第一篇:小学数学教学论
1.义务教育阶段的数学课程应具有哪些特征?为什么?义务教育阶段的数学课程应突出体现的基础性、普及性和发展性,是数学教育面向全体学生。实现人人学有价值的数学;人人都能获得必须的数学;不同的人在数学上得到不同的发展。
2.作为学科的数学与作为科学的数学的差异性:从知识体系看,作为学科的数学是一个经过人为加工和提炼的,依据学生的特殊需要(即数学学科的目标)和经验,知识与能力结构而设计的知识和思维体系。
从数学活动看,作为科学的数学是数学家的一个完全独立的探索、发现与创造的活动过程,作为学科的数学是学生在教师的引导和帮助下的一个数学模仿探索发现和创造的活动过程。从对象特征看,作为科学的数学其对象是一个完全由符号、概念和规则等构成的完全开放的逻辑结构系统,而作为学科的数学其对象是含有经验直观和几乎是封闭的逻辑结构系统。
从活动目的看,作为科学的数学活动实施为了获得发现和创造数学,而作为学科的数学活动时为了“接受”已经发现和创造的数学。
3.中小学数学课程的特点:有全国统一的课程标准、强于基础,弱于创作、强于计算和推理,弱于动手操作及表达和交流、信息技术的运用刚刚起步、著名数学家很少直接参与数学课程,教材的编制和审定工作
4.广义教材和狭义教材的区分、理解:从广义来说,小学数学教材包括师生共用的教科书、练习册,以及供教师用的教学指导书、参考书、教学挂图、音像教材、辅助教学软件等教学材料。从狭义来说,小学数学教材就是指小学数学教科书。
5.分析小学数学教材的主要内容和基本要求:主要内容:
1、分析教材的编排体系和知识之间的内在联系2.分析研究教材的重点、难点和关键
3、分析教材中能力培养的因素和渗透的思想方法
4、挖掘教材的德育、美育等非智力因素
5、研究教材中的习题
6、确定教学目标 基本要求:
1、首先认清各路知识的来龙去脉与纵横联系,以及在整个数学教材中的地位与作用。充分了解所教内容。其知识基础是什么,并且为哪些后继知识的学习做铺垫等
2、做到突出重点抓住关键、突破难点带动全面有效地提高课堂教学质量
3、重视学生能力的培养
4、要结合有关内容,列举实例,使学生体会到掌握掌握数学知识的重要性
5、重视分析教材中的习题,研究习题的层次和作用
6、通过教学应使学生掌握哪些基础的知识和基本技能,培养哪些能力,渗透哪些思想品德教育和数学思想方法
6.什么是教材重点、难点和关键?它们和教材的重点、难点和关键有什么区别和联系?在某一部分教材中,关系全局,直接影响其他知识学习的哪些知识,叫做这部分教材的重点。教材的重点与教学的重点是有区别的。一个单元或者一节课所要达到的主要教学目标,叫做这个单元或者这节课教学的重点。教材的难点只学生难以理解和掌握或易于引起混淆或误解的教学内容。教材或教学的难点具有相对性,且教材的难点具有双重性。数学教学的难点不仅体现着数学的魅力,还蕴含着思索、探索的动力。教材中有些内容对掌握某一部分知识或解决某一类问题有着决定性的作用,这些内容就是教材的关键。教材的关键和教学的关键同样既有联系又有区别。教材的关键主要就数学知识而言,而教学的关键除知识外,往往还包括解决难点的途径和方法。
7.什么是小学数学学习?它有哪些特点?小学数学学习是学生在小学阶段对数学学科的学习,是学生在教师指导下,由于获得数学知识经验而引起的比较持久的行为变化过程。特点:小学数学学习需要感性材料的支持、需要较强的抽象思维能力、是在人类发现基础上的再发现、是在教师指导下,依据课程和教材进行的、要把握住主要的学习目的8.数学认知结构与数学知识结构有什么区别与联系?数学认知结构是学生关于数学学习内容的认知结构。实际上,就是学生头脑中的数学知识结构。数学认知结构是数学知识结构与学生心理结构相互作用的产物。对于学生来说,数学知识结构是前人研究数学的经验总结,是客观的、外在的东西。而数学认知结构是学生学习数学时在头脑中逐步形成的智能活动模式,是主观的、内在的东西。数学认知结构不可能离开数学知识结构而产生,它是从教科书及课堂教学的知识结构转化而来的,体现了数学知识与数学认知的统一。形成了一定的数学认知结构后,一旦大脑接受到新的数学信息,学生就能不自觉地、甚至是自动的用相应的认知结构对信息进行处理和加工。所以,数学认知结构在数学认知活动中发挥着积极作用,是不断学习新知识的基础。数学认知结构是在数学认知活动中形成的,并经历了由简单到复杂、由低级到高级的发展过程。
9.小学数学认知有的基本形式:同化和顺应
10,小学数学学习的一般过程 :小学数学学习过程是一个数学认知过程,即新的学习内容与学生原有的数学认知结构相互作用,形成新的认知结构的过程。这个过程包括三个阶段:输入阶段,学习起源与学习情境,实际上是给学生创设学习情境,提供新的学习内容,激发学习动机,使学生在心理上产生学习新知识的需要,这是输入阶段的关键。新旧知识相互作用(同化和顺应)阶段,产生学习需要以后,学生以原有的数学认知结构为基础,对新的学习内容进行加工,以便进入相互作用阶段,即同化和顺应阶段。和操作阶段,是指新的数学认知结构去解决问题,使刚产生的新的数学认知结构臻于完善。
11.数学概念:是客观事物的数量关系和空间形式方面的本质属性在人脑中的反应。
12.概念学习的基本形式及一般过程:用图画的形式表现概念、用描述的方法借助具体事例说明概念、用逐步渗透的方法来揭示概念、用定义的形式来揭示概念的本质属性。一般过程:分析比较辨别一类事物的具体例子、抽象出各个例子的共同属性、概括共同的本质属性作为新概念的内涵、根据新概念的内涵明确新概念的外延、明确新概念与原有的认知结构中有关概念间的关系,扩大或改组原有的认知结构
13.简要叙述概念学习应注意的问题:注意选择学习新概念的感性材料和经验、注意概念教学的阶段性和连贯性、帮助学生形成新概念系统、注意在概念教学中培养学生的思维能力、规则学习的问题:1.学习新规则要与已掌握的知识联系,把新规则纳入原有的认知结构2.弄清新规则的形成过程3.通过规则的系统化,完善学生的认知结构
14.举例说明数学规则学习的分类:下位关系,例如:学习了长方形的有关规则后,在学习正方形的有关规则,便是下位学习。上位关系,例如:学习分数除法时,先学习分数除以整数的法则,在学习一个数除以分数的法则,在此基础上概括出分数除法法则,就是上位学习。并列关系,例如:学习了整数除法中商不变的性质,在学习分数的基本性质,以及比的基本性质,都可以通过类比建立前后规则间的关系,让学生获得新知识。
15.小学数学规则学习有哪些形式?举例说明:例一规法,是指先呈现规则的若干肯定例证,然后从例证中概括出一般结论,从而获得规则的方法。例如:学习“商不变的性质”时,让学生对一批例式:6/3=2,12/6=2,20/10=2,30/15=2,60/30=2,600/300=2,2400/1200=2,进行观察比较后,概括出“被除数和除数同时扩大(或缩小)相同的倍数,商不变。”。规一例法,是指先推导出要学习的规则,然后用实例说明规则纳入原有的认知结构。例如:正方形面积公式的学习,就是将长方形面积公式用于正方形,推导出它的面积公式,然后举例说明公式的应用。16.小学数学技能可分为:数学心智技能、数学操作技能、17.举例说明数学心智技能的学习过程:一般分为四个阶段。认知阶段,例如:学习小数乘法的运算3.21*1.4,先要了解运算方法,两个因数先按照整数乘法的法则来计算,即只要把两个因数的末位对齐,小数点不需要对齐,再观察比较。示范模仿阶段,例如:概括出小数乘法法则后,教师就具体例子进行示范,边讲述法则、边进行相应的运算。学生面对小数乘法算题,就能模仿着进行运算。有意识的言语阶段,例如:在进行数学运算时,学生可以一边念念有词的说着法则,一边按法则进行一步不计算。由教师的言语指导转化成学生自己的言语指导。无意识的内部言语阶段,例如:计算54+99*99+45,在这一阶段学生无需去回忆加法交换律和结合律、乘法分配律等运算规律,就能直接合并54和45两个加数,然后利用乘法分配律进行计算。18.数学问题由那几部分组成:条件、目标、操作
