【弹无虚发】2013高考数学秒杀必备:数列和不等式证明的交叉论文

时间:2019-05-13 09:01:53下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《【弹无虚发】2013高考数学秒杀必备:数列和不等式证明的交叉论文》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《【弹无虚发】2013高考数学秒杀必备:数列和不等式证明的交叉论文》。

第一篇:【弹无虚发】2013高考数学秒杀必备:数列和不等式证明的交叉论文

高考中数列和不等式证明的交叉

数列和不等式是高考的两大热点也是难点,数列是高中数学中一个重要的内容,在高等数学也有很重要的地位,不等式是高中数学培养学生思维能力的一个突出的内容,它可以体现数学思维中的很多方法,当两者结合在一起的时候,问题会变得非常的灵活。所以在复习时,我们在分别复习好两类知识的同时,一定要注意它们的相互渗透和交叉,培养灵活的思维能力。

数列和证明不等式的交叉,是这两大块知识的主要交叉点,它在数列的特殊情景下,巧妙的融合了不等式的证明,它所涉及的问题往往是灵活的应用了数列和不等式的知识,把这两者完美的结合在了一起。

例1设an和bn分别是等差数列和等比数列,且a1b10,a2b20,若a1a2,试比较an和bn的大小。

分析:这两个通项大小的比较,它们的未知量比较多,比容易直接完成。因通过它们的项数n把他们组合在一起。设an的公差为d,bn的公比为q。显然q0,因为a2b20,所以有,a1da1q,即a1q1d。

anbna1n1da1qn1a1a1n1q1a1qn1。又因为a1a2,所以

1qn1a2n1= q1。若q1时,anbna11q1

=a11q1qq2qn2n1。因为1qq2qn1n1,1q0,所以有:anbn。若0q1时,1qq2qn1n1,1q0,所以也有: 

anbn。综上所述,当nN,且n2时,anbn。在证明过程,对等比数列求和公式的逆用,是本题证明的一个转折点,它避免了一些不必要的分类讨论,时问题得以简化。

例2已知递增的等比数列an前三项之积为512,且这三项分别减去1,3,9后成等差数列,求证:123n1。123n

分析:要想证明这个不等式,首先要求出左边的和式。根据题意,an是等比数列,所以左边的和式可以利用错位相减法来求和。先确定这个等比数列。由

23a1a3a2512,所以a28。再设等比数列an的公比为q。可得,a1a2a3a

2则根据条件可得:818q9283,解得,q2或q1(舍去)。所以

a14q2Sn,因此,an2n

1。令

123n=123n----------①,则123n2223242n1

1S123n--------------②,n2222由①-②得,1S1111n,即,n2223242n12n2

n=11n1 Sn11112222222例3在某两个正数x,y之间,若插入一个数a,使x,a,y成等差数列;若另插入两个数b,c,使x,b,c,y成等比数列,求证:a12b1c1 分析:不等式左边有字母a,右边有不同字母b、c,要比较两边的大小,必须寻

xy

c3xy2。,b3x2y,33mnn0,bm2n,cmn2,为计算方便,我们再令m0,则a,c三者之间的联系,b、找a、利用数列的关系可得:a

m3n32

那么,a1b1c11m2n1mn21=

m3n3

=m2n2mn0,得a12b1c1。

例4设an0,且ananan1,求证:对一切自然数n,都有an。





an1an,由已知an0,所以有,分析:因为ananan1,所以an1anan

an1an0,即0an1。又因为an1an1an,则有,1

111,所以1111。

n1nnnnn1nn

在上式中取n1,2,,n1,得n1个不等式,把它们相加得,11n1,n1

于是,1n11n11n,因此,an1。在此题的证明过程中,我们巧

n1

妙的利用了数列求和的累加法,时问题的解决有一种全新的感觉。本题由于和自

然数有关,也可以利用数学归纳法来证明。

例5 设a2,给定数列xn,其中x1a,且满足xn1

2xn

。

n

求证:xn2且

xn1

1。n

分析:这是1984年的高考题,当时难倒了绝大部分的学生,大家觉得无从着手。它给定的是数列,求证的是不等式,而且都是和通项有关,所以我们可以考虑求出数列的通项再来观察。因为

xnxn1xn1

22n1xn4xn4xn2n1

n1

xn

x

又因为1,1

22n

xnax1a,所以有,n,则xn

2a21

。而a2,则有,a2所以010a21,



因此,xn2且

2n1

a2那么011,



2n1

a21

2n

1,xn1

1。n

1。例6求证:1352n1

分析:这是一道不等式的证明题,若我们总是在不等式的圈子里转悠,问题不能圆满的解决。跳出这个圈子,我们不难发现这是一个自然数有关的命题,那么,解决它的方法不外乎两种,一是利用数学归纳法;二是构造数列。我们来构造一

