求 为“坠点数列”,数列

为“坠点数列”.为“坠点数列”,是否存在正整数,使得,若存在,求的最大值;若不存在,说明理由.7.【江苏省南京师范大学附属中学2017届高三高考模拟一】已知数集错误!未找到引用源。具有性质错误!未找到引用源。对任意的错误!未找到引用源。,使得错误!未找到引用源。成立.(1)分别判断数集错误!未找到引用源。与错误!未找到引用源。是否具有性质错误!未找到引用源。,并说明理由;

(2)求证: 错误!未找到引用源。;

(2)若错误!未找到引用源。,求错误!未找到引用源。的最小值.8.记等差数列错误!未找到引用源。的前错误!未找到引用源。项和为错误!未找到引用源。.(1)求证:数列错误!未找到引用源。是等差数列;

(2)若 错误!未找到引用源。,对任意错误!未找到引用源。,均有错误!未找到引用源。是公差为错误!未找到引用源。的等差数列,求使错误!未找到引用源。为整数的正整数错误!未找到引用源。的取值集合;

(3)记错误!未找到引用源。,求证: 错误!未找到引用源。.9.已知数列{an}的前n项和为Sn,数列{bn},{cn}满足(n+1)bn=an+1错误!未找到引用源。,(n+2)cn=错误!未找到引用源。,其中n∈N*.

(1)若数列{an}是公差为2的等差数列,求数列{cn}的通项公式;

(2)若存在实数λ,使得对一切n∈N*,有bn≤λ≤cn,求证:数列{an}是等差数列.

10.已知各项不为零的数列错误!未找到引用源。的前错误!未找到引用源。项和为错误!未找到引用源。,且错误!未找到引用源。,错误!未找到引用源。,错误!未找到引用源。.

(1)若错误!未找到引用源。成等比数列,求实数错误!未找到引用源。的值;(2)若错误!未找到引用源。成等差数列,①求数列错误!未找到引用源。的通项公式;

②在错误!未找到引用源。与错误!未找到引用源。间插入错误!未找到引用源。个正数,共同组成公比为错误!未找到引用源。的等比数列,若不等式错误!未找到引用源。对任意的错误!未找到引用源。恒成立,求实数错误!未找到引用源。的最大值.

放缩法证明数列不等式

基础知识回顾:

放缩的技巧与方法:

(1)常见的数列求和方法和通项公式特点:

① 等差数列求和公式:错误!未找到引用源。,错误!未找到引用源。(关于错误!未找到引用源。的一次函数或常值函数)

② 等比数列求和公式:错误!未找到引用源。,错误!未找到引用源。(关于错误!未找到引用源。的指数类函数)③ 错位相减:通项公式为“等差错误!未找到引用源。等比”的形式

④ 裂项相消:通项公式可拆成两个相邻项的差,且原数列的每一项裂项之后正负能够相消,进而在求和后式子中仅剩有限项

(2)与求和相关的不等式的放缩技巧:

① 在数列中,“求和看通项”,所以在放缩的过程中通常从数列的通项公式入手

② 在放缩时要看好所证不等式中不等号的方向,这将决定对通项公式是放大还是缩小(应与所证的不等号同方向)

③ 在放缩时,对通项公式的变形要向可求和数列的通项公式靠拢,常见的是向等比数列与可裂项相消的数列进行靠拢。

④ 若放缩后求和发现放“过”了,即与所证矛盾,通常有两条道路选择:第一个方法是微调:看能否让数列中的一些项不动,其余项放缩。从而减小放缩的程度,使之符合所证不等式;第二个方法就是推翻了原有放缩,重新进行设计,选择放缩程度更小的方式再进行尝试。

(3)放缩构造裂项相消数列与等比数列的技巧:

① 裂项相消:在放缩时,所构造的通项公式要具备“依项同构”的特点,即作差的两项可视为同一数列的相邻两项(或等距离间隔项)

② 等比数列:所面对的问题通常为“错误!未找到引用源。常数”的形式,所构造的等比数列的公比也要满足错误!未找到引用源。,如果题目条件无法体现出放缩的目标,则可从所证不等式的常数入手,常数可视为错误!未找到引用源。的形式,然后猜想构造出等比数列的首项与公比,进而得出等比数列的通项公式,再与原通项公式进行比较,看不等号的方向是否符合条件即可。例如常数错误!未找到引用源。,即可猜想该等比数列的首项为错误!未找到引用源。,公比为错误!未找到引用源。,即通项公式为错误!未找到引用源。注:此方法会存在风险,所猜出的等比数列未必能达到放缩效果,所以是否选择利用等比数列进行放缩,受数列通项公式的结构影响

(4)与数列中的项相关的不等式问题:

① 此类问题往往从递推公式入手,若需要放缩也是考虑对递推公式进行变形

② 在有些关于项的不等式证明中,可向求和问题进行划归,即将递推公式放缩变形成为可“累加”或“累乘”的形式,即错误!未找到引用源。或错误!未找到引用源。(累乘时要求不等式两侧均为正数),然后通过“累加”或“累乘”达到一侧为错误!未找到引用源。,另一侧为求和的结果,进而完成证明 应用举例:

类型一:与前n项和相关的不等式 例1.【2017届江苏泰州中学高三摸底考试】已知数列错误!未找到引用源。的前错误!未找到引用源。项和错误!未找到引用源。满足:错误!未找到引用源。(错误!未找到引用源。为常数,且错误!未找到引用源。,错误!未找到引用源。).

