第一篇:高中数学求递推数列的通项公式的九种方法
求递推数列的通项公式的九种方法
利用递推数列求通项公式,在理论上和实践中均有较高的价值.自从二十世纪八十年代以来,这一直是全国高考和高中数学联赛的热点之一.一、作差求和法
例1在数列{a
1n}中,a13,an1an
n(n1),求通项公式an.解:原递推式可化为:a111111
n1annn1则a2a112,a3a22
3a111111
4a334,……,anan1n1n逐项相加得:ana11n.故an4n
.二、作商求和法
例2设数列{a
22n}是首项为1的正项数列,且(n1)an1nanan1an0(n=1,2,3…),则它的通项公式是an=▁▁▁(2000年高考15题)
解:原递推式可化为:
[(n1)aan1n
n1nan](an1an)=0∵ an1an>0,a
n
1n则
a21a32a43an1aa,,,……,n
逐项相乘得:n1,即a1n=.12a23a34an1na1n
n
三、换元法
例3已知数列{a4n},其中a1
3,a1
3129,且当n≥3时,anan13
(an1an2),求通项公式an(1986年高考文科第八题改编).解:设bn1anan1,原递推式可化为:b1n3b,{b是一个等比数列,b134111
n2n}1a2a1939,公比为3.故bn1
b(1)n219(13)n2(13)n.故aa1311
1nn1(3)n.由逐差法可得:an22(3)n3.例4已知数列{an},其中a11,a22,且当n≥3时,an2an1an21,求通项公式an。解 由an2an1an21得:(anan1)(an1an2)1,令bn1anan1,则上式为bn1bn21,因此{bn}是一个等差数列,b1a2a11,公差为1.故bnn.。
由于b1b2bn1a2a1a3a2anan1an1
又bn(n1)
1b2bn1
2所以a1n1
2n(n1),即a1
n2
(n2n2)
四、积差相消法
例5(1993年全国数学联赛题一试第五题)设正数列a0,a1,an…,an,…满足
anan2an1an2=2an1(n2)且a0a11,求{an}的通项公式.解将递推式两边同除以aann1an2整理得:
2a
n1aa1 n1n
2设ban
a
1n=
a,则b1na=1,bn2bn11,故有 10
b22b11⑴b32b21⑵
…………
bn2bn11(n1)
由⑴2
n2
+ ⑵2
n
3+…+(n1)20得b222n1=2n
n121,即
ana=2n
1.n1
逐项相乘得:an=(21)2(221)2(2n1)2,考虑到a01,故 a
n
1(21)(21)
(n0).(21)222n2
(n1)
五、取倒数法
例6已知数列{aan
1n}中,其中a11,,且当n≥2时,an
2a,求通项公式an。
n11
解将aan1n
2a两边取倒数得:1n11
a12,这说明{1
}是一个等差数列,首项
nan1an是
a1,公差为2,所以11(n1)22n1,即a1n.1
an2n1
六、取对数法
例7若数列{aa
2n}中,1=3且an1an(n是正整数),则它的通项公式是an=▁▁▁(2002
年上海高考题).解由题意知an>0,将an1a2
2lgalgan
1n两边取对数得lgan1
n,即
lga2,所以数n
列{lgalga1n1
n}是以lga1=lg3为首项,公比为2的等比数列,lgan12nlg32,即
a2n1
n3.七、平方(开方)法
例8若数列{an}中,a1=2且an3a
2n1(n2),求它的通项公式是an.解将an
a22a22
2n1两边平方整理得ann13。数列{an}是以a1=4为首项,3为公
差的等差数列。a2
na21(n1)33n1。因为an>0,所以ann1。
八、待定系数法
待定系数法解题的关键是从策略上规范一个递推式可变成为何种等比数列,可以少走弯路.其变换的基本形式如下:
1、an1AanB(A、B为常数)型,可化为an1=A(an)的形式.例9若数列{an}中,a1=1,Sn是数列{an}的前n项之和,且SSn
n134S(n1),n
求数列{an}的通项公式是an.解 递推式SSnn1
34S可变形为1n
S3
14(1)
n1Sn设(1)式可化为
1S3(n1
S)(2)n
比较(1)式与(2)式的系数可得2,则有
1S23(1S2)。故数列{1
2}是
n1
nSn
以
11S23为首项,3为公比的等比数列。1
S2=33n13n。所以Snn3n
1。当n2,anSnS132123n
n1
n3n1232n83n
1
2。数列{a
123n(n1)n}的通项公式是an32n83n12
(n2)。
2、an
n1AanBC(A、B、C为常数,下同)型,可化为an1Cn1=A(anCn)的形式.例10在数列{an}中,a11,an12an43n1,求通项公式an。解:原递推式可化为:
an13n2(an3n1)①