19.数学问题解决一般要经过哪几个阶段?了解问题情境、明确问题的条件和目标、寻求解决方法、求得解答检验、回顾反思 20.如何促进学生数学问题解决能力的提高:加强基础知识的教学、重视解题策略的训练、让学生经历问题解决的过程
21.讲解法的特点:教师可以系统地、有论据的讲述新的知识;节省精力高效的讲授知识。对教师的基本要求:要运用规范的数学语言;注意新旧联系,充分利用儿童已有的知识和经验;注意运用分析与综合、归纳与演绎等逻辑方法;语言要简练易懂,生动有趣;注意启发学生积极思维。
22.教学手段大致可以分为哪几种类型:传统教学手段、电化教学手段、现代化教学手段
23.使用教具时应注意:让学生看清楚教具演示的过程。正确处使用直观教具与发展学生抽象思维的关系。直观教具的大小要
适当,色彩要鲜明,以利用集中学生的注意力。操作学具时应注意:学生使用要适时、适量、适度。在学具操作过程中,要及时引导学生观察、分析、比较,掌握数学知识,发展思维能力。在学具操作过程中,要重视培养学生的语言表达能力。有些学具可以让学生自己制作。
24.小学数学课的常见课型有哪几种及特点:综合课、单一课(练习课、复习课、测验课、评讲课和实习作业课)
25.课堂教学结构:是在一定的教育思想的指导下,为完成一定的教学目标,对构成教学的诸多因素,在时间空间方面所设计的比较稳定的简化的组合方式,及其活动程序。
26.小学数学新授课一般包括哪几部分?检查复习。导入新课,揭示课题。新授。巩固练习。课堂作业。课堂小结,布置适量的课外作业。
第二篇:小学数学教学论
小学数学教学论
1:[判断题]
小学数学教学论的研究方法包括理论研究法、比较研究法、实验研究法等。
参考答案:正确
2:[判断题]数学课程目标对数学课程内容的选择起导向作用。参考答案:正确
3:[判断题]选择教学方法需要综合考虑教学目标、教学内容、学生特点等诸多方面的因素。
参考答案:正确
4:[判断题]小学数学学习方式的变革重点是提倡学习方式的多样化。参考答案:正确
5:[判断题]社会发展的需要是影响数学课程目标制定的重要因素。参考答案:正确
6:[判断题]认知发展阶段论的提出者是布鲁纳。参考答案:错误
7:[判断题]选择小学数学课程内容的依据是学生的年龄特征和认识水平。参考答案:错误
8:[判断题]建构主义学习理论强调知识是一个建构的过程。参考答案:正确
9:[判断题]尝试教学法是由邱学华最早设计和提出的教学方法。参考答案:正确 10:[判断题]
数学课程内容由数学知识和技能组成。
参考答案:错误
11:[判断题]大众数学是国际数学教育改革的重要思想。参考答案:正确
12:[判断题]《全日制义务教育数学课程标准》从“知识与技能”、”数学思考”、“情感与态度”三个方面概括数学课程目标。参考答案:错误 13:[判断题]
国际数学课程目标的改革趋势就是注重数学交流。
参考答案:错误
14:[判断题]内容选择的多样性是小学数学教材编写的特征之一。参考答案:正确 15:[判断题]
对数学教育有影响的行为主义学习理论主要是皮亚杰的”联结说”。
参考答案:错误 1:[判断题]
小学生数学学习的特点之一是进行初步逻辑思维训练的过程。
参考答案:正确 2:[判断题]
教学反思有助于提高教师的教学理论修养。
参考答案:正确 3:[判断题]
“数感”的表现就是理解数的意义。
参考答案:错误
4:[判断题]数学课的类型分为新授课、练习课、复习课。参考答案:错误 5:[判断题]
形成性评价是为反馈信息并及时对教学过程进行调节矫正而进行的评价。
参考答案:正确
6:[判断题]在小学数学教学中要重视估算教学。参考答案:正确
7:[判断题]”统计与概率”教学中要注重引导学生参与统计的全过程。参考答案:正确
8:[判断题]提倡算法多样化是计算教学中一个重要的改革趋势。参考答案:正确 9:[判断题]
在“空间与图形”的教学中,要多让学生动手操作。
参考答案:正确 10:[判断题]
案例法是进行教学反思的方法之一。
参考答案:正确
11:[判断题]小学数学教学的基本组织形式是班级授课。参考答案:正确
12:[判断题]讲练结合型新授课的主要环节是导入新课。参考答案:错误
13:[判断题]“实践与综合应用”学习活动最基本的组织形式是集体教学。参考答案:错误 14:[判断题]
数学学习评价是对学生的数学学习结果做出价值判断。
参考答案:错误 15:[判断题]
小学生形成空间观念过程中具有认识立体图形比较容易的特点。
参考答案:错误 1:[论述题]
名词解释题(15小题)
1、数学课程目标
2、数学课程内容
3、数学学习
4、学习动机
5、迁移
6、教学过程
7、数学化
8、合作学习
9、探究学习
10、教学设计
11、教学反思
12、表现性评价
13、数感
14、空间观念
15、实践与综合应用
参考答案:
1、数学课程目标:一定教育阶段的学校数学课程促进学生身心发展所要达到的预期结果。
2、数学课程内容:为达到数学课程目标而选择的数学知识、技能、方法和问题,以及安排和呈现它们的方式。
3、数学学习:学生获取数学知识、形成数学技能、发展各种数学能力的一种思维活动过程。
4、学习动机:直接推动学生进行学习的内部动力,是激励和指引学生进行学习的一种需要。
5、迁移:一种学习对另外一种学习的影响。可以分为正迁移和负迁移。
6、教学过程:学生在教师的指导下,对人类已有知识、经验的认识活动,是学生改造主观世界、建构自己的理解,形成和谐、健康和全面发展的实践活动。
7、数学化:学习者从现实的具体情境出发,经过归纳、抽象和概括等思维活动,寻找数学模型,得出数学结论的过程。
8、合作学习:学生在小组或团体中为了完成共同的任务,有明确的责任分工的互助性学习。
9、探究学习:指从学科领域或现实社会生活中选择和确定研究主题,在教学中创设一种类似于学术(或科学)研究的情景,通过学生自主、独立地发现问题、实验、操作、调查、搜集与处理信息、表达与交流等探索活动,获得知识、技能、情感与态度的发展,特别是探索精神和创新能力的发展的学习方式和学习过程。
10、教学设计:以教学理论和学习理论为基础,运用系统方法分析和研究教学需求,设计解决教学问题的方法和步骤,形成教学方案,并对方案实施后的教学效果进行评价的规划过程和操作程序。
11、教学反思:教师在一定教育理论指导下,对过去教学经验的一种回忆、思考、评价的活动过程。
12、表现性评价:让学生通过完成实际任务来表现知识和技能成就的评价。
13、数感:对现实中数量的感知,是对数的理解和运用的意识和能力。
14、空间观念:物体的形状、大小、位置、方向、距离等形象在人脑中的表象。
15、实践与综合应用:学生在教师引导下,综合已有的知识和经验,经过自主探究和合作交流等学习方式,解决日常生活和社会实践中具有一定挑战性和综合性实际问题的学习活动。
1:[论述题]
简答题(12题,对要点展开简要阐述)
1、数学具有哪些特征?