2n223n1an11352n1个数列an。令an= 3n1,则22n13n4n

12n28n20n41。=所以,an1an,从而有,anan1an2a11。12n328n219n4

因此原不等式得证。

例7设an是正项的等比数列,Sn是其前n项的和.证明:

lgSnlgSn2

lgSn1。

分析:这是在数列情景下的不等式证明,所以要交叉使用数列的性质和不等式的证明技巧。要证不等式等价于SnSn2Sn1,因为an0,所以Sn1Sn0。

由等比数列的定义可得:

aaa2a3

n1n2。12nn1

再用等比定理得:

Sn2Sn1an2a2a3an1Sn1a1Sn1,因此

n1nn112nnn

有:SnSn2Sn1。

2例8 数列an和bn都是正项数列,对任意的自然数都有an,bn,an1成等差数

22列,bn,an1,bn1成等比数列。

(1)问:bn是不是等差数列?为什么?

222(2)求证:对任意的自然数p和q(pq),bp≥b2bqpqp。

分析:对于第(1)题,我们不难证明它一定是等差数列。问题(2)的证明方法很多,我们可以直接利用等差数列的通项公式,通过作差比较来完成。但是若我们仔细

222

分析题意,观察bp q,bpq,bp的特点,我们不难发现它们三者之间有等量关系:

22bpqbpq2bp,所以bpqbpq

bpqbpq2

2b2。此题充分体现了数列≥

p

和不等式知识的交叉运用。

例9数列an中,前n项之和为Snan2bn,其中a和b为常数,且a0,ab1,nN。

(1)求数列an的通项公式an;并证明an1an1。(2)若cnloganan1,试判断数列cn中任意两项的大小。

分析:此题的已知条件,前n项之和为Snan2bn 告诉我们,数列an是一个等差数列,要证明an1an1成立,只要证明该数列是一个递增的数列,且a11即可。(1)由Snan2bn可知,a1S1ab1,anSnSn12anab,所以an1an2a0,即数列an是一个单调递增的数列,那么

an1ana11。

(2)

(1)

知,=数

cn

各项都为正。则≤

cn1logan1an2

nann1

logan1an2logan1an

logan1an2logan1an1logan1an2an2



2aa1logn2n

= an1



=1logan1an1

1,所以cn1cn.2例10 已知数列an中,对一切自然数n,都有an0,1且anan 12an1an0。

求证:(1)an11an;

(2)若Sn表示数列an的前n项之和,则Sn2a1。

2分析:从题目的结构可以看出,条件anan12an1an0是解决问题的关键,2必须从中找出an1和an 的关系。(1)由已知anan12an1an0,可得

an

2an12

01a,又因为,所以有,a0,1n11,因此an2an1,即n2

1an1

an11an。

1a,即a1a,于是有,(2)由结论(1)可知,an1an112an2n n11n11

112

11Sna1a2ana1a1n1a1a121

2a1,即Sn2a1。

从上面的一系列问题中,我们可以看出,数列和不等式证明是紧密相连互相渗透的,在复习中我们一定要注意它们的联系,在知识的交叉点上思考分析,达到知识的融会贯通,培养分析问题和解决问题的能力。

第二篇:高中数学 高考中数列和不等式证明的交叉论文

高考中数列和不等式证明的交叉

数列和不等式是高考的两大热点也是难点,数列是高中数学中一个重要的内容,在高等数学也有很重要的地位,不等式是高中数学培养学生思维能力的一个突出的内容,它可以体现数学思维中的很多方法,当两者结合在一起的时候,问题会变得非常的灵活。所以在复习时,我们在分别复习好两类知识的同时,一定要注意它们的相互渗透和交叉,培养灵活的思维能力。

数列和证明不等式的交叉,是这两大块知识的主要交叉点,它在数列的特殊情景下,巧妙的融合了不等式的证明,它所涉及的问题往往是灵活的应用了数列和不等式的知识,把这两者完美的结合在了一起。