比较系数得=-4,①式即是:an143n2(an43n1).则数列{a1n43n}是一个等比数列,其首项a143115,公比是2.∴an43n152n1 即a1n43n52n1.3、an2Aan1Ban型,可化为an2an1(A)(an1an)的形式。例11在数列{an}中,a11,a22,当nN,an25an16an ①求通项公式
an.解:①式可化为:
an2an1(5)(an1an)
比较系数得=-3或=-2,不妨取=-2.①式可化为:
an22an13(an12an)
则{an12an}是一个等比数列,首项a22a1=2-2(-1)=4,公比为3.∴an12a1n43n.利用上题结果有:
an43n152n1.4、an1AanBnC型,可化为an11n2A[an1(n1)2]的形式。例12 在数列{a
3n}中,a1
2,2anan1=6n3① 求通项公式an.解①式可化为:
2(an1n2)an11(n1)2②比较系数可
得:
=-6,29,②式为2bnbn1
1{bn} 是一个等比数列,首项b1a16n9
∴bn
91,公比为.22
91n1
()22
n
即 an6n99()故an9()6n9.九、猜想法
运用猜想法解题的一般步骤是:首先利用所给的递推式求出a1,a2,a3,……,然后猜想出满足递推式的一个通项公式an,最后用数学归纳法证明猜想是正确的。
例13 在各项均为正数的数列{an}中,Sn为数列{an}的前n项和,Sn=通项公式。
n
(an+),求其2an
第二篇:高中数学数列求通项公式习题
补课习题
(四)的一个通项公式是(),A、anB、anC、anD、an2.已知等差数列an的通项公式为an32n , 则它的公差为()
A、2B、3C、2D、
33.在等比数列{an}中, a116,a48,则a7()
A、4B、4C、2D、
24.若等比数列an的前项和为Sn,且S1010,S2030,则S30
5.已知数列an通项公式ann210n3,则该数列的最小的一个数是
6.在数列{an}中,a1于.
7.已知{an}是等差数列,其中a131,公差d8。
(1)求数列{an}的通项公式;
(2)数列{an}从哪一项开始小于0?
(3)求数列{an}前n项和的最大值,并求出对应n的值. 11nan且an1,则数列nN的前99项和等2n1anan
8.已知数列an的前项和为Snn23n1,(1)求a1、a2、a3的值;
(2)求通项公式an。
9.等差数列an中,前三项分别为x,2x,5x4,前n项和为Sn,且Sk2550。
(1)、求x和k的值;
(2)、求Tn=1111;S1S2S3Sn
(3)、证明: Tn
1考点:
1.观察法求数列通项公式;2.等差数列通项公式;3.等比公式性质;4.等比公式前n项和公式应用;5.数列与函数结合;6.求通项公式;7.基本的等差数列求通项公式及其应用;8.求通项公式;9.等差数列性质应用及求和与简单的应用
答案:
1.B;2.C;3.A;4.70;5.-22;6.5049.7.(1)an398n(2)n=5(3)sn76、n=4;
8.(1)a1
5、a2
6、a38(2)an5;n1)2n2;n2)
9.(1)由4xx5x4得x2,an2n,.Snn(n1),k(k1)2550得k50
(2).Snn(n1),Sn111 n(n1)nn1
T1111111111n12334n1nnn1n1n1
11且0(3)Tn1n1n1
Tn1
第三篇:关于递推数列通项公式的测试题
关于递推数列通项公式的测试题
2Sn2例2.数列{an}中a11,an(n≥2),求数列{an}的通项an。2Sn1
例3.⑴ 数列{an}满足a11且an1an3n,求数列{an}的通项公式an;
⑵ 数列{an}满足a11且an1an(3n1),求数列{an}的通项公式an。
例4.数列{an}中a11,an12an3n,求数列{an}的通项公式an。
例5.数列{an}中a11,Sn
例6.数列{an}中a11,a2(n1)an,求数列{an}的通项an。2552,an2an1an,求数列{an}的通项公式an。333
第四篇:求数列的通项公式练习题
求数列的通项公式练习题
一、累加法
例 已知数列{an}满足an1an2n1,,求数列{an}的通项公式。
练习:已知数列{an}满足an1an23n1,a13,求数列{an}的通项公式。
二、累乘法
例 已知数列{an}满足a11,an1
练习:已知数列{an}满足a11,ana12a23a3通项公式。
三、公式法
例已知a11,an1
n1an,求数列{an}的通项公式。n2求{an}的(n1)an1(n2),1sn,求an 3
第五篇:几类递推数列的通项公式的求解策略
http://jsbpzx.net.cn/
蒲中资源网
几类递推数列的通项公式的求解策略
已知递推数列求通项公式,是数列中一类非常重要的题型,也是高考的热点之一.数列的递推公式千变万化,由递推数列求通项公式的方法灵活多样,下面谈谈它们的求解策略.
