小学数学如何利用模型思想开展数学教学

时间:2019-05-13 09:07:58下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《小学数学如何利用模型思想开展数学教学》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《小学数学如何利用模型思想开展数学教学》。

第一篇:小学数学如何利用模型思想开展数学教学

小学数学如何利用模型思想开展数学教学

教师在教学中引导学生建立数学模型,不但要重视其结果,更要关注学生自主建立数学模型的过程,让学生在进行探究性学习的过程中科学地、合理地、有效地建立数学模型。

小学数学建模思想的形成过程是一个综合性的过程,是数学能力和其他各种能力协同发展的过程。在数学教学过程中进行数学建模思想的渗透,不仅可以使学生体会到数学并非只是一门抽象的学科,而且可以使学生感觉到利用数学建模的思想结合数学方法解决实际问题的妙处,进而对数学产生更大的兴趣。通过建模教学,可以加深学生对数学知识和方法的理解和掌握,调整学生的知识结构,深化知识层次。同时,培养学生应用数学的意识和自主、合作、探索、创新的精神,为学生的终身学习、可持续发展奠定基础。因此在数学课堂教学中,教师应逐步培养学生数学建模的思想、方法,形成学生良好的思维习惯和用数学的能力。

数学家华罗庚通过多年的学习、研究经历总结出:对书本中的某些原理、定律、公式,我们在学习的时候不仅应该记住它的结论、懂得它的道理,而且还应设想一下人家是怎样想出来的,怎样一步一步提炼出来的。只有经历这样的探索过程,数学的思想、方法才能沉积、凝聚,从而使知识具有更大的智慧价值。动手实践、自主探索与合作交流是学生学习数学的重要方式。学生的数学学习活动应当是一个主动、活泼的、生动和富有个性的过程。因此,在教学时我们要善于引导学生自主探索、合作交流,对学习过程、学习材料、学习发现主动归纳、提升,力求建构出人人都能理解的数学模型。

小学数学教学中“以学生为中心,在整个过程中教师起组织者、指导者、帮助者、促进者的作用,教师创设问题情境,学生探索、协作、交流等充分发挥自己的主动性、积极性和首创精神,最终达到有效 地实现对当前所学知识的建模。”

1、一次建模:从生活情境中抽象出数学问题。这是是生活数学向学校数学的抽象,这个抽象的过程 就是建模的过程,这个抽象出来的数学问题就是数模(如:应用题等)。因为它经历了对情景问题中蕴含 的数学成分进行分析和描述的过程,从一些属于学生的、不那么正规的数学语言通过简化和形式化不断地 向比较严格和正规的语言靠拢的过程,这个过程就是第一次建模过程。

2、二次建模:探究抽象出来的数学问题。从数学问题中抽象出纯数学的理解表述(即意义理解)或 数学术语(即数量关系、性质、法则等方法或概念),这种意义理解表述或数学术语也是数模,它经历了 对数学问题的探究过程,这种探究就是对旧课程的传承,这个过程就是第二次建模过程。

3、两次建模过程的整合。在现今一些课中,情景和探究是割裂的,情景是情景,探究是探究。而数 学建模要求情景创设必须结合教学的重难点进行创设,探究和旧课程的探究有一定的区别,它是一种基于 情景下的探究,这样在一定程序上,可以一种生活理来突破数学理。

4、数学模型的建立不是最终目的,而让学生形成一种技能,建立思维方法,反过来再去解决问题,让学生理解并形成数学的思维,这种数学化的思想才是根本的目的。建模的过程就是数学化的过程,即从生活情境抽象为数学问题,在这个过程中,培养学生解读信息,培养学生分析、综合、抽象、简化等能力。这就是要不断的引导学生用数学思维的观点去观察、分析和表 示各种事物关系、空间关系和数学信息,从纷繁复杂的具体问题中抽象出我们熟悉的数学模型,进

而达到 用数学模型来解决实际问题的目的,使数学建模意识成为学生思考问题的方法和习惯。

第二篇:小学数学教学中渗透模型思想

小学数学教学中渗透模型思想

小学数学很初等,很简单。尽管简单,却要起到启蒙基本数学思想的作用。数学思想中,模型思想、函数思想是非常重要的思想。其在小学教学中的渗透,学生的正确理解,对学生后续学习非常重要。通过学习,我想对小学教学课本中这种思想渗透方法的分析,浅谈如何在小学数学教学中恰当地将模型思想、函数思想渗透与教学中。

一、模型思想的渗透方法分析:

模型的概念也没有出现在小学教学中,但是其思想贯穿于小学教学中。要在教学中渗透模型思想,教师首先自己要知道什么事模型,什么是数学模型,以及什么模型思想。

什么是模型?模型,本意是尺度、样本、标准。其方法为:;将原型物(系统)进行简化、类比和抽象,并通过适当的逻辑思维关系将其主要的特征描述出来,用于研究和揭示原型的形态、特征和本质的模仿品。

二、什么是数学模型,其有什么特点?