2、义务教育阶段数学课程标准中确定的数学课程总体目标表现出哪些特点?
3、小学数学课程内容有哪些设计理念?
4、小学数学常用的教学方法有哪些?
5、评价一堂好课有哪些标准?
6、评价学生数学学习有哪些方法?
7、小学数学学习评价改革具有哪些特点?
8、空间观念有哪些表现层次?
9、”统计与概率”有哪些教育价值?
10、第一学段“统计与概率”有哪些教学策略?
11、为什么要设置”实践与综合应用”?
12、教学设计有哪些主要内容?
论述题(3题,联系实际对要点展开充分论述)
1、联系实际论述如何认识小学数学教学过程。
2、联系实际论述指导“实践与综合应用”的原则。
3、联系实际论述空间观念的形成策略。
参考答案:
简答题(12题,对要点展开简要阐述)
1、数学具有哪些特征?
⑴抽象性。⑵严谨性。⑶广泛的应用性。⑷形式化。⑸简单化。⑹符号化。
2、义务教育阶段数学课程标准中确定的数学课程总体目标表现出哪些特点?
把促进每个学生的发展放在首位;单一结果性目标转变为结果性和体验性目标的融合;设立过程性目标,让学生体验数学化过程;使学生获得必需的数学知识、技能与思想方法; 注重培养学生探索与创新精神。
3、小学数学课程内容有哪些设计理念? ⑴向学生提供丰富多样的数学学习内容。
⑵学生不仅要学习结果性内容,也要学习过程性内容。⑶内容的呈现方式应当体现多样性和灵活性。
4、小学数学常用的教学方法有哪些?
讲解法、练习法、演示法、启发式谈话法、发现法、尝试教学法等。
5、评价一堂好课有哪些标准?(1)学生主动参与学习。(2)师生、生生之间保持有效互动。(3)学习材料、时间和空间得到充分保障。(4)学生形成对知识真正的理解。(5)学生的自我监控和反思能力得到培养。(6)学生获得积极的情感体验。
6、评价学生数学学习有哪些方法? 日常检查、纸笔测验和表现性评价。
7、小学数学学习评价改革具有哪些特点?
⑴注重对学习过程的评价。⑵选择多样化的评价方式。⑶让学生参与评价工作。⑷对学生的学习评价因人而异等。
8、空间观念有哪些表现层次?
第一层次:想象;第二层次:分解和分析;第三层次:描述和思考;第四层次:作出或画出。
9、”统计与概率”有哪些教育价值?
有利于培养学生良好的数据意识、有利于学生用随机观念认识世界、有助于学生发展。
10、第一学段“统计与概率”有哪些教学策略? ⑴注重引导学生参与统计活动的全过程。
⑵注重在现实情境中引导学生认识简单的统计图、表与统计量。⑶关注根据问题的需要,使用适当的方法收集数据的过程。
⑷注重学生的自主探索和合作交流,引导学生根据统计图表中的数据提出并回答简单问题,并能和同伴交流。⑸重视与其他领域的联系以及统计与概率之间的联系,培养学生从各种媒体中获取数据信息的自觉习惯。
⑹注重引导学生在现实的、有趣的情境中,初步体验事件发生的可能性,感受可能性大小,自觉地对一些简单事件发生的可能性作出描述,并和同伴交流。
11、为什么要设置”实践与综合应用”?
数学学科性质、学生学习数学的认知过程、小学数学教学目标、培养学生的创新精神和实践能力要求等方面都要求加强数学实践与综合应用。
12、教学设计有哪些主要内容?
分析学习需要、分析学生特征、设计教学目标、设计教学内容、设计教学过程、设计教学方法、设计教学手段、设计教学板书、设计教学评价、编制教学方案、评价修改方案。论述题(3题,联系实际对要点展开充分论述)
1、联系实际论述如何认识小学数学教学过程。
论述要点:师生交往互动的过程、教师引导学生开展数学活动的过程、师生共同发展的过程。
2、联系实际论述指导"实践与综合应用”的原则。
论述要点:充分体现学生的自主学习;给学生开放的学习环境;精心设计教学活动,密切关注活动过程,保证实践效果;注重过程;鼓励创新。
3、联系实际论述空间观念的形成策略。
论述要点:空间观念是物体的形状、大小、位置、方向、距离等形象在人脑中的表象。形成策略:生活经验的再现、观察活动、操作活动、想像活动、创作活动。
第三篇:小学数学教学论
小学数学教学论 第一章
1.什么是数学课程?课程有哪些表现形式?
关闭提示
答案:小学数学课程是对小学数学教学的内容、标准及其进程的总体安排。它是根据国家的教育方针和义务教育小学阶段的培养目标以及学生的年龄特征而设计的数学教学的内容、数学教学的目标和数学教学活动进程的总和。
数学课程的表现形式:设计好的课程要通过一定的课程文件来表现,我国的课程文件包括:课程计划、课程标准和教材三部分。
2.新的数学课程有哪些理念?
关闭提示
答案:
1.数学课程要面向全体学生
2.要关注学生的生活经验和已有的知识体验
3.动手实践,自主探索,合作交流是重要的数学学习方式 4.教师是数学学习活动的组织者、引导者和合作者 5.注重现代信息技术与数学课程的整合 6.建构发展性教学评价观
3.义务教育阶段数学课程的总目标是什么?怎样理解各部分目标之间的关系?
