第一篇:教学中注重培养学生的数学思想和数学方法
教学中注重培养学生的数学思想和数学方法
近年来数学思想方法在中考中的作用日益明显。学生如果不掌握数学思想方法,单靠扎实的基础知识和熟练的基本技能,就无法通过高层次的数学思想联结成一个“活的统一体”,也就缺少了数学素质,缺乏应对那些复杂数学问题的能力,更谈不上学会创造性题解。在数学教学中培养学生的数学思想方法是很重要的。具体做法如下: 1认真钻研教材,明晰数学思想方法
2搞好“单元小结”和“专题讲座”,渗透数学思想方法
第二篇:在初中数学教学中渗透数学思想和数学方法
一、了解《大纲》要求,把握教学方法
所谓数学思想,就是对数学知识和方法的本质认识,是对数学规律的理性认识。所谓数学方法,就是解决数学问题的根本程序,是数学思想的具体反映。数学思想是数学的灵魂,数学方法是数学的行为。运用数学方法解决问题的过程就是感性认识不断积累的过程,当这种量的积累达到一定程序时就产生了质的飞
跃,从而上升为数学思想。若把数学知识看作一幅构思巧妙的蓝图而建筑起来的一座宏伟大厦,那么数学方法相当于建筑施工的手段,而这张蓝图就相当于数学思想。
1、明确基本要求,渗透“层次”教学。《数学大纲》对初中数学中渗透的数学思想、方法划分为三个层次,即“了解”、“理解”和“会应用”。在教学中,要求学生“了解”数学思想有:数形结合的思想、分类的思想、化归的思想、类比的思想和函数的思想等。这里需要说明的是,有些数学思想在教学大纲中并没有明确提出来,比如:化归思想是渗透在学习新知识和运用新知识解决问题的过程中的,方程(组)的解法中,就贯穿了由“一般化”向“特殊化”转化的思想方法。
教师在整个教学过程中,不仅应该使学生能够领悟到这些数学思想的应用,而且要激发学生学习数学思想的好奇心和求知欲,通过独立思考,不断追求新知,发现、提出、分析并创造性地解决问题。在《教学大纲》中要求“了解”的方法有:分类法、类经法、反证法等。要求“理解”的或“会应用”的方法有:待定系数法、消元法、降次法、配方法、换元法、图象法等。在教学中,要认真把握好“了解”、“理解”、“会应用”这三个层次。不能随意将“了解”的层次提高到“理解”的层次,把“理解”的层次提高到“会应用”的层次,不然的话,学生初次接触就会感到数学思想、方法抽象难懂,高深莫测,从而导致他们推动信心。如初中几何第三册中明确提出“反证法”的教学思想,且揭示了运用“反证法”的一般步骤,但《教学大纲》只是把“反证法”定位在“了解”的层次上,我们在教学中,应牢牢地把握住这个“度”,千万不能随意拔高、加深。否则,教学效果将是得不偿失。
2、从“方法”了解“思想”,用“思想”指导“方法”。关于初中数学中的数学思想和方法内涵与外延,目前尚无公认的定义。其实,在初中数学中,许多数学思想和方法是一致的,两者之间很难分割。它们既相辅相成,又相互蕴含。只是方法较具体,是实施有关思想的技术手段,而思想是属于数学观念一类的东西,比较抽象。因此,在初中数学教学中,加强学生对数学方法的理解和应用,以达到对数学思想的了解,是使数学思想与方法得到交融的有效方法。比如化归思想,可以说是贯穿于整个初中阶段的数学,具体表现为从未知到已知的转化、一般到特殊的转化、局部与整体的转化,课本引入了许多数学方法,比如换元法,消元降次法、图象法、待定系数法、配方法等。在教学中,通过对具体数学方法的学习,使学生逐步领略内含于方法的数学思想;同时,数学思想的指导,又深化了数学方法的运用。这样处置,使“方法”与“思想”珠联璧合,将创新思维和创新精神寓于教学之中,教学才能卓有成效。
二、遵循认识规律,把握教学原则,实施创新教育