数学模型一般是指用数学语言、符号和图形等形式来刻画、描述、反映特定的问题或具体事物之间关系的数学结构。

小学数学中随处可见模型的思想,需要教师在教学过程中通过合理的方法进行引导,使学生建立模型的抽象过程。

数学模型具有一般化、典型化、和精确化的特点。小学数学中的数学模型,主要的是确定性数学模型。数的概念、计算法则、公式、性质、数量关系等都是模型。

三、什么是模型思想,模型思想有什么意义?

就是针对要解决的问题,构造相应的数学模型,通过对数学模型的研究来解决实际问题的一种数学思想方法。

模型思想可以将复杂问题简单化,抽取关注的对象进行研究;模型思想可以培养学生学习数学的兴趣;模型思想有利于培养学生的创造能力、分析能力。

四、模型思想在小学数学教学中的渗透

数学自身就是对客观世界的模型化。因此数的概念、运算法则、几何概念等都是模型思想的体现。在教学中,将这些模型的建立过程详细的进行讲解,有利于启发学生对模型思想的理解,对建立模型方法的认知。

五、“数”的概念模型的建立过程分析:

每一个数概念就是一个数学模型。自然数、分数、小数都是现实模型的抽象。自然数是小学生最早接触的数学概念,其是与客观世界的一个个独立存在物的抽象化。

分数是对单位“1”的充分认识的基础上,进一步演化而来的……

数学模型加法、减法、乘法、除法运算的模型建立过程分析: 小学教学中,通过实物的增减来启蒙加减法的基本思想,建立加法、减法模型。

通过实物矩阵事排列,实物分配建立乘法、除法的概念。在学生接受这些概念之后,通过练习、拓展强化模型的概念。

第三篇:小学数学教学思想

小学数学教学的根本任务是提高学生的综合素质,而思维素质是其中最重要的素质,数学思想方法的渗透是培养学生良好的思维品质,提高数学素养的关键。教学中,教师要根据学生的认知规律和年龄特征,有意识地挖掘蕴含在教材里的隐性资源,真正把数学思想方法的渗透落到实处,使学生的数学思维能力得到有效的发展,数学素养得到全面的提高,为培养新世纪的新型人才奠定坚实的基础。

所谓数学思想,是指人们对数学理论与内容的本质认识。所谓数学方法,是指人们解决数学问题的方法,即解决数学具体问题时所采用的方式、途径和手段。了解了二者的关系,懂得数学思想是宏观的,而数学方法则是微观的;数学思想是数学方法的灵魂,数学方法是数学思想的表现形式和得以实现的手段;前者给出了解决问题的方向,后者给出了解决问题的策略。由于小学阶段的数学思想和方法在本质上都是相通的,所以小学数学通常把数学思想和方法看成一个整体概念,即小学数学思想方法。

一、小学数学教材中渗透的数学思想方法主要有

1、数形结合的思想方法

数和形是数学研究的两个主要对象,数离不开形,形离不开数,一方面抽象的数学概念,复杂的数量关系,借助图形使之直观化、形象化、简单化。另一方面复杂的形体可以用简单的数量关系表示。在解应用题中常常借助线段图的直观帮助分析数量关系。

例如,在小学一年级中刚开始学习数的认识时,都是以实物进行引入,再从中学习数字的实际含义。例如学习“5的认识”时,先出示主题图,问学生图中有些什么?学生从中数出5朵小花,5只小鸟,5个气球。从而感知5的某些具体意义,再从实物中慢慢抽象成某一特定物体,利用学生的学具小棒摆出由5根小棒组成的任何图形,从而让学生在动手的过程中,不仅表现出自己的独特创意,而且更深一层地理解5的实际意义;第三层次是利用黑板进行画5个圆,5个正方形,5个三角形等特定图形来代表5,从而慢慢抽象至数字5。这样从实物至图形,在抽象到数字,整个过程应该符合一年级小学生的特点,也是数形结合思想的一种渗透。