(1)求错误!未找到引用源。的通项公式;

(2)设错误!未找到引用源。,若数列错误!未找到引用源。为等比数列,求错误!未找到引用源。的值;(3)在满足条件(2)的情形下,设错误!未找到引用源。,数列错误!未找到引用源。的前错误!未找到引用源。项和为错误!未找到引用源。,若不等式错误!未找到引用源。对任意的错误!未找到引用源。恒成立,求实数错误!未找到引用源。的取值范围.

【答案】(1)错误!未找到引用源。(2)错误!未找到引用源。(3)错误!未找到引用源。

(2)由(1)知,错误!未找到引用源。,即错误!未找到引用源。,若数列错误!未找到引用源。为等比数列,则有错误!未找到引用源。,而错误!未找到引用源。,错误!未找到引用源。,错误!未找到引用源。,故错误!未找到引用源。,解得错误!未找到引用源。,再将错误!未找到引用源。代入错误!未找到引用源。,得错误!未找到引用源。,例2.记错误!未找到引用源。.对数列错误!未找到引用源。和错误!未找到引用源。的子集错误!未找到引用源。,若错误!未找到引用源。,定义错误!未找到引用源。;若错误!未找到引用源。,定义错误!未找到引用源。.例如:错误!未找到引用源。时,错误!未找到引用源。.现设错误!未找到引用源。是公比为3的等比数列,且当错误!未找到引用源。时,错误!未找到引用源。.错误!未找到引用源。

(1)求数列的通项公式;错误!未找到引用源。错误!未找到引用源。错误!未找到引用源。(2)对任意正整数,若,求证:;错误!未找到引用源。错误!未找到引用源。(3)设,求证:.【答案】(1)错误!未找到引用源。(2)详见解析(3)详见解析 【解析】

试题分析:(1)根据及时定义,列出等量关系,解出首项,写出通项公式;(2)根据子集关系,进行放缩,转化为等比数列求和;(3)利用等比数列和与项的大小关系,确定所定义和的大小关系:设错误!未找到引用源。,则错误!未找到引用源。因此由错误!未找到引用源。,因此错误!未找到引用源。中最大项必在A中,由(2)得错误!未找到引用源。.试题解析:(1)由已知得错误!未找到引用源。.于是当错误!未找到引用源。时,错误!未找到引用源。.又错误!未找到引用源。,故错误!未找到引用源。,即错误!未找到引用源。.所以数列错误!未找到引用源。的通项公式为错误!未找到引用源。.(2)因为错误!未找到引用源。,错误!未找到引用源。,所以错误!未找到引用源。.因此,错误!未找到引用源。.综合①②③得,错误!未找到引用源。.类型

二、与通项运算相关的不等式 例3.设函数错误!未找到引用源。,数列错误!未找到引用源。满足:错误!未找到引用源。.(1)求证:错误!未找到引用源。时,错误!未找到引用源。;(2)求证:错误!未找到引用源。(错误!未找到引用源。);(3)求证:错误!未找到引用源。(错误!未找到引用源。). 【答案】(1)证明见解析;(2)证明见解析;(3)证明见解析.

故错误!未找到引用源。,则有:错误!未找到引用源。错误!未找到引用源。例4.已知错误!未找到引用源。是数列错误!未找到引用源。的前错误!未找到引用源。项和,且对任意错误!未找到引用源。,有错误!未找到引用源。.其中错误!未找到引用源。为实数,且错误!未找到引用源。.(1)当错误!未找到引用源。时,①求数列错误!未找到引用源。的通项;

②是否存在这样的正整数错误!未找到引用源。,使得错误!未找到引用源。成等比数列?若存在,给出错误!未找到引用源。满足的条件,否则,请说明理由.(2)当错误!未找到引用源。时,设错误!未找到引用源。,① 判定错误!未找到引用源。是否为等比数列;

②设错误!未找到引用源。,若错误!未找到引用源。对错误!未找到引用源。恒成立,求错误!未找到引用源。的取值范围.【答案】(1)①错误!未找到引用源。;②不存在;(2)①当错误!未找到引用源。且错误!未找到引用源。时,数列错误!未找到引用源。是以错误!未找到引用源。为首项,错误!未找到引用源。为公比的等比数列,当错误!未找到引用源。时,错误!未找到引用源。,不是等比数列;②错误!未找到引用源。.