例1设an和bn分别是等差数列和等比数列,且a1b10,a2b20,若a1a2,试比较an和bn的大小。

分析:这两个通项大小的比较,它们的未知量比较多,比容易直接完成。因通过它们的项数n把他们组合在一起。设an的公差为d,bn的公比为q。显然q0,因为a2b20,所以有,a1da1q,即a1q1d。anbna1n1da1qn1a1a1n1q1a1qn1。又因为a1a2,所以

1qn1a2q1。若q1时,anbna11qn1= a11q

=a11q1qq2qn2n1。因为1qq2qn1n1,1q0,所以有:anbn。若0q1时,1qq2qn1n1,1q0,所以也有: anbn。综上所述,当nN,且n2时,anbn。在证明过程,对等比数列求和公式的逆用,是本题证明的一个转折点,它避免了一些不必要的分类讨论,时问题得以简化。

例2已知递增的等比数列an前三项之积为512,且这三项分别减去1,3,9后成等差数列,求证:123n1。a1a2a3an

分析:要想证明这个不等式,首先要求出左边的和式。根据题意,an是等比数列,2所以左边的和式可以利用错位相减法来求和。先确定这个等比数列。由a1a3a2可

得,a1a2a3a2512,所以a28。再设等比数列an的公比为q。则根据条件可

a14

得:818q9283,解得,q2或q1(舍去)。所以,因此,q2q2123n

an2n1。令Sn123n=234n1----------①,则

a1a2a3an222

21S123n--------------②,2n2324252n2由①-②得,1S1111n,即,2n2223242n12n2

1111n11n

1= Sn

222232n2n12n2n1

例3在某两个正数x,y之间,若插入一个数a,使x,a,y成等差数列;若另插入两个数b,c,使x,b,c,y成等比数列,求证:a12b1c1

分析:不等式左边有字母a,右边有不同字母b、c,要比较两边的大小,必须寻找

xy,bx2y,cxy2。a、b、c三者之间的联系,利用数列的关系可得:a2为计算方便,我们再令mx0,n

33

mn则a,bm2n,cmn2,y0,m3n32

1m2n1mn21= 那么,a1b1c1

2m3n3

=m2n2mn0,得a12b1c1。

2

例4设an0,且ananan1,求证:对一切自然数n,都有an。





n

22分析:因为ananan1,所以an1ananan1an,由已知an0,所以有,an1an0,即0an1。又因为an1an1an,111,所以1111。则有,1

an1an1anan1anan1an1an

在上式中取n1,2,,n1,得n1个不等式,把它们相加得,11n1,于

ana1

是,1n11n11n,因此,an1。在此题的证明过程中,我们巧妙的nana1

利用了数列求和的累加法,时问题的解决有一种全新的感觉。本题由于和自然数有关,也可以利用数学归纳法来证明。

例5 设a2,给定数列xn,其中x1a,且满足xn1

xn1

1。xn

2xn

。

2xn1求证:xn2且

分析:这是1984年的高考题,当时难倒了绝大部分的学生,大家觉得无从着手。它给定的是数列,求证的是不等式,而且都是和通项有关,所以我们可以考虑求出数列的通项再来观察。

xnxn1xn1x1因为2,又因为2xn12xn4xn4xn2x2x11n1

xn

xnax1a,所以有,xn2a2

n1

2n,则xn

2a21a

2n1

。而a2,则有,a20a21,所以01

aa因此,xn2且

xn1

1。xn

2n1

a21,那么01a

2n1

a21a

2n

1,1例6求证:1352n1。

2462n3n1

分析:这是一道不等式的证明题,若我们总是在不等式的圈子里转悠,问题不能圆满的解决。跳出这个圈子,我们不难发现这是一个自然数有关的命题,那么,解决它的方法不外乎两种,一是利用数学归纳法;二是构造数列。我们来构造一个数列

a2n23n1=

an。令an1352n1n1,则n1

2462n2n123n4an

12n28n20n41。所以,aa,从而有,aaaa1。=n1nnn1n2112n328n219n4

因此原不等式得证。

lgSnlgSn2

lgSn1。

分析:这是在数列情景下的不等式证明,所以要交叉使用数列的性质和不等式的证

例7设an是正项的等比数列,Sn是其前n项的和.证明:

明技巧。要证不等式等价于SnSn2Sn1,因为an0,所以Sn1Sn0。

由等比数列的定义可得:

aaa2a3

n1n2。a1a2anan1

再用等比定理得:

SnSn2Sn1。

Sn2Sn1an2a2a3an1Sn1a1Sn1,因此有:

Sn1Snan1a1a2anSnSn

例8 数列an和bn都是正项数列,对任意的自然数都有an,bn,an1成等差数列,22,an1,bnbn1成等比数列。

(1)问:bn是不是等差数列?为什么?