一、an1anf(n)方法:利用叠加法
a2a1f(1),a3a2f(2),,anan1f(n1),ana1f(k).
k1n1例1.数列{an}满足a11,anan1解:由 an1an1(n2),求数列{an}的通项公式. 2nn1 得 2(n1)(n1)n1n111111112=== ana11()2nnk1k1kk1(k1)(k1)例2.数列{an}满足nan1(n1)an1,且a11,求数列{an}的通项公式.
分析:注意到左右两边系数与下标乘积均为n(n1),将原式两边同时除以n(n1),aaa11变形为n1n.令bnn,有bn1bn,即化为类型1,以
nn(n1)n1nn(n1)下略.
n
二、n1
方法:利用叠代法 aaf(n)a2a1f(1),a3a2f(2),,anan1f(n1),ana1f(k).
k1n1例3.数列{an}中a12,且an(1 解:因为an1[11)an1,求数列{an}的通项. n21]an,所以 2(n1)n1n1n1kk2n11ana1f(k)=2[12[]== ]2k1k1k1k1k1n(k1)
三、an1panq,其中p,q为常数,且p1,q0
当出现an1panq(nN)型时可利用叠代法求通项公式,即由an1panq得anpan1qp(pan2q)qpn1a1(pn2pn3p2p1)q=q(pn11)a1p(p1)或者利用待定系数法,构造一个公比为p的等比数列,令p1qq),q即}是一个公比为p的则(p1,从而{anan1p(an),p1p1321,可将问题转化为等比数列求解.待等比数列.如下题可用待定系数法得112n1http://jsbpzx.net.cn/
蒲中资源网
http://jsbpzx.net.cn/
蒲中资源网
定系数法有时比叠代法来地简便.
例4.设数列{an}的首项a1式.
3an11,an,n2,3,4,,求数列{an}通项公223an1113an1,n2,3,4,,∴an1k,又∵an22221111k1,∴an1(an11),又a1,∴{an1}是首项为,公比为的等22221n11n比数列,即an1(a11)(),即an()1.
2四、an1panqan1(n2),p,q为常数 解:令ank方法:可用下面的定理求解:令,为相应的二次方程x2pxq0的两根(此方程又称为特征方程),则当时,anAnBn;当时,an(ABn)n1,其中A,B分别由初始条件a1,a2所得的方程组确定.
ABa1,22ABa2和ABa1, 唯一
(A2B)a2an1an2bn(1)例5.数列{an},{bn}满足:,且a12,b14,求an,bn.
b6a6b(2)nnn111解:由(2)得anbn1bn,an1bn2bn1,代入到(1)式中,有
6628bn25bn16bn,由特征方程可得bn122n3n,代入到(2)式中,可得
314an82n3n.
3说明:像这样由两个数列{an},{bn}构成的混合数列组求通项问题,一般是先消去an
(或bn),得到bn2pbn1qbn1(或an2pan1qan1),然后再由特征方程方法求解.
五、an1panf(n)型,这里p为常数,且p1
例6.在数列{an}中,a12, an1ann1(2)2n(nN),其中
0,求数列{an}通项公式.
解:由a12, an1ann1(2)2n(nN),0,可得an1n1故aan22n2n()n1n()1{()}为等差数列,其公差为1,首项为0.,所以nnann2()nn1,所以数列{an}的通项公式为an(n1)n2n.
评析:对an1panf(n)的形式,可两边同时除以p令
n1,得
an1anf(n),n1nn1pppanf(n)bb有,从而可以转化为累加法求解. b,n1nnpn1pn
六、an1man(m0,kQ,k0,k1)
k一般地,若正项数列{an}中,a1a,an1man(m0,kQ,k0,k1),则有 khttp://jsbpzx.net.cn/
蒲中资源网
http://jsbpzx.net.cn/
蒲中资源网
lgan1klganlgm,令lgan1Ak(lganA)(A为常数),则有A1lgm. k1数列{lgan111lgm}为等比数列,于是lganlgm(lgalgm)kn1,k1k1k1n1从而可得anakmkn11k1.
例7.已知各项都是正数的数列{an}满足a131,an1an(4an),求数列{an}22的通项公式.
分析:数列{an}是一个二次递推数列,虽然不是基本冪型,但由它可以构造一个新的冪型数列{bn},通过求{bn}的通项公式而达到求数列{an}通项公式的目的.
解:由已知得an1an0,0an1取对数得lgbn12lgbnlg2,即lgbn1lg22(lgbnlg2). {lgbnlg2}是首项为2lg2,公比为2的等比数列,1112(an2)22,令2anbn,则有b1,bn1bn. 2222,又0a12,0an2,从而bn0.
lgbnlg22lg2,bn2
n12n,an2212n.
http://jsbpzx.net.cn/
蒲中资源网