方法、规律归纳: 常见的放缩变形:

(1)错误!未找到引用源。,(2)错误!未找到引用源。

注:对于错误!未找到引用源。还可放缩为:错误!未找到引用源。(3)分子分母同加常数:错误!未找到引用源。(4)错误!未找到引用源。

错误!未找到引用源。可推广为:错误!未找到引用源。

错误!未找到引用源。实战演练: 1.【江苏省无锡市普通高中2018届高三上学期期中】已知数列错误!未找到引用源。满足错误!未找到引用源。记数列错误!未找到引用源。的前错误!未找到引用源。项和为错误!未找到引用源。,错误!未找到引用源。

(1)求证:数列错误!未找到引用源。为等比数列,并求其通项错误!未找到引用源。;

(2)求错误!未找到引用源。;

(3)问是否存在正整数错误!未找到引用源。,使得错误!未找到引用源。成立?说明理由.【答案】(1)错误!未找到引用源。(2)错误!未找到引用源。(3)当错误!未找到引用源。为偶数时,错误!未找到引用源。都成立,(3)详见解析

(3)假设存在正整数错误!未找到引用源。,使得错误!未找到引用源。成立,因为错误!未找到引用源。,错误!未找到引用源。,所以只要错误!未找到引用源。

即只要满足 ①:错误!未找到引用源。,和②:错误!未找到引用源。,对于①只要错误!未找到引用源。就可以; 对于②,当错误!未找到引用源。为奇数时,满足错误!未找到引用源。,不成立,当错误!未找到引用源。为偶数时,满足错误!未找到引用源。,即错误!未找到引用源。令错误!未找到引用源。,因为错误!未找到引用源。

即错误!未找到引用源。,且当错误!未找到引用源。时,错误!未找到引用源。,所以当错误!未找到引用源。为偶数时,②式成立,即当错误!未找到引用源。为偶数时,错误!未找到引用源。成立.2.【江苏省常州市2018届高三上学期武进区高中数学期中试卷】在数列错误!未找到引用源。中,错误!未找到引用源。,错误!未找到引用源。,错误!未找到引用源。,其中错误!未找到引用源。.

⑴ 求证:数列错误!未找到引用源。为等差数列;

⑵ 设错误!未找到引用源。,错误!未找到引用源。,数列错误!未找到引用源。的前错误!未找到引用源。项和为错误!未找到引用源。,若当错误!未找到引用源。且错误!未找到引用源。为偶数时,错误!未找到引用源。恒成立,求实数错误!未找到引用源。的取值范围;

⑶ 设数列错误!未找到引用源。的前错误!未找到引用源。项的和为错误!未找到引用源。,试求数列错误!未找到引用源。的最大值.【答案】⑴见解析⑵错误!未找到引用源。⑶错误!未找到引用源。

要使错误!未找到引用源。对错误!未找到引用源。且错误!未找到引用源。为偶数恒成立,只要使错误!未找到引用源。对错误!未找到引用源。且错误!未找到引用源。为偶数恒成立,即使错误!未找到引用源。对错误!未找到引用源。为正偶数恒成立,错误!未找到引用源。,错误!未找到引用源。,故实数错误!未找到引用源。的取值范围是错误!未找到引用源。; ⑶由⑴得错误!未找到引用源。,错误!未找到引用源。,错误!未找到引用源。,错误!未找到引用源。,设错误!未找到引用源。,错误!未找到引用源。,错误!未找到引用源。错误!未找到引用源。

错误!未找到引用源。当错误!未找到引用源。时,错误!未找到引用源。,即错误!未找到引用源。,当错误!未找到引用源。时,错误!未找到引用源。,即错误!未找到引用源。,错误!未找到引用源。,因此数列错误!未找到引用源。的最大值为错误!未找到引用源。.

【点睛】本题考查数列与不等式的综合应用,涉及等差数列的判定与证明,其中证明(1)的关键是分析得到错误!未找到引用源。与错误!未找到引用源。的关系式.

3.【江苏省徐州市2018届高三上学期期中考试】已知数列满足,且

. 的前项和为,满足,.数列(1)求数列(2)若和的通项公式;,数列的前项和为,对任意的,(,都有,求实数的取值范围;

(3)是否存在正整数,使,请说明理由.

【答案】(1)(2))成等差数列,若存在,求出所有满足条件的,若不存在,(3)不存在

(2)由(1)得于是所以,两式相减得所以由(1)得因为对 即所以恒成立,都有,,恒成立,记所以因为从而数列于是,为递增数列,所以当.