要达到《教学大纲》的基本要求,教学中应遵循以下几项原则:
1、渗透“方法”,了解“思想”。由于初中学生数学知识比较贫乏,抽象思想能力也较为薄弱,把数学思想、方法作为一门独立的课程还缺乏应有的基础。因而只能将数学知识作为载体,把数学思想和方法的教学渗透到数学知识的教学中。教师要把握好渗透的契机,重视数学概念、公式、定理、法则的提出过程,知识的形成、发展过程,解决问题和规律的概括过程,使学生在这些过程中展开思维,从而发展他们的科学精神和创新意识,形成获取、发展新知识,运用新知识解决问题。忽视或压缩这些过程,一味灌输知识的结论,就必然失去渗透数学思想、方法的一次次良机。如初中代数课本第一册《有理数》这一章,与原来部编教材相比,它少了一节——“有理数大小的比较”,而它的要求则贯穿在整章之中。在数轴教学之后,就引出了“在数轴上表示的两个数,右边的数总比左边的数大”,“正数都大于0,负数都小于0,正数大于一切负数”。而两个负数比大小的全过程单独地放在绝对值教学之后解决。教师在教学中应把握住这个逐级渗透的原则,既使这一章节的重点突出,难点分散;又向学生渗透了形数结合的思想,学生易于接受。
在渗透数学思想、方法的过程中,教师要精心设计、有机结合,要有意识地潜移默化地启发学生领悟蕴含于数学之中的种种数学思想方法,切忌生搬硬套,和盘托出,脱离实际等错误做法。比如,教学二次不等式解集时结合二次函数图象来理解和记忆,总结归纳出解集在“两根之间”、“两根之外”,利用形数结合方法,从而比较顺利地完成新旧知识的过渡。
2、训练“方法”,理解“思想”。数学思想的内容是相当丰富的
第三篇:数学教学中应注重学生观察力的培养(模版)
数学教学中应注重学生观察力的培养
常宁六中 刘志新
观察是指人对周围事物或现象进行全面、深入的察看,按照事物或现象的本来面目,研究和确定它们的性质和关系的一种心理现象。数学教学活动中的观察,就是有意识地对事物的数和形的特点进行感知活动,即对符号、字母、数字或文字所表示的数学关系式、命题、几何图形的结构特点进行的察看。
其理由是显而易 数学教学中必须重视学生观察能力的培养,见的:
首先,培养学生的观察能力是实现数学教学目标的需要。《义务教育全日制初级中学数学指导纲要》指出:初中数学教学,必须“使学生掌握数量关系、几何图形的基础知识和基本技能,具有一定的运算能力、处理数据的能力和初步的空间想象力、逻辑思维能力。心理学告诉我们:感知和知觉是人类认识事物过程的最初级形式,而观察则是知觉的高级状态,是一种有目的、有计划、有步骤、有组织的持久的知觉活动。观察又是一种主动的、对思维起积极作用的感知活动。它不单纯是事物在人的意识中的直接反映过程,还包括积极的思维活动。事实上,在观察过程中,观察者必须根据观察到的现象或特征随时进行分析、比较、抽象、概括,否则就无法通过观察来研究和确定事物或现象的性质和关系。可见,观察是认识的基础,是思想的触觉。离开了观察能力的培养,学生就不可能具备完整的数学能力与数学素养,数学教学的目标也就不可能直正实现。
其次,培养学生的观察能力是全面提高学生数学素质的需要。素质教育呼唤着学科教学以培养学生的创新精神和实践动手能力为宗旨,而创新能力必须以学生的综合素质为基础和前提。初中数学是一门学习简易的数学运算和图形关系知识及其初步应用技能的课程,以现代公民所必需的数学基础知识和技能作为基本的教学内容。数学教学要根据数学本身的特点,着重培养和发展学生的运算能力、处理数据的能力、逻辑思维能力、空间想象能力、数学信息的表达和交流能力。观察能力对于数学学习中各种能力的培养都具有直接或间接的促进作用。无论是图形的识别、数据之间关系的把握,还是基本规律的发现、综合分析能力的提高都离不开认真、仔细的观察。同时,数学活动中的观察并不狭义地指直观的考察,需要眼、脑并用,而且观察的对象也并非都具有直观的形象。因此,观察能力,无疑是学生数学综合能力的重要组成部分。