关闭提示
答案:
1。获得适应未来社会生活和进一步发展所必需的重要数学事实(包括数学知识、数学活动经验)以及基本的数学方法和必要的应用技能;
2.初步学会运用数学的思维方式去观察、分析现实社会,去解决日常生活和其他学科学习中的问题,增强应用数学的意识;
3.体会数学与自然及人类社会的密切联系,了解数学的价值,增进对数学的理解和学好数学的信心;
4.具有初步的创新精神和实践能力,在情感态度和一般能力方面都能得到充分发展。具体地又从“知识与技能”、“数学思考”、“解决问题”和“情感与态度”提出要求。四个方面的目标是一个密切联系的整体,无主次之分,互相联系,互相融合。数学思考、解决问题、情感与态度的发展离不开知识与技能的学习;同时知识与技能的学习必须有利于其他目标的落实。要全面落实目标,促进学生全面发展。
第二章
1.教学大纲与课程标准陈述课程目标的动词有何不同?
关闭提示
答案:
教学大纲中,有关知识的教学要求分为知道、理解、掌握、应用四个层次。
知道:是指对所学的知识有感性的、初步的认识,能够说出它指的是什么,并能识别它。表述词还有“认识”等。
理解:是指对所学的知识有一些理性的认识,能够用语言表述它的确切含义,知道它的用途,知道它和其他知识间的联系和区别。
掌握:是指在理解的基础上,能够对所学的知识进行分析、判断或计算,能说明一些道理。
应用:是指能够用所学的知识解决一些简单的实际问题。表述词还有“运用”。
有关技能的教学要求分为会、比较熟练、熟练三个层次。
会:是指能够按照规定的方式、方法进行测量、画图、制作和正确的计算等数学活动。
比较熟练:是指对读数、写数、口算、笔算等,通过训练达到正确、比较迅速的程度。
熟练:是指对读数、写数、口算、笔算等,通过训练达到正确、迅速的程度。有时还能选择简便的方法,合理、灵活地计算,从而形成能力。
课程标准中不仅使用了“了解(认识)、理解、掌握、灵活运用”等刻画知识技能的目标动词,而且使用了“经历(感受)、体验(体会)、探索”等刻画数学活动水平的过程性目标动词,从而更好地体现了标准对学生在数学思考、解决问题以及情感与态度等方面的要求。
知识技能目标 了解(认识)
能从具体事例中,知道或能举例说明对象的有关特征(或意义);能根据对象的特征,从具体情境中辨认出来这一对象。
理解 能描述对象的特征和由来;能明确地阐述此对象与有关对象之间的区别和联系。
掌握 能在理解的基础上,把对象运用到新的情境中。
灵活应用 能综合运用知识,灵活、合理地选择与运用有关的方法完成特定的数学任务。
过程性目标 经历(感受)
在特定的数学活动中,获得一些初步的经验。
体验(体会)
参与特定的数学活动,在具体情境中初步认识对象的特征,获得一些经验。
探索 主动参与特定的数学活动,通过观察、实验、推理等活动发现对象的某些特征或与其他对象的区别和联系。
第三章
1. 选择数学课程内容的依据与标准是什么?
关闭提示
答案:
依据:小学教育的性质、任务和培养目标。数学的学科特点、数学教育的发展趋势。小学生的年龄特征。
标准:社会作用标准、教育作用标准、后继作用标准、可行性标准。
2.数学新课程教学内容的选择体现着何种价值取向?
关闭提示
答案:
体现了数学教学内容的学科性价值、社会性价值和发展性价值。详细内容见“小学数学新课程教学内容的价值取向”
3.小学数学新课程的内容体系是怎样的?
关闭提示
答案:
按照教学内容难易程度与学生的可接受性,内容体系划分为一、二两个学段,隶属于四大学习领域,具体有六个核心概念。
两个学段:1-3年级为第一学段,4—6年级为第二学段。
四大领域:“数与代数”、“空间与图形”“统计与概率”、“实践与综合应用”。
六个核心概念:“数感”、符号感”、“空间观念”、“统计观念”、“应用意识”、“推理能力”。
4.小学数学教学内容的编排有哪些特点?
关闭提示
答案:
1.突出从实际问题情景中抽象教学模型的过程。
2.内容的编排螺旋式推进。
3.重视数学史料的作用。
第四章
1.什么是教学设计?
关闭提示
答案:
教学设计是研究教学系统、教学过程和制定教学计划的系统方法,是教师以传播理论和学习理论等为基础,应用系统论的观点和方法,分析教学中的问题和需求,确定教学目标,设计解决问题的步骤,选择相应的教学策略和教学媒体,形成教学方案,分析评价其结果并修改方案的过程。
2.教学设计的主要内容有哪些?
关闭提示
答案:
确定教学目标、分析教学内容、设计教学情景、设计教学形式与方法、设计学习方式、编写教学方案、评价与修改教学方案。
3.如何理解数学化设计理念?
关闭提示
答案:
人们运用数学的方法观察现实世界,分析研究各种具体现象,并加以组织整理,发现其规律,这个过程就是数学化。
数学的产生与发展本身就是一个数学化的过程,人们从手指或石块的集合形成数的概念,从测量、绘画形成图形的概念,这也是数学化。
著名的荷兰数学家、数学教育学家弗赖登塔尔提出的“数学化”在国际数学教育界最具影响力。他的“数学化”简单地理解就是,数学教学要数学地组织现实世界,每个人有不同的“数学现实”世界,它不一定限于客观世界的具体事物,它可以包括多种层次的抽象的数学概念及规律,因而就有不同层次的数学化。数学教育必须通过数学化来进行。
在进行教学设计的时候,要将现实的以及在现实之上抽象出来的各种层次的“数学现实”世界,进行数学地处理,用数学化的意识去进行教学的设计,这种设计理念就是数学化设计理念。
教学设计的时候要力求做到生活问题数学化,生活问题数学化是数学化的最低层面。好的教师,善于选用学生身边的人、学生身边的事、学生熟悉的物来进行数学化设计。
第五章
1.在新课程中,第一、二学段数与代数教学的总体要求是什么?
关闭提示
答案:
第一学段的总体要求:
在本学段中,学生将学习万以内的数、简单的分数和小数、常见的量,体会数和运算的意义,掌握数的基本运算,探索并理解简单的数量关系。
在教学中,要引导学生联系自己身边具体、有趣的事物,通过观察、操作、解决问题等丰富的活动,感受数的意义,体会数用来表示和交流的作用,初步建立数感;应重视口算,加强估算,提倡算法多样化;应减少单纯的技能性训练,避免繁杂计算和程式化地叙述“算理”。
第二学段的总体要求:
在本学段中,学生将进一步学习整数、分数、小数和百分数及其有关运算,进一步发展数感;初步了解负数和方程;开始借助计算器进行复杂计算和探索数学问题;获得解决现实生活中简单问题的能力。
教学时,应通过解决实际问题进一步培养学生的数感,增进学生对运算意义的理解;应重视口算,加强估算,鼓励算法多样化;应使学生经历从实际问题中抽象出数量关系,并运用所学知识解决问题的过程;应避免繁杂的运算,避免将运算与应用割裂开来,避免对应用题进行机械的程式化训练。
2.如何理解数与代数教学实施的过程性原则?