2、对应思想方法

利用数量间的对应关系来思考数学问题,就是对应思想。集合、函数、坐标等问题都以这一思想为基础。寻找数量之间的对应关系,也是解答应用题的一种重要的思维方式。在低、中年级整数应用题训练时,教师就应该让学生明白数量之间存在着一一对应的关系。

例如:水果店上午卖出橘子6筐,下午又卖出同样的橘子8筐,比上午多卖100元,每筐橘子多少元? 这里存在着钱数和筐数的对应关系,学生如果能看出下午比上午多卖的100元对应的筐数是(8-6)筐,此题就迎刃而解了,即100÷(8-6)=50(元)。

解决问题对于小学生是个抽象的问题,特别对于低、中年级学生更难理解。但找到了对应关系,也就找到了解题的关键。

3、转化思想方法

转化就是在研究和解决有关数学问题时,采用某种手段将一个问题转化成为另外一个问题来解决。一般是将复杂的问题转化为简单的问题,将难解问题转化为容易求解的问题,将未解决的问题转化为已解决的问题。

例如:上“整

十、整百相乘”一课时,先让学生观察,然后问一问,能不能把整十相乘转化为我们以前所学过的几乘与几,这样学生不仅很快能掌握新学得知识,还可以自己解决整百相乘。这就很好的体现了转化思想。

4、猜想验证思想方法

猜想验证是一种重要的数学思想方法,正如荷兰数学教育家弗赖登塔尔所说:“真正的数学家常常凭借数学的直觉思维做出各种猜想,然后加以证实。”因此,小学数学教学中,教师要重视猜想验证思想方法的渗透,以增强学生主动探索和获取数学知识的能力,促进学生创新能力的发展。

例如:上“乘法分配律”一课时,我先出示两个例题:(5+3)×23 和5×23+3×23

要求

1、学生独自计算结果

2、讨论两个算式的异同点

3、根据自己的发现举出类似的例子,并加以计算

4、验证后,总结归律。

这样,通过算、讨论、说、算、说,学生初步感知了乘法分配律。至此,猜想乘法分配律已是水到渠成。

此外在小学数学教学中还涉及集合、分类、函数、极限、化归、归纳、符号化、数学建模、统计、假设、代换、比较、可逆等思想方法。教学中,要明确渗透数学思想方法的意义,认识数学思想方法是数学的本质之所在、是数学的精髓,只有方法的掌握、思想的形成,才能使学生受益终生。

二、如何在小学数学教学中渗透数学思想方法

1、在教学设计时,有意识地体现数学思想方法

老师在使用教材时,要认真分析教材,对教材进行再创造,有意识地从教学目标的确定、教学过程的预设、教学效果的落实等方面来体现数学思想方法,实现对教材的再思考、再创造。教师在教学设计时,就要有意识地挖掘教材隐性资源,让数学思想方法在数学课堂中得以自觉地落实和体现。

2、在探究新知时,有意识地引导学生发现数学思想方法

在学习过程中,教师要善于引导学生积极主动地经历知识的形成过程,结合具体的情境,引导学生发现问题、提出问题,探究解决问题的策略,让学生在观察、实验、分析、归纳、抽象、概括的过程中,发现潜藏其中的思想方法,自觉地理清解题思路。教师要有意识地加以指导,归纳蕴含其中的数学思想方法,及时归纳、探究获取知识的方法,形成数学思想方法,实现知识的正迁移。如在《圆的面积》教学中,教师要有意识地运用化归思想、极限思想等方法组织教学。教师要创设情境让学生回忆已学平面图形面积公式的推导过程,唤起学生对以前探究方法的回忆与再认识,启发学生对转化思想的思考与运用。接着,引导学生合作交流,探究圆的面积公式推导的一般方法,实现其化归过程。最后,通过多媒体课件的展示,进一步感受极限思想,接受极限思想,自学地应用极限思想,形成终身受用的数学思想方法。

3、在解决问题时,有意识地引导学生运用数学思想方法

渗透数学思想方法旨在使学生的数学思维经历从形象思维到抽象思维再到逻辑思维的发展过程,实现其质的变化,要让学生沿着“抽象”和“应用”两个方面进行渗透,将已学的思想方法转化为自己头脑中牢固的认知结构,并能在不断的归属同化中得以发展,提高学生运用数学思想方法解决实际问题的能力。所以,教学中教师要鼓励学生运用忆学的数学思想方法去发现、分析和解决生活中的实际问题引导学生加以抽象、概括,建立数学模型,探求解决问题的一般方法,培养学生自学的应用意识。如:在探索发现规律时要用到类比、化归、转化等思想;在解决一些实际问题时,通常要用到数形结合思想,把题中给出的数量关系转化为图形,借助图形使复杂的数量关系形象化、直观化,拓宽学生的解题思路,促进学生创造性思维的发展,获得优化的解法,提高学生的解题能力。