培养学生的观察能力是提高学生数学学习质量和课堂
再次,教学效率的需要。不可否认,现在的初中数学教学中存在着学生学习的质量不高、课堂教学效率低下的弊端。究其原因,当然各种各样,但学生的观察能力滞后,缺乏观察的习惯和基本的能力是其中的一个重要的原因。试想,一个没有观察习惯、毫无观察能力的学生,怎么能够发现图形之间、数据之间的内在关系?惟其如此,学生数学学习的低质量、数学教学的低效率也就不足为怪了。可见,培养并提高学生的观察能力,是改革数学课堂教学的重要切入点和突破口之一。教师在教学的各个环节中,应落实观察的手段,充分显示这一教学观,切实重视对学生观察能力的培养。
那么,数学教学中如何培养学生的观察力呢?笔者以为可着重从以下几个方面入手:
一、激发浓厚的观察兴趣
内在的动机比外驱力更活
学习是由内在的心理因素引起的,跃、更持久,更具有主动性,而兴趣则是内在学习动机的集中体现。激发学生对观察产生浓厚的兴趣,教师可采用许多方法:
以美引趣。学生对美具有一种近乎天然的向往。数学具有自身的魅力,数学美集中在数学的简单、统一、对称、奇异等方面。数学图形所展现的外在形式美、数学的抽象概括性所体现的简单统一的内在美、数量关系与空间形式所呈现的对称美、数学思想所表现的奇异美的原则,充分利用数学自身的特征和特有的美,引导学生通过观察发现并发掘数学中的美,就能激发学生对观察的浓厚兴趣,激励学生求知的强烈愿望。
以成导趣。成功的体验,能使学生产生愉悦的内心激动,使其增强学习的信心。在数学教学中,学生观察的对象是图形、数量关系、逻辑过程等。教师在教学过程中要尽可能鼓励学生主动观察,为学生创设获得成功的机会和条件。结合教材内容,有意识地向学生介绍数学通过观察发现数学定理、解决数学难题的事例,并设计一些富有趣味性的练习,让学生通过自己的观察、分析,总结概括出数学概念,发现公式、定理的证明,掌握那些特殊题型的解题技巧,品尝成功的喜悦,调动学生主动观察的积极性。
二、培养正确的观察方法
在初中学生在心理上缺乏观察事物所必须具备的基本素质,掌握知识经验的水平上缺乏观察的能力和数学教学的特点,因此,只有注重对学生观察方法的指导和培养,才能保证观察的正确性。
养成学生从整
首先,要引导学生在观察时把握合理的顺序,体到局部,又由局部到整体的观察习惯。发现不合理的观察方法,应通过示范分析及时指出,加以指正。再次,要引导学生了解常用的观察方法(如分类观察、从一般到特殊的观察、从特殊到一般的观察、对比观察等等),掌握观察的一般步骤:明确观察的目的和任务;制定周密的观察计划,做好有关知识的充分准备;在观察过程中做好观察记录;观察后对得到的材料进行整理、分析、归纳和总结。通过一定时间的训练,让学生能够较为熟练地自主观察。
三、养成良好的观察品质
观察不是消极的注视,不是被动的感知,而是一种“思维的知觉”,是智力发展的基础。因此,在培养学生观察能力时,必须十分重视观察的目的性、全面性、精确性、深刻性等良好观察品质的培养。
1、培养观察的目的性
总是有选择地以
初中学生对观察材料缺乏全部感知的能力,少数事物作为知觉的对象。教师在教学过程中,对观察对象叙述的语言要准确,提出观察任务时目标要明确,分析时要紧紧围绕确定的观察目的。
2、培养观察的全面性
要求通过观察反映事物的全貌以及事物的组