222(2)求证:对任意的自然数p和q(pq),bpqbpq≥2bp。

分析:对于第(1)题,我们不难证明它一定是等差数列。问题(2)的证明方法很多,我们可以直接利用等差数列的通项公式,通过作差比较来完成。但是若我们仔细分

222

析题意,观察bp,bbqpqp的特点,我们不难发现它们三者之间有等量关系:

bpqbpq≥

bpqbpq2bp,所以bpqbpq

。此题充分体现了数列和2bp

不等式知识的交叉运用。

例9数列an中,前n项之和为Snan2bn,其中a和b为常数,且a0,ab1,nN。

(1)求数列an的通项公式an;并证明an1an1。(2)若cnloganan1,试判断数列cn中任意两项的大小。

分析:此题的已知条件,前n项之和为Snan2bn 告诉我们,数列an是一个等差数列,要证明an1an1成立,只要证明该数列是一个递增的数列,且a11即可。(1)由Snan2bn可知,a1S1ab1,anSnSn12anab,所以an1an2a0,即数列an是一个单调递增的数列,那么an1ana11。

cn1logan1an2

(2)由(1)可知,数列cn各项都为正。则=logan1an2logan1ancnloganan1

logan1an2logan1an≤2=1logan1an124

2aan

1logaan2an21logan1n2= n1424





1,所以cn1cn.例10 已知数列an中,对一切自然数n,都有an0,1且anan 12an1an0。

求证:(1)an11an;

(2)若Sn表示数列an的前n项之和,则Sn2a1。

分析:从题目的结构可以看出,条件anan12an1an0是解决问题的关键,必2须从中找出an1和an 的关系。(1)由已知anan可得an12an1an0,2an1

1an1,12

又因为an0,1,所以有,01an11,因此an2an1,即an1an。2

1a1aa(2)由结论(1)可知,an1an112an2n,即1n1,于是有,22212n1112112a1,即Sn2a1。Sna1a2ana1a1n1a1a1

12212

从上面的一系列问题中,我们可以看出,数列和不等式证明是紧密相连互相渗透的,在复习中我们一定要注意它们的联系,在知识的交叉点上思考分析,达到知识的融会贯通,培养分析问题和解决问题的能力。

第三篇:用数学归纳法证明数列不等式

【例1】(2012全国大纲卷理22)函数f(x)x22x3,定义数列xn如下:x12,xn1是过两点P(4,5)、Qn(xn,f(xn))的直线PQn与x轴交点的横坐标.(1)证明:2xnxn13;(2)求数列xn的通项公式.【证】(1)证:直线PQn的方程为y5f(xn)5(x4),即y5(xn2)(x4),xn44x35令y0,解得xn14.nxn2xn2下用数学归纳法证明2xn3:

① 当n1时,x12,所以2x13.② 假设当nk时结论成立,即2xk3,则当nk1时,由xk1411555xk13,故xk14,得4,即42232xk2*2xk13.由①②知,对一切nN都有2xn3.4xn3xn22xn3(3xn)(xn1)从而xn1xnxn0,故xn1xn.xn2xn2xn2综上,2xnxn13.4x3x35(xn1)(2)解:由(1)知,xn1n,则 xn13n ①,xn11 ②,xn2xn2xn

2①②,得

x311xn131xn3,故数列n是首项为,公比为的等比数列.53xn115xn1x1nn195n11xn311*

因此,(nN).,解得:xnn1351xn135【例2】已知函数f(x)ln(2x)ax在开区间(0,1)内是增函数.