4、在总结延伸时,有意识地引导学生领悟数学思想方法

在总结延伸某一思想方法的时候,教师要有意识地引导学生自学地反思自己的思维过程,使获得的数学思想方法更明晰、更深刻,引发学生对所学知识进行更深层次的思考。进而引导学生自学地运用学到的思想方法去解决实际问题,引导学生反省自己的思维过程,反思自己是怎样发现问题、分析解决问题的。在这一思维过程中又是怎样应用数学思想方法的。用了哪些基本的思考方法和技巧,积累了哪些有益的成功经验,怎样去拓展和延伸的。只有这样的反思,才能使学生的思维得到良好的培养与发展,才能使学生从数学思想方法的高度把握知识的本质和内在规律,逐步体会数学思想方法的精神实质,提高学生自学的应用意识。

第四篇:小学数学教学中渗透模型思想的策略

楚雄师范学院毕业论文(设计)

小学数学教学中渗透模型思想的策略

罗玉珍

(楚雄师范学院 2013级小学教育专业1班 20130126136)

摘要:模型思想是近年来新提出的一个理念,它主要就是要让学生把生活实际和数学联系起来。模型思想便是将现实中的问题用数的形式表示出来且用数学的方式进行解答。小学是培养孩子模型思想的第一个阶段,所以教师在培养过程中要使用适当的方式和策略。本文主要就在小学数学课堂中怎样培养模型思想的策略做了简单的论述。对相关的概念做了叙述,对小学课本中重要的模型思想做了简述。对教师处理含有模型思想的案例做了简单解析。

关键词:小学数学;模型思想;培养;策略

I

楚雄师范学院毕业论文(设计)

The strategy of infiltrating model thinking in primary school mathematics teaching

Abstract:The idea of model is a new concept put forward in recent years, it is mainly to let the students to the actual life and mathematics.The idea of the model is to express the problem in reality in the form of numbers and solve it in a mathematical way.Primary school is the first stage of training children's model, so teachers should use appropriate methods and strategies in the training process.This paper mainly discusses how to cultivate the thought of model in primary school mathematics classroom.This paper gives a brief description of the related concepts, and makes a brief introduction to the important model ideas in primary school textbooks.A simple analysis of the teacher's handling of the case with the model thought.Keywords:Primary school mathematics;model thinking;training;strategy

II

楚雄师范学院毕业论文(设计)

小学数学教学中渗透模型思想的策略

罗玉珍

(楚雄师范学院 2013级小学教育专业1班 20130126136)

摘要:模型思想是近年来新提出的一个理念,它主要就是要让学生把生活实际和数学联系起来。模型思想便是将现实中的问题用数的形式表示出来且用数学的方式进行解答。小学是培养孩子模型思想的第一个阶段,所以教师在培养过程中要使用适当的方式和策略。本文主要就在小学数学课堂中怎样培养模型思想的策略做了简单的论述。对相关的概念做了叙述,对小学课本中重要的模型思想做了简述。对教师处理含有模型思想的案例做了简单解析。

关键词:小学数学;模型思想;培养;策略

模型思想便是要让学生懂得数学与现实是息息相关的。模型思想就是让学生观察现实然后找出能够把数学和现实联系起来的关系,最后用数学的形式表示实际问题。通过查找与此题目相关的资料发现,目前,探究有关本国小学数学中的模型思想的人主要是一线的小学教师。研究的大多都是通过案例然后谈培养模型思想的方式。渗透的方法大多相同,主要是从培养兴趣、注重体验、重视应用几个方面来说。基于这样的情况,笔者在本文中阐述了于模型相关的概念,然后叙述了在小学教材中蕴含的主要模型思想,最后从建立模型的步骤中结合例题浅谈渗透的策略。看重从现实方面讨论在小学中培养数学模型思想的策略,为我们在此后作为老师在模型教学中提供方式上的指导。

一、模型思想的概念

(一)模型与数学模型的概念

1、模型的概念

模型(model),是规范、原型的意思。这里指对某种事物(实际对象)的一种抽象或效仿。是大家想要实现一定的目的,对现实原型所做的一个简便的描写。可能依托于完全的实物,也能够通过概括的形式表达。就像人们在生活中做的飞机模型、玩具汽车、毛绒小狗等等一样,就是模仿具体的实物,之后按一定比例缩小而成的具有与真实物体相似外型的一种模仿。除了在外型上的相似之外,还有一些是具有共同特征的,或是依据某些特定的方法表现出事物本性的也是模型。