关闭提示
答案:
“数感形成和问题解决”都是过程性很强的数学活动,教学中,我们应努力体现将生活中的实际问题数学化的过程,让学生在数与代数课程学习中感受数学建模思想,形成初步的数学建模意识;重视引导学生探索问题情境中存在的数量关系和变化规律,经历运用数或符号将其表示为数学模型,达到问题的解决,再加以解释、应用和拓展的过程。从而使学生体会数的认识、数的运算、常见的量、式与方程等是现实世界的数学模型,提高学生数学的应用意识、发展学生的数感和应用数学知识解决实际问题的能力。
3.培养数感应该从哪些方面着手? 关闭提示
答案:
(一)在体验中建立数感
在教学中要关注学生生活经验,把所学习的概念跟日常生活中十分熟悉的事物联系起来,让学生充分地感知、充分地体验,再加以适当的抽象概括,避免死记硬背、生搬硬套。
5(二)在比较中发展数感
在数概念的建立过程中,学生可能会产生一些混淆,需要对有关的概念进行比较。另外,数感的表现之一是能在具体的情境中把握数的相对大小关系,要达成这一目标,在教学中也要多提供机会让学生进行比较活动。
(三)在表达与交流中促进数感的形成
能用数来表达和交流信息是数感的表现之一。在数学教学中多让学生进行表达与交流活动是实现这一目标的有效策略。
(四)在解决问题中强化数感
数感的重要表现是能为解决问题而选择适当的算法,能估计运算的结果,并对结果的合理性作出解释。数感的形成离不开实际应用、离不开解决问题的过程。
第六章
1.第一学段空间与图形教学的总体要求是什么?
关闭提示
答案:
在本学段中,学生将认识简单几何体和平面图形,感受平移、旋转、对称现象,学习描述物体相对位置的一些方法,进行简单的测量活动,建立初步的空间观念。
第一学段学生的思维处于形象、直观阶段,因此,在教学中,要注重所学知识与日常生活的密切联系,让学生在观察、操作等活动中,获得对简单几何体和平面图形的直观经验。
2.第二学段空间与图形教学的总体要求是什么?
关闭提示
答案:
在本学段中,学生将了解一些简单几何体和平面图形的基本特征,进一步学习图形变换和确定物体位置的方法,发展空间观念。
在教学中,应注重使学生探索现实世界中有关空间与图形的问题;注重使学生通过观察、操作、推理等手段,逐步认识简单几何体和平面图形的形状、大小、位置关系及变换;注重通过观察物体、认识方向、制作模型、设计图案等活动,发展学生的空间观念。
3.在空间与图形的教学中实施现实性原则有哪些主要策略? 关闭提示
答案:
(1)从现实生活中引出空间与图形的问题。
(2)利用学生的生活经验探究空间与图形的规律。
(3)通过真实的或者模拟的实践活动解决生活中的空间与图形问题。
(4)引导学生从生活中收集空间与图形的信息和问题。
第七章
1.第一学段统计与概率教学的总体要求是什么?
关闭提示
答案:
在本学段中,学生将对数据统计过程有所体验,学习一些简单的收集、整理和描述数据的方法,能根据统计结果回答一些简单的问题,初步感受事件发生的不确定性和可能性。
在教学中,应注重借助日常生活中的例子,让学生经历简单的数据统计过程;应注重对不确定性和可能性的直观感受。
2.第二学段统计与概率教学的总体要求是什么?
关闭提示
在本学段中,学生将经历简单的数据统计过程,进一步学习收集、整理和描述数据的方法,并根据数据分析的结果作出简单的判断与预测;将进一步体会事件发生可能性的含义,并能计算一些简单事件发生的可 能性。
在教学中,应注重所学内容与现实生活的密切联系;应注重使学生有意识地经历简单的数据统计过程,根据数据作出简单的判断与预测,并进行交流;应注重在具体情境中对可能性的体验;应避免单纯的统计量的计算。
3.如何理解和贯彻统计与概率教学的过程性原则?
关闭提示
答案:
统计与概率教学的核心是培养学生的统计观念。统计观念的主要表现有:能从统计的角度思考与数据信息有关的问题;能通过收集数据、描述数据、分析数据的过程做出合理 7 的决策,认识到统计对决策的作用;能对数据的来源、处理数据的方法,以及由此得到的结果进行合理的质疑。由此可以看出,要培养学生的统计观念必须让他们经历完整的统计过程。
统计是一个需要学生去亲身经历的过程,因此教师需要精心设计统计的过程,即使是虚拟的过程,也要让学生有“如临其境”的感觉。
要改变过去“掐头去尾”的做法,尽量把活动设计得完整一些,既要有让学生体会统计必要性的情境,还要有学生自主搜集数据的细节,既要有整理数据的过程,还要有观察分析、做出简单判断与预测的环节。只有学生亲身经历了这样的过程,他才能明白统计的意义和价值,才能用它来解决问题。
第八章
1.设置实践与综合应用有何意义?
关闭提示
答案:
加强学科内部的联系,符合学生认识规律;加强数学与生活的联系,增进学生对数学价值的体会;有利于提高学生解决问题的能力 ;有利于改进教师的教学方式和学生学习方式等。
2.第一学段“实践活动”的教学要求与目标是什么?
关闭提示
答案:
在本学段中,学生通过实践活动,初步获得一些数学活动的经验,了解数学在日常生活中的简单应用,初步学会与他人合作交流,获得积极的数学学习情感。
教学时,应首先关注学生参与活动的情况,引导学生积极思考。主动与同伴合作、积极与他人交流,使学生增进运用数学解决简单实际问题的信心,同时意识到自己在集体中的作用。
3.第二学段“综合应用”的教学要求与目标是什么?
关闭提示
答案:
在本学段中,学生将通过数学活动了解数学与生活的广泛联系,学会综合运用所学的知识和方法解决简单的实际问题,加深对所学知识的理解,获得运用数学解决问题的思考方法,并能与他人进行合作交流。
教学时,应引导学生从不同角度发现实际问题中所包含的丰富的数学信息,探索多种解决问题的方法,并鼓励学生尝试独立地解决某些简单的实际问题。
4.实践与综合应用教学组织的常见形式有哪些?
关闭提示
答案:
游戏活动、读书活动、模型制作与平面设计、数学发现与论文交流、数学调查与统计分析、课题研究与项目策划、综合活动与成果展示等。
第九章
1.小学数学学习评价有哪些新理念?
关闭提示
答案:
新课程倡导发展性评价,突出评价的发展功能,关注学生学习数学的处境与需要,注重学生学习的发展与变化过程,使每一个学生具有学习数学的自信心和持续学习数学的能力。因此,新课程提倡评价目标多元化、评价内容多纬度、评价方法多样化、评价主体多元化的评价策略。
2.在学生数学学习评价中如何体现评价主体的多元化?
关闭提示
答案:
在评价学生学习时,评价者不应只局限于任课教师这个单一的主体,而应该体现评价主体的多元化,让更多的人员参与到评价中来。学生本人、同学、任课教师及其他教师、家长、社区有关人员等都可以成为评价者,从不同视角对学生全面地进行评价。在学生的数学学习评价中,可进行以下一些评价:教师评价、学生自我评价、小组互评、家长评价学生等。
3.什么是成长记录袋?