(Ⅰ)求实数a的取值范围;

(Ⅱ)若数列an满a1(0,1),an1ln(2an)an(nN*),证明:0anan11.(Ⅰ)解:f(x)1a,由于f(x)在(0,1)内是增函数,2x1a0在x∈∴ f(x)0,即 (0,1)时恒成立. 2x1∴ a 恒成立,x2而

-2<x-2<-1,11,x22111,即 2x2∴

a1即为所求. ∴ 1(Ⅱ)证明:① 当n=1时,由题设知a1∈(0,1). ② 假设当n=k时,不等式成立,即ak∈(0,1),则 当n=k+1时,由(Ⅰ)知,f(x)=ln(2-x)+x在(0,1)上是增函数

∴0f(0)ln(20)0ak1ln(2ak)akf(ak)f(1)ln(21)11,即ak+1∈(0,1),故n=k+1时命题成立.根据① ② 知0<an<1,n∈N*. 又 ∵ an1anln(2an)ln(21)0,∴ 0anan11.

【例3】已知函数f(x)xsinx,数列{an}满足:0a11,an1f(an),n1,2,3,证明:,13an.6证明:(Ⅰ)先用数学归纳法证明0an1,n1,2,3,(Ⅰ)0an1an1;(Ⅱ)an1① 当n=1时,由已知,结论成立.② 假设当n=k时结论成立,即0ak1,因为0x1时,f(x)1cosx0,所以f(x)在(0,1)上是增函数,又f(x)在[0,1]上连续,从而f(0)f(ak)f(1),即0ak11sin11,故当n=k+1时,结论成立.由①②可知,0an1对一切正整数都成立.又因为0an1时,an1anansinanansinan0,所以an1an,综上所述0an1an1.(Ⅱ)设函数g(x)sinxx13x,0x1,6由(Ⅰ)可知,当0x1时,sinxx.x2x2x2x22x2sin2()0, 从而g(x)cosx122222所以g(x)在(0,1)上是增函数.又g(0)0,所以当0x1时,g(x)>0成立.13于是g(an)0,即sinananan0,613故an1an.

【例4】已知函数f(x)xln1x,数列an满足0a11, an1fan;数列bn满足b111,bn1(n1)bn, nN*.求证: 22(Ⅰ)0an1an1;

an2;(Ⅱ)an122,则当n≥2时,bnann!.(n!n(n1)(Ⅲ)若a12*解:(Ⅰ)先用数学归纳法证明0an1,nN.(1)当n=1时,由已知得结论成立;

21)(2)假设当n=k时,结论成立,即0ak1.则当n=k+1时,因为0g(0)=0.由g(x)1xan2an2fan>0,从而an1.因为0an1,所以gan0,即2211n1b(Ⅲ)因为 b1,bn1(n1)bn,所以bn0,n1 ,222bnbbb21 所以bnnn1 b1nn!

————①bn1bn2b12 an2aaaaa,知:n1n, 所以n=23由(Ⅱ)an12a1a1a2an2因为a1anaa12an122an1 , 22, n≥2, 0an1an1.2a1a2an1a1n2a121a1

所以 an.222222 由①② 两式可知: bnann!.【例5】

设函数f(x)与数列an满足以下关系:

① a1,其中是方程f(x)x的实根; ② an1f(an);

1).③ f(x)的导数f(x)(0,(Ⅰ)求证:an;

(Ⅱ)判断an与an1的大小关系,并证明你的结论.(Ⅰ)证:① 当n1时,a1,不等式成立.② 假设当nk时不等式成立,即ak,则nk1时,∵f(x)0,则f(x)递增.∴ak1f(ak)f(),即nk1时不等式也成立.由①、②知,an对一切nN都成立.(Ⅱ)解:an1anf(an)an,设F(x)f(x)x,则F(x)f(x)10,∴F(x)递减,而an,∴F(an)F()f()0,即f(an)an0,亦即an1an0,*∴an1an.【例6】(2005江西)已知数列{an}的各项都是正数,且满足:

1an(4an),nN.2(1)证明anan12,nN;a01,an1(2)求数列{an}的通项公式an.解:(1)方法一 用数学归纳法证明:

13a0(4a0),∴a0a12,命题正确.222°假设n=k时有ak1ak2.1则nk1时,akak1ak1(4ak1)ak(4ak)

2212(ak1ak)(ak1ak)(ak1ak)

21(ak1ak)(4ak1ak).2而ak1ak0.4ak1ak0,akak10.112又ak1ak(4ak)[4(ak2)]2.22∴nk1时命题正确.由1°、2°知,对一切n∈N时有anan12.1°当n=1时,a01,a1方法二:用数学归纳法证明:

1°当n=1时,a01,a1

2°假设n=k时有ak令f(x)13a0(4a0),∴0a0a12; 22ak2成立,1x(4x),f(x)在[0,2]上单调递增,所以由假设 2111有:f(ak1)f(ak)f(2),即ak1(4ak1)ak(4ak)2(42),222也即当n=k+1时

akak12成立,所以由1°、2°知,对一切nN,有akak1

2(2)下面来求数列的通项:an111an(4an)[(an2)24],所以 222(an12)(an2)2

121122112221122n12n令bnan2,则bnbn(b)()b()bn1n2n1222222,2又bn=-1,所以bn()12n11n,即an2bn2()21

【拓展题】

【例】、数列an满足an12a3an,且a11.(1)当1时,求数列an的nan12通项公式;

(2)若不等式an1an对一切nN恒成立,求的取值范围;

(3)当31时,证明:

*11111n.1a11a21an2解:(1)当1时,an12an1an112(an1)an2n1.(an1)21*(2)an1an①,要使an1an对一切nN恒成立,an1(a11)213至少需使a2a10成立3.a112下面先用数归法证明:当3时,an1(略),再由①知an1an恒成立.所以[3,)为所求.(3)当31时,由(2)知an1,则由

2a(a1)(an1)11an1nn2an12an1

an1an1an112(an1)22(an11)2n(a11)2n1110an12nn,1an21111111从而2n1n,等号当且仅当n11a11a21an2222时成立.(2009安徽理21)首项为正数的数列an满足an1为奇数,则对一切n2,an都是奇数;(2)若对一切nN都有an1an,求a1的取值范围.略解:(1)已知a1是奇数,假设ak2m1是奇数,其中m为正整数,*12(an3),nN*.(1)证明:若a14ak23m(m1)1是奇数.(因为m(m1)是偶数)则由递推关系得ak14*根据数学归纳法,对任何nN,an都是奇数.1(2)(方法一)由an1an(an1)(an3)知,an1an当且仅当an1或an3.4133231;若ak3,则ak13.另一方面,若0ak1,则0ak144根据数学归纳法,0a11,0an1,nN*;a13an3,nN*.综合所述,对一切nN都有an1an的充要条件是0a11或a13.*a123a1,得a124a130,于是0a11或a13.(方法二)由a24an23an23an123(anan1)(anan1), an1an,因为a10,an14444所以所有的an均大于0,因此an1an与anan1同号.根据数学归纳法,nN,an1an与a2a1同号.*因此,对一切nN都有an1an的充要条件是0a11或a13.*

第四篇:数列不等式的证明

数列和式不等式的证明策略

罗红波洪湖二中高三

(九)班周二第三节(11月13日)

数列和式不等式的证明经常在试卷压轴题中出现,在思维能力和方法上要求很高,难度很大,往往让人束手无策,其实,这类不等式的证明,是有一定的规律的,利用S1

n

a1q

来证明也能事半功倍,下面用几个例子来简述数列和式不等式的证明

S1

n

a1q

常用策略。

一、基础演练:

1、等比数列{an},公比为q,则{an}的前n项和Sn为()

na1(q1A.)

an

a1(1q)1(1qn)a

1q(q1)B.na1C.1qD.11q2、正项等比数列{an},公比为q,0q1,{an}的前n项和Sn,以下说法正确的是()A.S1n

a11qB.Sa11qC.Saa

nn1qD.Sn11q3、正项数列{a},{a的前n项和Sa

nn}n,要证明S1n1q,其中0q1,可以去证明()A.

an1qB.an1aqC.an1qD.a

n1aq nnanan

二、典例精讲:

1、等比数列{a1

n},a11,q2,{an}的前n项和Sn,求证:Sn2

变式

1、正项等比数列{an},{a1n}的前n项和Sn,a11,Sn2恒成立,求证:0q

2例

2、已知数列{an},an1

2n

1,{an}的前n项和S5n,求证:Sn2(Sn3?)

aann变式

2、数列{n1n},a3232n1,a11,{a3

n1n}的前n项和Sn,求证:Sn n

2例

3、(09四川理22)数列{an}的前n项和Sn,对任意正整数n,都有a4an

n5Sn1成立,记bn1a(nN).n

(1)求数列{bn}的通项公式;

(2)记c

nb2nb2n1(nN),{c3

n}的前n项和Tn,求证:Tn

2变式

3、已知a1n

2,求证Sn(1)a1(1)2a2(1)nan1

(2)n

3三、小结

四、课后作业:

1、等比数列{a1

n},a12,q

3,{an}的前n项和Sn,求证:Sn3

2、已知数列{an},an

14n2,{an}的前n项和Sn,求证:S2

n

3

第五篇:数列、极限、数学归纳法·用数学归纳法证明不等式

数列、极限、数学归纳法·用数学归纳法证明不等式·教案

证明:(1)当n=1时,左=2,右=2,则等式成立.(2)假设n=k时(k∈N,k≥1),等式成立,即 2+4+6+…+2k=k(k+1). 当n=k+1时,2+4+6+…+2k+(k+1)

所以n=k+1时,等式也成立.