(),使

成等差数列,则,时取最小值,(3)假设存在正整数即,若为偶数,则若为奇数,设于是当时,为奇数,而为偶数,上式不成立.,则,与

矛盾;,即,此时

4.已知数列错误!未找到引用源。、错误!未找到引用源。,其中,错误!未找到引用源。,数列错误!未找到引用源。满足错误!未找到引用源。,错误!未找到引用源。,数列错误!未找到引用源。满足错误!未找到引用源。.

(1)求数列错误!未找到引用源。、错误!未找到引用源。的通项公式;

(2)是否存在自然数错误!未找到引用源。,使得对于任意错误!未找到引用源。有错误!未找到引用源。恒成立?若存在,求出错误!未找到引用源。的最小值;

(3)若数列错误!未找到引用源。满足错误!未找到引用源。,求数列错误!未找到引用源。的前错误!未找到引用源。项和错误!未找到引用源。.

【答案】(1)错误!未找到引用源。;(2)存在,错误!未找到引用源。;(3)错误!未找到引用源。. 【解析】试题分析:

(1)根据题设条件用累乘法能够求出数列{an}的通项公式.b1=2,bn+1=2bn可知{bn}是首项为2,公比为2的等比数列,由此能求出{bn}的通项公式.(2)bn=2n.假设存在自然数m,满足条件,先求出错误!未找到引用源。,将问题转化成错误!未找到引用源。可求得错误!未找到引用源。的取值范围;(3)分n是奇数、n是偶数两种情况求出Tn,然后写成分段函数的形式。

试题解析:(1)由错误!未找到引用源。,即错误!未找到引用源。. 又错误!未找到引用源。,所以错误!未找到引用源。错误!未找到引用源。错误!未找到引用源。.当错误!未找到引用源。时,上式成立,因为错误!未找到引用源。,所以错误!未找到引用源。是首项为2,公比为2的等比数列,故错误!未找到引用源。.(3)当错误!未找到引用源。为奇数时,错误!未找到引用源。错误!未找到引用源。错误!未找到引用源。错误!未找到引用源。; 当错误!未找到引用源。为偶数时,错误!未找到引用源。错误!未找到引用源。错误!未找到引用源。错误!未找到引用源。.因此错误!未找到引用源。.

点睛:数列求和时,要根据数列项的特点选择不同的方法,常用的求和方法有公式法、裂项相消法、错位相减法、分组求和等。

5.【江苏省启东中学2018届高三上学期第一次月考】设数列错误!未找到引用源。的前错误!未找到引用源。项和为错误!未找到引用源。,且满足错误!未找到引用源。,错误!未找到引用源。为常数.

(1)是否存在数列错误!未找到引用源。,使得错误!未找到引用源。?若存在,写出一个满足要求的数列;若不存在,说明理由.

(2)当错误!未找到引用源。时,求证: 错误!未找到引用源。.

(3)当错误!未找到引用源。时,求证:当错误!未找到引用源。时,错误!未找到引用源。. 【答案】(1)不存在,理由见解析(2)证明见解析(3)证明见解析

当错误!未找到引用源。时,错误!未找到引用源。,两式相减得错误!未找到引用源。,即错误!未找到引用源。,错误!未找到引用源。,错误!未找到引用源。,错误!未找到引用源。,当错误!未找到引用源。时,错误!未找到引用源。,即错误!未找到引用源。,综上,错误!未找到引用源。.

6.【江苏省泰州中学2018届高三上学期开学考试】已知两个无穷数列的前项和分别为(1)若数列.分别满足,其中,设数列都为递增数列,求数列的通项公式;(2)若数列①若数列②若数列满足:存在唯一的正整数“坠点数列”,求 为“坠点数列”,数列,使得,称数列为“坠点数列”.为“坠点数列”,是否存在正整数,使得,若存在,求的最大值;若不存在,说明理由.【答案】(1)

.(2)①,② 6.7.【江苏省南京师范大学附属中学2017届高三高考模拟一】已知数集错误!未找到引用源。具有性质错误!未找到引用源。对任意的错误!未找到引用源。,使得错误!未找到引用源。成立.(1)分别判断数集错误!未找到引用源。与错误!未找到引用源。是否具有性质错误!未找到引用源。,并说明理由;

(2)求证: 错误!未找到引用源。;