观察的全面性,成部分和相互联系;在较为复杂结构的图形中全面反映事物的某种属性;指出在某种特定的情况下感知对象所能发生的各种可能性。在观察中,由于学生缺乏对事物之间内在联系的全面理解,导致感知的对象不能反映各种可能的现象经常发生。在教学过程中,教师要帮助学生把握事物的基本属性,在初步观察的基础上,分析观察对象内在的规律性,鼓励学生依照一定的程序,深入观察。同时,教师要及时对观察的结果提出自己的观点,与学生相互讨论,对学生观察中出现的遗漏,要分析原因,加以补救,使观察结论全面、完整。
3、培养观察的精确性
还要精确把握事物的观察不能仅仅满足于了解事物的全貌,特征,对不同事物既能发现它们的相似点,又能辨别它们的细微差别。教师要充分利用各种教学手段,如列表比较、对比观察等,利用现代教学手段,通过形象直观、富有动感的图片、画面,启迪学生发现观察对象的特征,揭示观察对象的本质。
4、培养观察的深刻性
观察的目的之一是提高学生的思维能力,因此,观察必须始终与思维训练紧密结合,尤其要重视对观察对象隐含条件的发掘,通过观察能力的培养,逐步使学生的数学思考意识抽象概括化、思考对象形式化、思考过程逻辑化、思考结果应用化。
总之,数学教学必须十分重视学生观察能力的培养:要运用多种手段,激发学生的观察兴趣;通过训练,使学生掌握观察的基本方法,具有良好的观察品质,逐步养成主动观察、善于观察的习惯,使数学教学更好地适应素质教育的需要。
第四篇:数学教学中如何培养学生的建模思想
数学教学中如何培养学生的建模思想
数学建模思想是数学学习中重要的一块知识,如何引导学生学会建模是我们教师要深入探讨的一个重要问题,因此我们教师要把这块知识做为一个重点来抓,从而使学生在进行实际问题和数学知识双向建构过程中,体会到数学的价值,享受到学习数学的乐趣。这对于培养学生的应用意识和创新精神是一个很好的途径。数学建模是把所解决的实际问题,转化为数学问题,通过对数学问题的求解,使实际问题得以解决的一种数学方法。现在浅谈一下我在教学中是如何培养学生建模思想的:
一、首先让学生明确学习数学建模思想的必要性。
数学建模思想作为数学的一种基本方法,渗透在初中数学教材的各种知识板块当中,在方程、不等式、函数和三角函数等内容篇章中呈现更为突出,学生学习掌握这种思想是完成学习任务和继续深造学习必备的基本能力。此外,新课标强调,数学教育要重视学生应用数学知识解决实际问题能力的培养,而这种能力的核心就是掌握数学建模思想,但是实际情况是,普遍学生对应用数学知识解决实际问题都感到困难,他们的难中之难是如何将实际问题抽象成数学问题,因此,培养学生数学建模能力是提高学生分析解决实际问题能力的根本途径。同时,数学建模思想蕴涵着多种数学思维,是多种数学方法的综合。数学建模过程是思维训练过程,也是观察、抽象、归纳、作图、数学符号表达等多种能力训练和加强的过程。
二、其次向学生阐述数学建模思想的具体过程。
数学模型就是一种数学结构,它是使用数学符号、数学式及数学关系对现实原型作一种简化而本质的刻画。数学建模思想的具体过程可分为以下五个步骤:
1、分析问题。分析问题所涉及量的关系,弄清哪些是常量,哪些是变量,哪些是已知量,哪些是未知量。
2、假设化简。根据问题的特征和目的,对问题进行化简,并用精确的数学语言来描述。
3、建模。在假设的基础上,利用适当的数学工具,数学知识来刻画变量之间的数量关系,建立其相应的数学结构。
4、求解。在所得到的数学模型上,进行逻辑推理或数学演算,求出所需的解答。
5、解释。联系实际问题,对得到的解答进行深入讨论,作出评价和解释,返回到原来的实际问题中去,形成最后的判断。