关闭提示
答案:
成长记录袋,也被一些学者翻译为档案袋,有“代表作选辑”的意思,最初使用这种形式的是画家及后来摄影家,他们把自己有代表性的作品汇集起来,向预期的委托人展示,后来被用于教育评价中。
主要是指收集、记录学生自己、教师或同伴做出评价的有关材料,学生的作品、反思,还有其他相关的证据与材料等,以此来评价学生学习和进步的状况。成长记录袋可以说是记录了学生在某一时期一系列的成长“故事”,是评价学生进步过程、努力程度、反省能力及其最终发展水平的理想方式。
4.你认为应该从哪些方面来评价小学数学课堂教学?
关闭提示
(开放式问题,不给答案)
第四篇:小学数学教学论
第一次 判断题
1、大众数学是国际数学教育改革的重要思想。正确
2、国际数学课程目标的改革趋势就是注重数学交流。错误
3、《全日制义务教育数学课程标准》从“知识与技能”、”数学思考”、“情感与态度”三个方面概括数学课程目标。错误
4、社会发展的需要是影响数学课程目标制定的重要因素。正确
5、选择小学数学课程内容的依据是学生的年龄特征和认识水平。错误
6、数学课程内容由数学知识和技能组成。错误
7、内容选择的多样性是小学数学教材编写的特征之一。正确
8、数学课程目标对数学课程内容的选择起导向作用。正确
9、认知发展阶段论的提出者是布鲁纳。错误
10、建构主义学习理论强调知识是一个建构的过程。正确
11、对数学教育有影响的行为主义学习理论主要是皮亚杰的”联结说”。错误
12、小学数学学习方式的变革重点是提倡学习方式的多样化。正确
13、选择教学方法需要综合考虑教学目标、教学内容、学生特点等诸多方面的因素。正确
14、教学方法只是教师教的方法。错误
15、尝试教学法是由邱学华最早设计和提出的教学方法。正确
[作业讨论] 第二次作业答案 1.对;2对;3.错;4.错;5.对;6.对;7.对;8.对;9.对;10.对;11.对;12.错;13.错;14.错;15.错
[作业讨论] 第三次作业(完整版)
1、数学课程目标:
课程目标是对某一阶段学生所应达到的规格提出的要求,反映了这一阶段的教育目的。是一定教育阶段的学校课程促进学生身心发展所要达到的预期结果。
2、数学课程内容:
数学课程内容是为达到数学课程目标而选择的数学知识,技能,方法和问题,以及安排和
呈现它们的方式。
3、数学学习:
数学学习是学生获取数学知识,形成数学技能,发展各种数学能力的一种思维活动过程。
4、学习动机:
学习动机是直接推动人们进行学习的直接原因和内部动力。学习动机支配了学习者的学习行为,说明了学习者是否想要学习,乐意学什么,学习努力的程度。或者学习动机是指激
发、定向和维持学习行为的心理过程。
5、迁移:
迁移是指已经获得的知识、技能,甚至方法和态度对学习新知识、新技能的影响。
6、教学过程:
教学过程,即指教学活动的展开过程,是教师根据一定的社会要求和学生身心发展的特点,借助一定的教学条件,指导学生主要通过认识教学内容从而认识客观世界,并在此基础之
上发展自身的过程。
7、数学化:
数学化是指学习者从现实的具体情境出发,经过归纳,抽象和概括等思维活动,寻找数学
模型得出数学结论的过程。
8、合作学习:
合作学习是指学学生以主动想、合作学习的方式代替教师主导教学的一种教学策略。
9、探究学习:
探究学习是在学生在主动参与的前提下,根据自己的猜想或假设,在科学理论指导下,运用科学的方法对问题进行研究,在研究过程中获得创新实践能力、获得思维发展,自主构
建知识体系的一种学习方式。
10、教学设计:
一个完整单元之教学内容,包含教案、教学媒体使用注解、评量方式、教学评鉴或省思。11:答、教学反思是指教师对教育教学实践的再认识、再思考,并以此来总结经验教训,进
一步提高教育教学水平。
12:答、表现性评价是指在学生学习完一定的知识后,通过让学生完成某一实际任务来评价学生的学习状况,包括表现性任务和对表现的评价。
13:答、数感是人们对数与运算的一般理解,有助于人们用灵活的方法做出数学判断,并
为解决复杂问题提出有用的策略。
14:答、空间观念是指几何课程改革的一个课程核心的概念,《数学课程标准》描述了空间观念的主要表现,其中包括“能够由实物的形状想象出几何图形,由几何图形想象出实物的形状,进行几何体与其三视图、展开图之间的转化。
15:答、实践与综合应用是学生在教师引导下,在学生已有知识体验的基础上,从所熟悉的现实生活中发现、选择和确定问题,主动应用知识解决问题的学习活动。
[作业讨论] 第三次作业
1、数学课程目标:
课程目标是对某一阶段学生所应达到的规格提出的要求,反映了这一阶段的教育目的。是一定教育阶段的学校课程促进学生身心发展所要达到的预期结果。
2、数学课程内容:
数学课程内容是为达到数学课程目标而选择的数学知识,技能,方法和问题,以及安排和呈现它们的方式。
3、数学学习:
数学学习是学生获取数学知识,形成数学技能,发展各种数学能力的一种思维活动过程。
4、学习动机:
学习动机是直接推动人们进行学习的直接原因和内部动力。学习动机支配了学习者的学习行为,说明了学习者是否想要学习,乐意学什么,学习努力的程度。或者学习动机是指激发、定向和维持学习行为的心理过程。
5、迁移:
迁移是指已经获得的知识、技能,甚至方法和态度对学习新知识、新技能的影响。
6、教学过程:
教学过程,即指教学活动的展开过程,是教师根据一定的社会要求和学生身心发展的特点,借助一定的教学条件,指导学生主要通过认识教学内容从而认识客观世界,并在此基础之上发展自身的过程。
7、数学化:
数学化是指学习者从现实的具体情境出发,经过归纳,抽象和概括等思维活动,寻找数学模型得出数学结论的过程。
8、合作学习:
合作学习是指学学生以主动想、合作学习的方式代替教师主导教学的一种教学策略。
9、探究学习:
探究学习是在学生在主动参与的前提下,根据自己的猜想或假设,在科学理论指导下,运用科学的方法对问题进行研究,在研究过程中获得创新实践能力、获得思维发展,自主构建知识体系的一种学习方式。
10、教学设计:
一个完整单元之教学内容,包含教案、教学媒体使用注解、评量方式、教学评鉴或省思。
11、教学反思: 教学反思是指教师对教育教学实践的再认识、再思考,并以此来总结经验教训,进一步提高教育教学水平。
12、表现性评价: 表现性评价是指在学生学习完一定的知识后,通过让学生完成某一实际任务来评价学生的学习状况,包括表现性任务和对表现的评价。
13、数感: 数感是人们对数与运算的一般理解,有助于人们用灵活的方法做出数学判断,并为解决复杂问题提出有用的策略。
14、空间观念: 空间观念是指几何课程改革的一个课程核心的概念,《数学课程标准》描述了空间观念的主要表现,其中包括“能够由实物的形状想象出几何图形,由几何图形想象出实物的形状,进行几何体与其三视图、展开图之间的转化。