2、数学模型的概念

数学模型(mathematical model),是对照某种实情体系的首要特性、重要关联,用模式化的数学措辞归纳或类似地叙述的构造。便是用数学措辞和方式对各类现实作概括或模仿而造成的活动。广义的数学模型是整个的数学教材。数学教材中包含的一些概念、符号、图形、数量关系等等都是数学模型。例如,经过创设情景可以从具体情景中归纳出平面图形的面积公式就是数学模型。在小学阶段接触更多的都是一些有关数量关

楚雄师范学院毕业论文(设计)

系的模型工作效率工作时间工作总量,路程时间速度,每份数份数总数等等通俗来讲,小学阶段常见的解应用题就是运用数量关系模型解决其它同类问题的过程。

狭义的数学模型是要解决生活中的具体的实际问题,它针对的是某一个特定的、有特殊意义的问题。如特定的问题植树问题、确定起跑线问题、找次品问题等等这一类特定问题的解决。本文中笔者的研究主要是以模型思想的广义定义来研究,针对的问题是数学教材中提及的各种问题。

(二)数学模型思想的定义

数学模型思想就是把现实世界中有待解决的问题,从数学的角度归纳到一类已经解决的问题中去。是用数的形式表达实际问题然后进行解答的一种思想。

二、小学数学教学中渗透模型思想的意义

《义务教育数学课程标准(2011年版)》中指出“模型思想的建立是学生体会和理解

[1]数学与外部世界联系的基本途径。”它鲜明地表达了培养的实质要求便是使同学们清楚和领会数与现实的关联。因此在小学期间渗入建立模型的思想有以下几个方面的意义。

(一)有利于提升同学们处理问题的技能

问题来自生活也要回归生活,我们解决问题中的模型都是来自于现实世界的原型。在创设了模型之后,用数学的方式来解决,再根据现实的实际情况来判断结果是否正确。经过不停地创设模型和处理问题的过程在孩子脑海中建立一个问题处理的现象从而增加学生的处理问题的水平。

(二)有益于提升同学们的数学理解

数学建模的过程是首先让学生从现实生活中找出问题,然后把问题用数学的方式表现出来,并求出解,再回到实际中进行验算。经过这一系列提升了孩子发觉和处理现实的水平。不仅养成了同学们创立模型的技能,而且让他们懂得这样做的意义并会在生活实际中运用。在这个过程中他们的观察和处理问题的实力就有了全面的提升。学生自己的素养也就自然得到了提升。

(三)加强同学们对知识的运用思想

我们接触到的问题基本是来源于与我们息息相关的现实中,最终也要用到现实中。很明显的,要是老师在课堂中有意识的渗入模型思想的教育,不断受到教师的影响。学生渐渐的也就学会用学过的内容去对待现实,会发现在实际中存在着很多有关数的知识。学生渐渐习惯将现实和术关联在一起,尝试用数的方法解决题目。这样就能够提高同学们运用数学的认识。

(四)有益于激发同学们的学习兴致

教师要认识学生,有些孩子对数学没有兴致。原因可能是数学学习很大程度上是枯燥无味的,小学生静不下来认真面对乏味的数字,其内心不知道为什么要学习数学,找不到学习数学的乐趣。此外便是老师的因素,有很多老师为了绩效,让学生一味地做题,占用学生的课余时间以至于学生不仅减少了休息时间还让学生更加不喜欢数学。另外也

楚雄师范学院毕业论文(设计)

有家长的因素,过度的寻求成绩让学生减少了对知识懂得渴望。学生通过体验参与建立数学模型的过程,体会到模型与生活是相关的,学习数学就能够用数学去表达生活的问题。就是将数学蕴涵于生活中再让学生体会建立模型并应用模型质疑过程,从而让学生体会到学习数学的乐趣,自然的学生就喜欢学数学。

三、小学教材中包含的模型思想

(一)数与代数中蕴含的模型思想

1、方程模型

小学数学中的方程模型主要有axb,axbc,baxc等。

2、关系模型

关系模型就是表示某些数量关系的模型。在小学阶段的主要数量关系有:每份数份数总数,速度时间路程,单价数量总价,总数总份数平均数,正比例关系,反比例关系等等。

3、植树问题模型

植树问题也就是反映总路线长,间距长与棵树这三个数量之间的关系的问题。这三个数量关系之间一般有下列关系:

点与间隔一一对应,长度÷间隔=棵树 一端栽,长度÷间隔=棵树 两端都栽,长度÷间隔+1=棵树 两端都不栽,长度÷间隔-1=棵树

4、优化模型

小学教材中通过打电话和找次品的实际问题渗入了优化的模型。

(二)图形与几何中蕴含的模型思想

1、平面图形模型

在小学阶段涉及到的平面图形的面积S长方形ab,S正方形a2,S圆r2等等。

2、空间图形模型

指的是常见立体图形的表面积。主要包括S正方体aa6,V正方体aaa,V长方体abh等。

(三)概率与统计中蕴含的模型思想

统计与概率在小学阶段涉及的内容比较少,但也蕴含了一些模型思想。在概率教学中涉及到了有关(0-1)分布的模型思想(抛硬币)。在统计教学中主要是借助图来整理、认识现象。

四、小学数学课堂中模型思想的渗入策略

让学生可以从现实生活中找出问题,然后把问题用数学的方式表现出来,并求出解,然后再回到实际中进行验算,这便是用模型解决问题的一般步骤。在教学中培养学生模型的思想就要尽量让孩子从自身熟悉的生活情景中抽象出模型,然后再应用到新的问题

楚雄师范学院毕业论文(设计)

中。简述老师在课堂过程中渗入模型思想的策略从下列的若干方面:(一)关注生活,重视情境创设

在教学过程中老师围绕课本为同学们供给细致的、与他们实际相关的场景。再让他们用已有的知识提炼出问题。老师创立的情景将直接影响孩子能不能接受知识,好的情景更有助于学生快速全面的理解知识点,不好的情景不仅让孩子反感还会影响老师的课堂。是以,老师就需要施展自己的本领去创立适合的、孩子喜欢的情景来帮助学生深入地认识和理解知识,然后建立模型。

例:在进行植树问题的教学时,可以通过五个手指头与手指之间的间隔,时钟打点报时的钟声和停顿;两头都种树的树数与间隔数,找出它们之间的共同点,也就是找出这类事物中的数量关系:树数-1=间隔数(两头都种)这就是从实际生活到数学模型的一个抽象过程,以这样具体的生活情境中为基础,学生就可以运用这一模型进一步解决更难、更复杂的题目。

例:教学图形时,要渗入有关几何的模型意识。不仅要让学生知道结果,重要的是各种关系之间、图形的得到和抽象过程。就几何图形而言,正是现实生活中的直线、三角形、圆形等几何图形才构成了初等几何的的数学模型,如果少了与实际建立相关的经过,初等几何就只单单是思维推导而没有了与实际的关联。在几何图形的应用教学中,要尽量使用具有直观、形象作用的教具以帮助低年龄的学生很快接受一些抽象性的数学概念。

(二)注重参与,提出假设

在认清了变量关系以及各元素之间的关系之后,为了更好地抓住问题的实质。可以依据自身学过的知识和问题的背景,对题目作一定的的化简,并且提出一些假设。假设和简化要适当,程度不同就会导致多个模型的产生,就会有回答的差异。在假设不合理或是与实际情况不吻合时,就要对假设作进一步的改进和思考。

例:学生在第一次接触异分母的分数加法时,通常会按照学过的加法法则提出如下的假定:将分子和分母分别相加。经过之后老师的指导和同学自己的参与的练习,同学们会发现上面的假设计算是错误的。会发现正确的做法应该是运用最小公倍数的知识进行计算。

例:在进行经典模型(如鸡兔同笼)的教学中,可以先设全是鸡(或是兔),再按多出来的脚数分配。

例:在教学长方形的面积计算公式时,借助方格纸让学生数一数。假设出长方形的长和宽与它的面积有这样的关系:面积长宽。假设过程主要是通过同学们的已有经验和常识。小学数学的图形与几何知识中,各种图形的性质、面积、体积的计算公式的推出,都可以采用猜想-验证的方式,让学生自己发现。

(三)引导建立模型并求解

楚雄师范学院毕业论文(设计)

按照数学模型的广义和狭义的定义,数学模型可以是从生活中产生的问题,也可以是教材中的基本概念、基础知识。小学数学的知识内容相对比较简单,与实际生活密切相连,数学中的概念、公式等数学模型均有实际模型与之相对应。在创立了模型之后就要经过计算回答题目。

例:能否把1、1、2、2、3、3、…、1986、1986,这些数字排成一行,使得两个1之间夹着1个数,两个2之间夹着2个数,…,两个1986之间夹着1986个数。