三、最后在教学过程中有意识培养学生数学建模思想和能力。
学生数学建模思想和建模能力的形成,需要通过长期的系统的循序渐进地培养和训练,我在教学过程中着重从以下几方面有意识地进行培养:
1、加强基础知识和基本能力教学。
数学建模是多种数学方法能力的综合,在建模过程中,要求学生要具有观察、分析、抽象、作图、想象、数学符号表达等能力,数学模型建立后,还要运用相应的数学知识去推理、演算、求解。夯实双基是掌握建模思想的前提。
2、结合教材,渗透建模思想。
数学建模思想作为一种重要的数学思想方法,普遍渗透在初中数学教材的各个板块知识当中,其中方程、函数、不等式、三角函数等知识内容中较为常见,在教学过程中进行发掘,巧妙设计,让学生在学习活动中通过不断地经历、体会、感悟、内化、提升,最终形成思想方法。
3、加强案例教学和专题训练。
实际问题(情景问题)是数学建模思想能力培养教学的重要载体,我充分利用教材中的案例或另设问题,让学生去探索,使他们在分析思考、讨论、探寻解决策略、求解等解决问题各个环节当中,理解掌握建模思想的基本步骤,还及时组织学生进行反思,总结解题方法,积累经验,并及时给出类似问题让学生训练,使他们能够举一反三,触类旁通,能够娴熟地应用数学建模思想去解决问题。
总之,在数学知识和问题解决之间隔着一层不薄不厚的心智的膜,穿透它需要建模思想的智慧锋芒,数学建模思想使数学知识汇集成了实际问题解决的自觉意识和能力。
第五篇:小学数学教学中如何培养学生的模型思想
小学数学教学中如何培养学生的模型思想
数学课程标准指出模型思想的建立是学生体会和理解数学与外部世界联系的基本途径。建立和求解模型的过程包括从现实生活或具体情景中抽象出数学问题,用数学符号建立方程、不等式、函数等表示数学问题中的数量关系和变化规律,求出结果并讨论结果的意义。这些内容的学习有助于形成模型思想,提高学习兴趣和应用意识。如何培养学生的模型思想呢,下面仅从两方面浅谈自己的一点认识。
一、经历探索过程,发现解题规律。
比如,在教学路程、时间和速度的关系时,教师要创设情境,让学生在解决具体问题的过程中发现数量之间的关系,并且进行验证。
小轿车3时行驶了210千米,大客车7时行驶了420千米,谁跑的快呢?学生们用210÷3=70(千米),求出小轿车1时行的路程,再用420÷7=60(千米),求出大卡车1时行的路程。最后用70和60相比较,得出小轿车跑的快。有的学生也可能计算小轿车7小时行的路程是70×7=490(千米),而490千米>420千米,得出小轿车跑得快。或者用60×3=180(千米)求出大客车3小时行驶的路程,180千米<210千米,得出小轿车跑得快。还可能比一比420千米是210 千米的2倍,而7小时却大于3小时的2倍,得出小轿车跑得快。
然后,教师指出:1小时走的路程叫做速度。我们比较谁跑得快就是比较它们的速度。谁能说出路程、时间和速度的关系呢?于是学生们便得出“速度=路程÷时间,路程=时间×速度,时间=路程÷速度”三个计算方法,即公式。
二、建立思维模式,强化思维训练。
在学生发现了路程、时间和速度的关系后,就可以利用这三个计算公式来解决一些实际问题,使得学生把自己发现的数量关系作为一种数学思维方法作为解决问题的武器,用数学的眼光看问题和解决问题,在解决问题的过程中强化思维模式,并且强化建立模型思想的意识。再如分数应用的教学引导学生归纳整理出„„数学模型,总之,当学生对具体的生活问题经历了一定的探索过程以后,便会发现数量之间的关系,生活问题便转化为数学问题,学生就会用数学眼睛(数量关系)看问题,就会用数学方法(模型思想)解决问题。学生的数学素养便得到了提高。