15、实践与综合应用: 实践与综合应用是学生在教师引导下,在学生已有知识体验的基础上,从所熟悉的现实生活中发现、选择和确定问题,主动应用知识解决问题的学习活动。
收藏 分享
0 好 差
1、数学具有哪些特征? 答:(1)抽象性(2)严谨性(3)广泛的应用性(4)形式化(5)简单化(6)符号化
2、义务教育阶段数学课程标准中确定的数学课程总体目标表现出哪些特点? 答:
(一)数学课程应致力于实现义务教育阶段的培养目标,要面向全体学生,适应学生个性发展的需要。
(二)课程内容要反映社会的需要、数学的特点,要符合学生的认知规律。
(三)教学活动是师生积极参与、交往互动、共同发展的过程。
(四)学习评价的主要目的是为了全面了解学生数学学习的过程和结果,激励学生学习和改进教师教学。
(五)信息技术的发展对数学教育的价值、目标、内容以及教学方式产生了很大的影响。
3、小学数学课程内容有哪些设计理念? 答:(1)向学生提供丰富多样的教学学习内容。(2)学生不仅要学习结果性内容,也要学习过程性内容。(3)内容的呈现方式应体现多样性和灵活性。
4、小学数学常用的教学方法有哪些? 答:(1)讲解法:是教师在课堂上运用口头语言,辅以表情姿态,向学生传授知识、输送信息的一种教学方法。
(2)练习法:就是在教师指导下,让学生通过**作业掌握基础知识与进行基本技能训练的一种教学方法。
(3)演示法:是教师用各种教具、实物,将教学内容以生动、形象的方式展示给学生,使学生获得知识的一种教学方法,(4)启发式谈话法:是教师根据学生已有认知结构设疑启发提问学生,并通过对话方式探讨新知识,得出新结论,从而使学生获得知识的一种教学方法。
(5)发现法:是指教师不直接把现成的知识传授给学生,而是引导学生根据教师和教科书提供的课题与材料,积极主动地思考,**地发现相应的问题和法则的一种教学方法。
(6)尝试教学法:是先由老师提出问题,让学生在旧知识的基础上先来尝试练习,在尝试的过程中指导学生自学课本,引导学生讨论。在学生尝试练习的基础上,教师根据学生在尝试中存在的问题进行有针对性的讲解。
5、评价一堂好课有哪些标准?答:评价一堂好课的标准:(1)学生主动参与学习;(2)师生、生生之间保持有效的互动;(3)学习材料、时间和空间得到充分保障;(4)学生形成对知识真正的理解; 评价学生数学学习有哪些方法?
一、探究—研讨法
二、自学辅导法
三、其它教学方法
(1)、六因素单元教学法:通过“自学→启发→复习→作业+改错→小结”获取知识。(2)、三算结合教学法:把口算、笔算、珠算三者结合起来,充分发挥算盘作为直观教具的作用,使三算互相促进的一种教学方法。(3)、引探教学法(4)纲要信息图表教学法(5)、模型教学法(6)、游戏教学法(7)、反馈教学法(8)台阶教学法:
7、小学数学学习评价改革具有哪些特点? 答:(1)强调数学活动的主体是学生,体现了”以人为本”的基本思想。(2)关注学生学习的情感态度变化过程。(3)关注知识技能的形成过程。(4)关注个体与集体学习的区别。(5)关注课程资源的合理利用。(6)实现评价功能的多元化,实现评价指标的多元化,实现评价方法的多样化,实现评价主体的多元化。实现评价重点的转移。
8、空间观念有哪些表现层次?
答:表现层次有四个层次:想象,分解和分析,描述和思考,做出或画出。
9、“统计与概率”有哪些教育价值? 答:(1)现代社会公民应具备良好的数据意识。(2)学习统计与概率有利于人们用随机的观念认识世界。(3)学习统计与概率有助于小学生在数学上的全面发展。
10、第一学段统计与概率有哪些教学策略? 答:(1)注重引导学生参与统计活动的全过程,注重体验数据的收集、整理、描述和分析过程。
(2)注重在现实情境中引导学生认识简单的统计图、表与统计量。
(3)关注根据问题的需要,使用适当的方法(如计数、测量等)收集数据的过程。
(4)注重学生的自主探索和合作交流,引导学生根据统计图表中的数据提出并回答简单问题,并能和同伴交换自己的想法。
(5)重视与其他领域的联系以及统计与概率之间的联系,培养学生从各种媒体中获取数据信息的自觉习惯。
11、为什么要设置”实践与综合应用”? 答:(1)从数学的学科性质来看,数学教育要重视数学综合与实践。
(2)从小学生学数学的认知过程来看,数学教育要重视数学综合与实践。(3)从小学数学的教学目标来看,数学教育要重视教学综合与实践。(4)培养学生的创新精神和实践能力要求加强综合与实践。
12、教学设计有哪些主要内容? 答:
(一)教学目标制定要准确,制定的教学目标既要符合课程标准的要求,又要符合学生的实际情况。
(二)内容选择要合理。
(三)作好教学内容分析,突出重点,击破难点,抓住关键。
(四)要全面了解学生水平。
(五)学法制定要恰当,切合学生实际。
(六)教学方法要精选,体现教学方式的转变和课堂环境的改善
(七)问题设计要精当
(八)教学细节要周密安排
(九)教具和课件准备要充分。
(十)练习设计要精当。论述题
1、联系实际论述如何认识小学数学教学过程。
答:对小学数学教学过程的认识有:
(1)小学数学教学过程是师生交往与互动的过程:①要充分调动小学生的主动性、积极性;②要实现教师角色的转变。
(2)小学数学教学过程是教师引导学生开展数学活动的过程:①组织与引导学生经历“数学化”的过程;②师生共同生成与建构数学知识的过程;③在活动中体验数学,获得数学发展的过程。
(3)小学数学教学过程是师生共同发展的过程:①促进学生的发展;②促进教师本身的专业成长。
2、联系实际论述指导“实践与综合应用”的原则。答:指导”实践与综合应用”的原则有:(1)要充分体现学生的自主学习。(2)给学生**的学习环境。
(3)要精心设计教学活动,密切关注活动过程,保证实践效果。(4)要注重过程。(5)要鼓励创新。
3、联系实际论述空间观念的形成策略。答:空间观念的形成策略有:(1)生活经验的再现。(2)观察活动。(3)操作活动。(4)想象活动。(5)创作活动。
第五篇:小学数学教学论
期末作业考核
《小学数学教学论》
满分100分
一、名词解释题(每题5分,共15分)1.随机现象
答:随机现象是指在相同的条件下,重复同样的实验或实例,所得的结果不确定,在实验之前无法预测实验结果。2.电化教学手段
答:电化教学手段是指利用声、光、电原理设计的教学设备,主要包括幻灯、投影、电视、电影、录音、录像、语言实验室、计算器、电子计算机等,是现代科学技术在教学上的应用。3.开放性问题
答:开放性问题从狭义上讲,就是我们通常所认为的所谓解法不唯
一、答案不唯一,而从更广义的角度,开放性问题意味着一个较为复杂开放性的问题情境,解决这样的问题需要经历提出假设、对数学情境作出解释,计划解题的方向,创造一个新的相关的问题或进行概括等等,也就是说在该问题的解决过程中可以帮助我们收集到有关学生更多方面的信息,从而说它更具开放性。
二、简答题(每题10分,共50分)
1.对比《大纲》,具体分析《标准》对“数与代数”的内容有何调整?