(2)若错误!未找到引用源。,求错误!未找到引用源。的最小值.【答案】(1)不具有(2)见解析(3)错误!未找到引用源。.(2)因为集合错误!未找到引用源。具有性质错误!未找到引用源。,所以对错误!未找到引用源。而言,存在错误!未找到引用源。,使得错误!未找到引用源。,又因为错误!未找到引用源。,所以错误!未找到引用源。,所以错误!未找到引用源。,同理可得错误!未找到引用源。,将上述不等式相加得: 错误!未找到引用源。,所以错误!未找到引用源。.(3)由(2)可知错误!未找到引用源。,又错误!未找到引用源。,所以错误!未找到引用源。,所以错误!未找到引用源。,构成数集错误!未找到引用源。,经检验错误!未找到引用源。具有性质错误!未找到引用源。,故错误!未找到引用源。的最小值为错误!未找到引用源。.点睛:本题是一道新定义的迁移信息并利用信息的信息迁移题。求解第一问时,直接运用题设条件中所提供的条件信息进行验证即可;解答第二问时,先运用题设条件中定义的信息可得错误!未找到引用源。,同理可得错误!未找到引用源。,再将上述不等式相加得: 错误!未找到引用源。即可获证错误!未找到引用源。;证明第三问时,充分借助(2)的结论可知错误!未找到引用源。,又错误!未找到引用源。,所以错误!未找到引用源。可得错误!未找到引用源。,因此构成数集错误!未找到引用源。,经检验错误!未找到引用源。具有性质错误!未找到引用源。,进而求出错误!未找到引用源。的最小值为错误!未找到引用源。.8.记等差数列错误!未找到引用源。的前错误!未找到引用源。项和为错误!未找到引用源。.(1)求证:数列错误!未找到引用源。是等差数列;

(2)若 错误!未找到引用源。,对任意错误!未找到引用源。,均有错误!未找到引用源。是公差为错误!未找到引用源。的等差数列,求使错误!未找到引用源。为整数的正整数错误!未找到引用源。的取值集合;

(3)记错误!未找到引用源。,求证: 错误!未找到引用源。.【答案】(1)见解析(2)错误!未找到引用源。(3)见解析

解:(1)设等差数列错误!未找到引用源。的公差为错误!未找到引用源。,则错误!未找到引用源。,从而错误!未找到引用源。,所以当错误!未找到引用源。时,错误!未找到引用源。,即数列错误!未找到引用源。是等差数列.(2)因为的任意的错误!未找到引用源。都是公差为错误!未找到引用源。,的等差数列,所以错误!未找到引用源。是公差为错误!未找到引用源。,的等差数列,又错误!未找到引用源。,所以错误!未找到引用源。,所以错误!未找到引用源。,显然,错误!未找到引用源。满足条件,当错误!未找到引用源。时,因为错误!未找到引用源。,所以错误!未找到引用源。,所以错误!未找到引用源。不是整数,综上所述,正整数错误!未找到引用源。的取值集合为错误!未找到引用源。.(3)设等差数列错误!未找到引用源。的公差为错误!未找到引用源。,则错误!未找到引用源。,所以错误!未找到引用源。,即数列错误!未找到引用源。是公比大于错误!未找到引用源。,首项大于错误!未找到引用源。的等比数列,记公比为错误!未找到引用源。.以下证明: 错误!未找到引用源。,其中错误!未找到引用源。为正整数,且错误!未找到引用源。,因为错误!未找到引用源。,所以错误!未找到引用源。,所以错误!未找到引用源。,当错误!未找到引用源。时,错误!未找到引用源。,当错误!未找到引用源。时,因为错误!未找到引用源。为减函数,错误!未找到引用源。,所以错误!未找到引用源。,所以错误!未找到引用源。,综上,错误!未找到引用源。,其中错误!未找到引用源。错误!未找到引用源。

错误!未找到引用源。,即错误!未找到引用源。.9.已知数列{an}的前n项和为Sn,数列{bn},{cn}满足(n+1)bn=an+1错误!未找到引用源。,(n+2)cn=错误!未找到引用源。,其中n∈N*.

(1)若数列{an}是公差为2的等差数列,求数列{cn}的通项公式;

(2)若存在实数λ,使得对一切n∈N*,有bn≤λ≤cn,求证:数列{an}是等差数列. 【答案】(1)cn=1.(2)见解析.10.已知各项不为零的数列错误!未找到引用源。的前错误!未找到引用源。项和为错误!未找到引用源。,且错误!未找到引用源。,错误!未找到引用源。,错误!未找到引用源。.

(1)若错误!未找到引用源。成等比数列,求实数错误!未找到引用源。的值;(2)若错误!未找到引用源。成等差数列,①求数列错误!未找到引用源。的通项公式; ②在错误!未找到引用源。与错误!未找到引用源。间插入错误!未找到引用源。个正数,共同组成公比为错误!未找到引用源。的等比数列,若不等式错误!未找到引用源。对任意的错误!未找到引用源。恒成立,求实数错误!未找到引用源。的最大值.