根据(1)(2)可知,对于任意自然数n,原等式都能成立. 生甲:证明过程正确.

生乙:证明方法不是数学归纳法,因为第二步证明时,没有应用归纳假设.

师:从形式上看此种证明方法是数学归纳法,但实质在要证明n=k+1正确时,未用到归纳假设,直接采用等差数列求和公式,违背了数学归纳法的本质特点递推性,所以不能称之为数学归纳法.因此告诫我们在运用数学归纳法证明时,不能机械套用两个步骤,在证明n=k+1命题成立时,一定要利用归纳假设.

(课堂上讲评作业,指出学生作业中不妥之处,有利于巩固旧知识,为新知识的学习扫清障碍,使学生引以为戒,所谓温故而知新)

(二)讲授新课

师:在明确数学归纳法本质的基础上,我们来共同研究它在不等式证明中的应用.(板书)例1已知x>-1,且x≠0,n∈N,n≥2.求证:(1+x)n>1+nx. 师:首先验证n=2时的情况.

(板书)证:(1)当n=2时,左边=(1+x)2=1+2x+x2,右边=1+2x,因x2>0,则原不等式成立.

(在这里,一定要强调之所以左边>右边,关键在于x2>0是由已知条件x≠0获得,为下面证明做铺垫)

下载【弹无虚发】2013高考数学秒杀必备:数列和不等式证明的交叉论文word格式文档
下载【弹无虚发】2013高考数学秒杀必备:数列和不等式证明的交叉论文.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    放缩法证明数列不等式

    放缩法证明数列不等式 基础知识回顾: 放缩的技巧与方法: (1)常见的数列求和方法和通项公式特点: ① 等差数列求和公式:错误!未找到引用源。,错误!未找到引用源。(关于错误!未找到引用......

    放缩法证明数列不等式

    放缩法证明不等式1、设数列an的前n项的和Sn43an132nn123(n1,2,3,)n(Ⅰ)求首项a1与通项an;(Ⅱ)设Tnan42nn2Sn(n1,2,3,),证明:Tii132解:易求SnTn(其中n为正整数)23nn432nann132n1434n23n......

    数列----利用函数证明数列不等式

    数列 1 已知数列{an}的前n项和为Sn,且a2anS2Sn对一切正整数n都成立。 (Ⅰ)求a1,a2的值; (Ⅱ)设a10,数列{lg大值。2已知数列{an}的前n项和Sn (1)确定常数k,求an; (2)求数列{3在等差数列an中......

    探索数列不等式的证明

    探索数列中不等式的证明教学目标:双基:加深学生对放缩法、二项式定理法、数学归纳法等方法的理解,并能运用这些方法证明数列不等式。能力:在问题的解决过程中,培养学生自主探索,归......

    数列与不等式证明专题五篇

    数列与不等式证明专题复习建议:1.“巧用性质、减少运算量”在等差、等比数列的计算中非常重要,但用“基本量法”并树立“目标意识”,“需要什么,就求什么”,既要充分合理地运用条......

    数列不等式推理与证明

    2012年数学一轮复习精品试题第六、七模块 数列、不等式、推理与证明一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.在等比数......

    构造函数证明数列不等式

    构造函数证明数列不等式 ln2ln3ln4ln3n5n6n3n(nN*). 例1.求证:23436ln2ln3lnn2n2n1例2.求证:(1)2,(n2) 2(n1)23n例3.求证:例4.求证:(1练习:1求证:(112)(123)[1n(n1)]e2.证明:3......

    强化命题证明一类数列不等式

    该文发表于《中学数学教学参考》2006年第12期强化命题证明一类数列不等式201203华东师大二附中任念兵数列不等式是近年来高考和竞赛中的热点题型,其中一类形如in0n1C(C为常数)a......