答:“数与代数”是《标准》设计的四个学习领域之一,在这个领域内容中,把以往数学与计算、代数初步知识、量与计量的部分内容进行适当的整合与更新,形成新的学习内容。对于整数的认识,《标准》提出认识和感受大数的要求,“在具体的情境中,认、读、写亿以内的数,了解十进制计数法,会用万、亿为单位表示大数;结合现实情境感受大数的意义,并能估计”。而《大纲》的要求是,“认识自然数和整数。掌握十进制计数法,会根据数级读、写多位数”。标准增加了负数的认识,“在熟悉的生活情境中,了解负数和意义,会用负数表示一些日常生活中的问题”。这是大纲中没有的内容。2.如何理解“获得一些初步的教学实践活动的经验,能够运用所学的知识和方法解决简单的问题”?实施中的注意要点是什么?
答:《标准》提出的“获得一些初步的教学实践活动的经验是指学生经历实践活动之后,初步懂得一些实践活动的操作步骤、操作方法以及活动过程中的情感体验。这些活动经验是学生成长过程中的一份宝贵积累,它对学生终身学习具有很大的帮助。另外,“能够运用所学的知识和方法解决简单的问题”是指数学的应用问题,它既能巩固学生所学的知识,又能为知识的综合应用创造条件。在教学时要注意以下几点:(1)加强实践活动的指导。数学的实践活动并不是“放羊式” 的活动,它仍需要教师的指导。在教师的指导中,应重点帮助学生逐步掌握一些操作步骤与操作方法,以便为他们后续的发展打下基础。(2)加强综合设计的指导。开展实践活动并不是为了实践而实践,而是力求通过实践活动,促进学生知识的整合、方法的优化及智慧的开发。因此,在设计实践活动中,要考虑到各方面知识的综合。3.要实现教学方法的优化,教师应该注意哪些问题?
答:教学方法的优化来自于苏联教育家的“最优化”理论和实践。巴班斯基曾指出:教学方法的优化选择是“在教学规律和教学原则的基础上,教师对教育过程的一种目标明确的安排,是教师有意识的、有科学根据的一种选择(而不是自发的、偶然的选择,是最好的、最适合于该具体条件的课程教学和整个教学过程的安排方案。” 要实现教学方法的优化,我们要做到:
(一)教师要熟悉各种方法,能有效地运用其中每一种方法,掌握每种教学方法的优缺点与适用范围。
(二)在选择教学方法之前,先按教学目的和任务将教学内容具体化,找出重点、难点并将教材划分为逻辑上完整的几个部分,然后选择对每个教学阶段最适用的方法,并把它们恰当的结合起来,形成该节课的最优教学方法。
(三)教学方法的优化应考虑教学过程效率的高低。4.小学数学学习考评的内容有哪些?
答:小学数学学习考评的内容有:数学知识、学习数学的积极性、学习数学的能力。5.简答现代教学方法呈现的新特点。
答:(1)以充分调动学生的学习主动性与发挥教师的主导作用相结合为基本特征,力求教与学的最佳结合。(2).以发展学生的智力为出发点,注重培养学生的创造力。(3)注重激发学生的学习动机,启发学生动脑、动口、动手,引导学生探索发现。(4)注重照顾学生的个别差异,使每一位学生都能在原有的基础上得到不同程度的提高。(5)着重研究学生,特别注重学习方法的研究和指导,让学生在学会的过程中,逐步达到会学。(6)开发非智力因素,力求智力与非智力因素的协同发展。
三、论述题(共35分)
1.论述学生是否需要建立数感,如何培养学生的数感?(11分)答:数感就是指数字反面的天分,以及逻辑思维这些,学生需要建立数感。要培养这些最关键的是要和实际结合,多联系实际,在实际中发现,再结合教材多加推理。就这样反反复复,最忌讳的是和脑筋急转弯联系。学生在运算中,对运算方法的判断,运算结果的估计,都与学生的数感有密切的联系,在教学过程中,应重视口算,加强估算,提倡算法多样化,在学习中,使学生经历从实际问题中建立数学模行,估算,求解,验证解的正确性与合理性的过程,能用有理数的大致范围了解近似数与有效数字的概念。
2.论述在小学数学教学中如何运用数学彩条。(11分)
答:数学彩条,也叫奎逊耐彩色棒,是一种现在世界上比较流行的,应用十分广泛的小学数学学具。数学彩条由十种颜色、十种长度的木条(或塑料棒)组成。每根彩条的横截面都是边长为1 厘米的正方形。十种颜色分别是白色(b)(括号内字母为该颜色名称的汉语拼音的第一个字母)——22 个、红色(h)——12 个、绿色(l)——10 个、紫色(z)——6 个、桔黄色(j)——4 个、深绿色(s)——4 个、乌黑色(w)——4 个、咖啡色(k)——4 个、天蓝色(t)——4 个、橙色(c)——4 个。共74 个。十种彩条的长度分别是1 厘米、2 厘米、3 厘米„„10 厘米。小学数学各年级的主要内容都可以通过操作数学彩条,使学生建立起较深刻的感性认识,进而建立起有关数学内容的模型和表象。加深对数学知识的理解和掌握,同时有助于发展学生的多种能力。用白色的彩条(b)表示 1,其他颜色彩条分别表示2,3,„„10。这样,就可以用它认识整数和四则运算。例如:(1)两个彩条接起来同另外一个彩条一样长,用这种关系可以表示数的组成。(2)用一个橙色彩条和若干个白色彩条,就可以表示11-19 各数。(3)加法和减法:两个彩条连接在一起就可以表示相加。把两个彩条并排摆在一起,就可以比较它们的长短,两个彩条之间的关系就是表示减法。两个彩条相差部分同某一个彩条一样长,这个彩条表示的数就是减法的差。(4)乘法和除法:用单一颜色的彩条连在一起,表示 n 个相同加数连加,用这种关系引导学生认识乘法的意义。(5)认识应用题的数量关系。用彩条表示应用题的数量关系,可帮助学生直观形象地理解应用题的涵义,准确地分析应用题的数量关系。(6)用其他颜色的彩条表示1,就可以表示出不同的分数。此外,运用数学彩条还可以进行思维训练和开展智力游戏。3.论述解题策略和计算方法的多样性,有何教育价值?(13分)
答:新课标标准指出:形成解决问题的一些基本策略,体验解决问题策略的多样性,发展实践能力和创新精神,数学课堂教学中应尊重每一位学生的个性特征,允许不同的学生从不同角度认识问题,采用不同的方式表达自己的想法,用不同的只是与方法解决问题,解决问题的多样化,是因材施教,促进不同的学生在数学上得到不同的发展途径,也是培养学生能自觉寻求变异,从多角度,多层次,全方位去思考问题,寻求答案的优良思维品质,培养学生的创新精神和探索精神,也使教师在有限的教学时间内,由盲目追求题的数量象追求题的质量转化,从而提高课堂教学的有效性和实效性。