【答案】(1)错误!未找到引用源。(2)错误!未找到引用源。(3)错误!未找到引用源。

(3)错误!未找到引用源。,在错误!未找到引用源。与错误!未找到引用源。间插入错误!未找到引用源。个正数,组成公比为错误!未找到引用源。的等比数列,故有错误!未找到引用源。,即错误!未找到引用源。,

第四篇:放缩法证明数列不等式

放缩法证明不等式

1、设数列an的前n项的和Sn

43an

13

2n

n

1

3(n1,2,3,)

n

(Ⅰ)求首项a1与通项an;(Ⅱ)设Tn

an42

n

n

2Sn

(n1,2,3,),证明:Ti

i1

解:易求

SnTn

(其中n为正整数)

n

n

432

n

an

n

13

2

n1



4n

23

n



2

n1

2

n1

121

n

Sn

2

n1

121

11

nn1

22121

所以:

i1

Ti

3131

1n12212122、求证:(1)

11法1:数归(两边都可以)

法2:放缩裂项 法3:定积分放缩(2)

22

nN)



1n1n

31n

11n

法1:放缩一:

n(n1)



(n2)

Sn



1n

1n

(1336

52)(15



1653



1n1

1n)

=1

1336

121400

11

121400

1

23893600(1

1

24003600

.放缩二:

1n

1n1

(n1)(n1)

2n1

n1),(n2)

Sn54



1n

(11

2)

111111111()22435n2nn1n1

1111151115

()().223nn142233

放缩三:

1n

1n

(n

112)(n

12)

(1n

1n

12)2(12n1

12n1),(n1)

Sn



1n

12(13



12n1

12n1)12(13

12n1)

法2:数归——加强命题:常用的放缩公式:

1n(n1)

2n

n1

1n



1n

1n

1n(n1)1n

;n

n12nn

n1;

n

n

2n1;

ab

ambm

(ba0,m0)

1k

k(k1)(k1)

1n11k(k1)

111*

(k2,kN)

2k(k1)k(k1)

1nk

nkn1k!

1n2

...

kn11

(k3)

(k2)

;212

n1n

k!k(k1)(k2)

n

an

例3:已知:

1

(nN

),求证:ai

i1

n2

法1:均值不等式:即证

715n2

...

212

n1

n

1

n2

也即:

715

...

212

n

n1

n

1

:

715

...

212

n1

1

n



法2:放缩后裂项求和

an

21212

n1n

1(

212(21

n

n)1

n1

=

1

21(2

n1

n

1)(21)

n

=

21

n

n1

1)

法3:数归,但是直接去证是不行的,要转化为一个加强命题

4.定义数列如下:a12,an1anan1,nN

证明:(1)对于nN恒有an1an成立。

2

(2)当n2且nN,有an1anan1a2a11成立。

(3)1

2006

1a1

1a2



1a2006

1。

解:(1)用数学归纳法易证。

(2)由an1anan1得:an11an(an1)an1an1(an11)……

a21a1(a11)以上各式两边分别相乘得:

an11anan1a2a1(a11),又a12an1anan1a2a11(3)要证不等式1

2006

1a1

1a2



1a2006

1,可先设法求和:

1a1

1a2



a2006,再进行适当的放缩。

an11an(an1)

1an111an1a1

1an1

1an



1an11a2

1an111a2006



(1a111

1a211)(1a21

1a31)(1a20061

1a20071)

a11

a200711

1

a1a2a2006

1

又a1a2a2006a1

2006

2

2006

1

1a1a2a2006

1

2006

原不等式得证。

5.已知数列an中an

i

i

n

nn

21,求证:ai(ai1)3.i1

方法一:ai(ai1)

n

i

2121

i

i

i

(21)(22)

i

i1

i1

(21)(21)

i1

1

121

i

.

i1

ai(ai1)

(21)

(121

121)(121

121)(12

n1

1

121

n)3

121

n

3.方法二:

ai(ai1)

i

i

(21)

i

122

i

122

i

122

i

22

i

i1

.(i2)

n

i1

ai(ai1)2



n1

2(1

12)3n1

n1

3.n

法3:数归证

i1

ai(ai1)3

121

n

3.(即转化为证明加强命题)

6、已知函数fxln1xx,数列an满足:

a1

2,ln2lnan1an1anf

an1an.

(1)求证:ln1xx;(2)求数列an的通项公式;

(3)求证不等式:a1a2annln2lnn2. 解:(1)fxln1xx,f'x

11x

1

x1x,当1x0时,f'x0,即yf(x)是单调递增函数;当x0时,f'x0,即yf(x)是单

调递减函数.