这个题用的是整数的奇偶性模型。教师可以这样做,同学们自己动手做一做:

1、排一排1、2、3这三个数。3、1、2、1、3、2

2、排一排1、2、3、4这四个数字。2、3、4、2、1、3、1、4

3、排一排1、2、3、4、5这五个数字。……

经过自身的体验就会发现其中的规律,创立奇偶数的模型。进行求解。

(四)注重过程,验证模型

在创立了模型以后,就需要将解得的数与现实情况作对照,用这样的方法来说明模型是否正确。模型被检验后有两种情况:第一,求解的结果与现实现象一样。这个时候说明创立的模型是对的,在以后解类似的问题都可以用这样的模型。第二,模型的结果不符合实际情况。也即是解得的数与现实情况不切合,就需要再次创立模型。也就是再进行一次建立模型与验证模型的过程。

例:在学生第一次接触植树问题时,经常会想到这样的模型:长度÷间隔=棵数。但当学生将解的结果返回到问题中时,就会知道这样的解不符合现实情况。这时就要进行再次建立模型的过程,结合具体情境分析,再使用线段等工具进行直观教学,找到的正确数学模型是:一端栽,长度÷间隔=棵树;两端都栽,长度÷间隔+1=棵树。(五)学以致用,应用模型

应用模型有两方面的作用。第一,强化和巩固学生已学的数学知识。就是将已经创立的模型应用于现实中。第二,增强同学们的实践能力和迁移思维。例:当学生学习了有余数的除法后,可以讨论这样的关系式:

被除数除数=商„„余数

引导学生深入挖掘它所能表达出来的更多实际意义,从而使学生认识到它也是一大类实际问题的数学模型。

1、有31块糖,平均分给7个人。每人分几块,还剩几块?

算式:3174(块)„„3(块),每人分4块还剩3块。

2、有31块糖,每7块装成一袋。可装多少袋,还剩几块?

楚雄师范学院毕业论文(设计)

算式:3174(袋)„„3(块),可以装4袋还剩3块。

3、一个星期有7天,十月份共有31天。和几个星期零几天?

对于这样的问题,可以带领学生依题意一个一个星期地数一数,并逐一写出来:1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27、28、29、30、31、算式:3174(个星期)„„3(天),十月份含有4个星期零3天。

4、已知2007年5月9日是星期三,问6月9日是星期几?

第一步,先算出从5月9日到6月9日共有32天; 第二步,每7天做一节,看32天共有几节余几天;

算式:3274(节)„„4(天),可知最后一天(6月9日)与第一节中的第4天相同,是星期六。

5、所有正整数如下排列,问300这个数字位于哪个字母下面(美国小学数学奥林匹克1989年)

A B C D E F C 1 2 3 4 7 6 5 8 9 10 11 14 13 12 15 16„„

仔细观察后可以发现循环规律,因此就会把7个数字为一节,并列出算式:300742(节)(个数)6,从而得知,300与6一样都在D的下面。

这样就把有余数除法作为一种循环现象所表现出的周期规律(模型)进一步做介绍,使学生对这样的算式有进一步的理解和认识。结语

新课标中新涉及的重点观念其一就是模型思想。在学习数学的过程中,学生容易接受与现实生活接近、与自己所认识的物体和现象相似的数学,这就要求教师在教学的过程中要渗透模型思想。模型思想的本质就是让学生能够把现实和术做一定的联系,能够用数的方式表示和解答现实的题目。也就是要在学生头脑中形成数学与外部世界不是分离的而是紧密联系在一起的认识,而要达到这样的认识就必须依靠数学模型这个桥梁。为了达到这样的目的,老师在课堂中应该渗透模型思想。

楚雄师范学院毕业论文(设计)

注释:

[1]教育部.义务教育数学课程标准(2011年版)[S].北京:北京师范大学出版社,2012:5.参考文献:

[1]许卫兵.磨模魔—小学数学教学中渗透模型思想的思考[J].课程教材教法,2012,(1).[2]陈立华.建模思想在小学数学教学中的应用[J].吉林教育,2012(11).[3]王树华.浅析小学数学教学中培养学生模型思想的重要性[J].教育技术导刊,2014.[4]刘宏波.小学数学教学中模型思想培养策略探讨[J].信息教育技术,2013.[5]刘勋达.小学数学模型思想及培养策略研究[D].华中师范大学,2013.[6]周燕.小学数学教学中数学模型思想的融入[D].上海师范大学,2013.[7]王吉鹏,王鑫.浅谈建立模型思想的教学策略[J].山东教育,2012,(13).[8]费岭峰.数学模型思想及其数学策略探究[J].小学数学研究,2013(2).[9]杨承军.义务教育阶段渗透数学模型思想的意义与策略探究[J].教育评价,2014(4).