所以f'00,即x0是极大值点,也是最大值点

fxln1xxf00ln1xx,当x0时取到等号.(2)法1:数学归纳法(先猜想,再证明)

法2:由ln2lnan1an1anfan1an得2an1an1an1,an1

12an,an11

12an

1

an12an,1an1

1

1an1

1,即数列

1

2,公差为1,是等差数列,首项为

a11an1

nn1

an1

n1an

(3)法1:

a1a2an1

111

1

121

1

111

n

23n1n1

又∵x0时,有xln1x,令x

1n112

0,则

1n2

ln1ln n1n1n11

∴n

3

345n1n2

nlnlnlnlnln n1234nn1n

2n2

nln

n12

nln

343

ln2

n nl

∴a1a2annln2lnn2 . 法2:积分法要证原命题,即证:

12

ln(n2)ln2 n11



1113n12

12

n2

1x

dxlnx

n22

法3:数归证明:7.1、(1)求证:2

n



ln(n2)ln2 n1

2n1(n2,nN)

nn1n01

法1:2CnCn...CnCn;

法2:数学归纳法 法3:函数法(求导)

8.若nN,证明:()+()+…+(n

n

*

n

n

n1n)+(n

nn)

n

ee1

提示:借助e1x证明

x

第五篇:放缩法(不等式、数列综合应用)

“放缩法”证明不等式的基本策略

近年来在高考解答题中,常渗透不等式证明的内容,而不等式的证明是高中数学中的一个难点,它可以考察学生逻辑思维能力以及分析问题和解决问题的能力。特别值得一提的是,高考中可以用“放缩法”证明不等式的频率很高,它是思考不等关系的朴素思想和基本出发点, 有极大的迁移性, 对它的运用往往能体现出创造性。“放缩法”它可以和很多知识内容结合,对应变能力有较高的要求。因为放缩必须有目标,而且要恰到好处,目标往往要从证明的结论考察,放缩时要注意适度,否则就不能同向传递。下面结合一些高考试题,例谈“放缩”的基本策略。

1、添加或舍弃一些正项(或负项)

1、已知an2n1(nN*).求证:an1a1a2...n(nN*).23a2a3an

1ak2k11111111证明: k1.,k1,2,...,n, ak12122(2k11)23.2k2k2232k

aa1a2n1111n11n1...n(2...n)(1n), a2a3an1232222322

3an1aan12...n(nN*).23a2a3an1

2若多项式中加上一些正的值,多项式的值变大,多项式中加上一些负的值,多项式的值变小。由于证明不等式的需要,有时需要舍去或添加一些项,使不等式一边放大或缩小,利用不等式的传递性,达到.2、先放缩再求和(或先求和再放缩)

2、函数f(x)=4x

14xk,求证:f(1)+f(2)+…+f(n)>n+

12n11(nN*).2证明:由f(n)= 4n14n=1-111 14n22n

22

11得f(1)+f(2)+…+f(n)>1112221122n 11111n(1n1)nn1(nN*).424222

此题不等式左边不易求和,此时根据不等式右边特征, 先将分子变为常数,再对分母进行放缩,从而对左边可以进行求和.若分子, 分母如果同时存在变量时, 要设法使其中之一变为常量,分式的放缩对于分子分母均取正值的分式。如需放大,则只要把分子放大或分母缩小即可;如需缩小,则只要把分子缩小或分母放大即可。

3、先放缩,后裂项(或先裂项再放缩)

k

3、已知an=n,求证:∑<3.

k=1ak

n

证明:∑

k=

1n

n

2ak

k=

1n

<1+∑

k=

2n

(k-1)k(k+1)

=1k2n

<1+∑

k=2

(k-1)(k+1)(k+1 +k

-1)=1+ ∑(k=2

n

-)

(k-1)

(k+1)

=1+1+<2+<3.

(n+1)2

2本题先采用减小分母的两次放缩,再裂项,最后又放缩,有的放矢,直达目标.4、放大或缩小“因式”;

n

1例

4、已知数列{an}满足an1a,0a1,求证:(akak1)ak2.232k

1n

证明 0a1

n

11112,an1an,a2a12,a3.当k1时,0ak2a3, 241616

(akak1)ak

2k1

1n11(akak1)(a1an1).16k11632

本题通过对因式ak2放大,而得到一个容易求和的式子

5、逐项放大或缩小

(a

k

1n

k

ak1),最终得出证明.n(n1)(n1)

2an例

5、设an22334n(n1)求证: 22122n1

2证明:∵ n(n1)nnn(n1)(n)

2n

1∴ nn(n1)

13(2n1)n(n1)(n1)2

an∴ 123nan,∴

222

2n1

本题利用n,对an中每项都进行了放缩,从而得到可以求和的数列,达到化简的目的。

6、固定一部分项,放缩另外的项;

6、求证:

11117 122232n2

4证明:

1

n2n(n1)n1n

11111111151171()().122232n22223n1n42n4

此题采用了从第三项开始拆项放缩的技巧,放缩拆项时,不一定从第一项开始,须根据具体题型分

别对待,即不能放的太宽,也不能缩的太窄,真正做到恰倒好处。

7、利用基本不等式放缩

7、已知an5n

41对任何正整数m,n都成立.1,只要证

5amn1aman.因为 amn5mn4,aman(5m4)(5n4)25mn20(mn)16,故只要证

5(5mn4)125mn20(mn)16 即只要证

20m20n37

因为aman5m5n85m5n8(15m15n29)20m20n37,所以命题得证.本题通过化简整理之后,再利用基本不等式由aman放大即可.8、先适当组合, 排序, 再逐项比较或放缩 例

8、.已知i,m、n是正整数,且1<i≤m<n.(1)证明:nAim<mAin;(2)证明:(1+m)>(1+n)

i

i

n

m

证明:(1)对于1<i≤m,且Aim =m·…·(m-i+1),Aimmm1Aimnn1mi1ni

1,同理,mmmnnnmini

由于m<n,对于整数k=1,2,…,i-1,有

nkmk,

nm

AinAim

所以ii,即miAinniAim

nm

(2)由二项式定理有:

22nn

(1+m)n=1+C1nm+Cnm+…+Cnm,22mm(1+n)m=1+C1mn+Cmn+…+Cmn,由(1)知

mAin

i

>nAim

i

(1<i≤m<n),而

Cim

AimiAin,Cn= i!i!

∴miCin>niCim(1<m<n)

00222211

∴m0C0n=nCn=1,mCn=nCm=m·n,mCn>nCm,…,mmm+1m1mmCmCn>0,…,mnCnn>nCm,mn>0,2222nn1mm∴1+C1nm+Cnm+…+Cnm>1+Cmn+Cmn+…+Cmn,即(1+m)n>(1+n)m成立.以上介绍了用“放缩法”证明不等式的几种常用策略,解题的关键在于根据问题的特征选择恰当的方法,有时还需要几种方法融为一体。在证明过程中,适当地进行放缩,可以化繁为简、化难为易,达到事半功倍的效果。但放缩的范围较难把握,常常出现放缩后得不出结论或得到相反的现象。因此,使用放缩法时,如何确定放缩目标尤为重要。要想正确确定放缩目标,就必须根据欲证结论,抓住题目的特点。掌握放缩技巧,真正做到弄懂弄通,并且还要根据不同题目的类型,采用恰到好处的放缩方法,才能把题解活,从而培养和提高自己的思维和逻辑推理能力,分析问题和解决问题的能力。希望大家能够进一步的了解放缩法的作用,掌握基本的放缩方法和放缩调整手段.

下载高三数学专题复习——数列不等式(放缩法)word格式文档
下载高三数学专题复习——数列不等式(放缩法).doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    放缩法证明数列不等式经典例题

    放缩法证明数列不等式主要放缩技能: 1.11111112 nn1n(n1)nn(n1)n1n1144112()22n4n1(2n1)(2n1)2n12n1n242.  2)  4.2n2n2n1115. n (21)2(2n1)(2n2)(2n1)(2n11)2n112n16.n22(n1......

    2012高考专题----数列与不等式放缩法

    高考专题——放缩法一、基本方法1.“添舍”放缩通过对不等式的一边进行添项或减项以达到解题目的,这是常规思路。 例1. 设a,b为不相等的两正数,且a3-b3=a2-b2,求证1<a+b<例2. 已知a、b......

    放缩法与数列不等式的证明

    2017高三复习灵中黄老师的专题 放缩法证明数列不等式编号:001 引子:放缩法证明数列不等式历来是高中数学的难点,在高考数列试题中经常扮演压轴的角色。由于放缩法灵活多变,技巧......

    用放缩法证明与数列和有关的不等式

    用放缩法证明与数列和有关的不等式湖北省天门中学薛德斌数列与不等式的综合问题常常出现在高考的压轴题中,是历年高考命题的热点,这类问题能有效地考查学生综合运用数列与不等......

    放缩法证明不等式

    放缩法证明不等式不等式是数学的基本内容之一,它是研究许多数学分支的重要工具,在数学中有重要的地位,也是高中数学的重要组成部分,在高考和竞赛中都有举足轻重的地位。不等式的......

    放缩法证明不等式

    主备人:审核:包科领导:年级组长:使用时间:放缩法证明不等式【教学目标】1.了解放缩法的概念;理解用放缩法证明不等式的方法和步骤。2.能够利用放缩法证明简单的不等式。【重点、难......

    放缩法证明不等式

    放缩法证明不等式 在学习不等式时,放缩法是证明不等式的重要方法之一,在证明的过程如何合理放缩,是证明的关键所在。现例析如下,供大家讨论。 例1:设a、b、c是三角形的边长,求证ab......

    论文-放缩法证明数列不等式的基本策略

    放缩法证明数列不等式的基本策略广外外校姜海涛放缩法证明数列不等式是高考数学命题的热点和难点。所谓放缩法就是利用不等式的传递性,对不等式的局部进行合理的放大和缩小从......