第五篇:如何在小学数学教学中渗透模型思想

如何在小学数学教学中渗透模型思想

在数学教学中引导学生感悟建模过程,发展“模型思想”,可以归结到三个字:“磨”“模”“魔”。

一、“磨”

所谓“磨”,即“琢磨”。也就是教师首先要反复琢磨每一具体的教学内容中隐藏着怎样的“模”?如何来建“模”?在多大的程度上来建“模”?所见的“模”和建模的过程对于儿童的数学学习具有怎样的影响?······。眼界决定境界。一个老师是否具有“模型”眼光和“模型”意识,往往会决定着他的教学深刻性和数学课堂的品质。

二、“模”

所谓“模”,即“建模”。也就是在教学中要帮助学生不断经历将现实问题抽象成数学模型并进行解释和运用。对小学数学而言,“建模”的过程,实际上就是“数学化”的过程,是学生在数学学习中获得某种带有“模型”意义的教学结构的过程。

三、“魔”

所谓“魔”,即“着魔”,也就是学生对“模型”在数学学习中的运用有着深切的体验和感悟,并对之产生好奇,从而在数学学习中能主动地构想模型、建立模型、运用模型。儿童教学数学的终极目标,应该是让学生都懂数学、爱数学,对数学怀有敬畏之心和热爱之情。要实现这样的目标,数学教学就不能只停留在知识和方法层面,而是要深入到数学的“腹地”,用数学自身的魅力来吸引学生。

总的说来,在数学课堂上,我们教的是数学,面对的是儿童。“磨”侧重于教师对数学本身的理解;“魔”则是要坚持儿童立场,读懂儿童,引领儿童,发展儿童;“模”指向教学过程,是在数学和儿童之间真正搭起一座有意义的数学学习之桥。三者有机统一,互动交融,缔造出小学数学建模教学的至高境界。

下载小学数学如何利用模型思想开展数学教学word格式文档
下载小学数学如何利用模型思想开展数学教学.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    小学数学教学中渗透模型思想的案例

    1 数学在本质上就是在不断的抽象、概括、模式化的过程中发展和丰富起来的。数学学习只有深入到“模型”“建模”的意义上,才是一种真正的数学学习。这种“深入”,就小学数学教......

    小学数学教学中渗透模型思想的思考

    小学数学教学中渗透模型思想的思考 摘 要:数学与生活的方方面面存在着密切的关系,这就需要提升学生的数学应用能力,而通过模型思想就能将数学知识和实际生活联系起来,学生的数学......

    小学数学教学中如何培养学生的模型思想

    小学数学教学中如何培养学生的模型思想 数学课程标准指出模型思想的建立是学生体会和理解数学与外部世界联系的基本途径。建立和求解模型的过程包括从现实生活或具体情景中......

    利用数学绘本 开展数学教学

    利用数学绘本 开展数学教学 数学离不开生活,生活中处处有数学。《幼儿园教育指导纲要》明确指出:“幼儿园教育应尊重幼儿身心发展的规律和学习特点,充分关注幼儿的经验,引导幼儿......

    利用多媒体优化小学数学教学

    利用多媒体优化小学数学教学 【摘 要】在小学数学课堂教学中,利用媒体,可以把抽象的概念、枯燥的计算、烦琐的应用题、抽象的几何知识等展示出来,以弥补传统手段的不足,从而激发......

    利用多媒体优化小学数学教学

    利用多媒体打造数学高效课堂 随着科学技术的飞速发展和社会的不断进步,现代化教学手段进入课堂,在小学数学课堂教学中,利用直观形象、色彩鲜明、图文并茂、动静皆宜、生动逼真......

    利用网络技术优化小学数学教学

    利用网络技术优化小学数学教学 射阳县射阳港学校 朱俊 摘要:教师将网络技术整合到教学中来,在教学方法和手段的运用上做到推陈出新,为学生创设更为良好的自主学习环境:利用网络......

    小学数学教学中渗透模型思想的思考(共5篇)

    小学数学教学中渗透模型思想的思考 庄河市向阳小学 姜肖 摘要:《义务教育数学课程标准》(2011年版)明确提出,模型思想的建立是学生体会和理解数学与外部世界联系的基本途径。建......