高中数学数列求通项公式习题

时间:2019-05-13 09:01:55下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《高中数学数列求通项公式习题》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《高中数学数列求通项公式习题》。

第一篇:高中数学数列求通项公式习题

补课习题

(四)的一个通项公式是(),A、anB、anC、anD、an2.已知等差数列an的通项公式为an32n , 则它的公差为()

A、2B、3C、2D、

33.在等比数列{an}中, a116,a48,则a7()

A、4B、4C、2D、

24.若等比数列an的前项和为Sn,且S1010,S2030,则S30

5.已知数列an通项公式ann210n3,则该数列的最小的一个数是

6.在数列{an}中,a1于.

7.已知{an}是等差数列,其中a131,公差d8。

(1)求数列{an}的通项公式;

(2)数列{an}从哪一项开始小于0?

(3)求数列{an}前n项和的最大值,并求出对应n的值. 11nan且an1,则数列nN的前99项和等2n1anan

8.已知数列an的前项和为Snn23n1,(1)求a1、a2、a3的值;

(2)求通项公式an。

9.等差数列an中,前三项分别为x,2x,5x4,前n项和为Sn,且Sk2550。

(1)、求x和k的值;

(2)、求Tn=1111;S1S2S3Sn

(3)、证明: Tn

1考点:

1.观察法求数列通项公式;2.等差数列通项公式;3.等比公式性质;4.等比公式前n项和公式应用;5.数列与函数结合;6.求通项公式;7.基本的等差数列求通项公式及其应用;8.求通项公式;9.等差数列性质应用及求和与简单的应用

答案:

1.B;2.C;3.A;4.70;5.-22;6.5049.7.(1)an398n(2)n=5(3)sn76、n=4;

8.(1)a1

5、a2

6、a38(2)an5;n1)2n2;n2)

9.(1)由4xx5x4得x2,an2n,.Snn(n1),k(k1)2550得k50

(2).Snn(n1),Sn111 n(n1)nn1

T1111111111n12334n1nnn1n1n1

11且0(3)Tn1n1n1

Tn1

第二篇:求数列的通项公式练习题

求数列的通项公式练习题

一、累加法

例 已知数列{an}满足an1an2n1,,求数列{an}的通项公式。

练习:已知数列{an}满足an1an23n1,a13,求数列{an}的通项公式。

二、累乘法

例 已知数列{an}满足a11,an1

练习:已知数列{an}满足a11,ana12a23a3通项公式。

三、公式法

例已知a11,an1

n1an,求数列{an}的通项公式。n2求{an}的(n1)an1(n2),1sn,求an 3

第三篇:高中数学求递推数列的通项公式的九种方法

求递推数列的通项公式的九种方法

利用递推数列求通项公式,在理论上和实践中均有较高的价值.自从二十世纪八十年代以来,这一直是全国高考和高中数学联赛的热点之一.一、作差求和法

例1在数列{a

1n}中,a13,an1an

n(n1),求通项公式an.解:原递推式可化为:a111111

n1annn1则a2a112,a3a22

3a111111

4a334,……,anan1n1n逐项相加得:ana11n.故an4n

.二、作商求和法

例2设数列{a

22n}是首项为1的正项数列,且(n1)an1nanan1an0(n=1,2,3…),则它的通项公式是an=▁▁▁(2000年高考15题)

解:原递推式可化为:

[(n1)aan1n

n1nan](an1an)=0∵ an1an>0,a

n

1n则

a21a32a43an1aa,,,……,n

逐项相乘得:n1,即a1n=.12a23a34an1na1n

n

三、换元法

例3已知数列{a4n},其中a1

3,a1

3129,且当n≥3时,anan13

(an1an2),求通项公式an(1986年高考文科第八题改编).解:设bn1anan1,原递推式可化为:b1n3b,{b是一个等比数列,b134111

n2n}1a2a1939,公比为3.故bn1

b(1)n219(13)n2(13)n.故aa1311

1nn1(3)n.由逐差法可得:an22(3)n3.例4已知数列{an},其中a11,a22,且当n≥3时,an2an1an21,求通项公式an。解 由an2an1an21得:(anan1)(an1an2)1,令bn1anan1,则上式为bn1bn21,因此{bn}是一个等差数列,b1a2a11,公差为1.故bnn.。

由于b1b2bn1a2a1a3a2anan1an1

又bn(n1)

1b2bn1

2所以a1n1

2n(n1),即a1

n2

(n2n2)

四、积差相消法

例5(1993年全国数学联赛题一试第五题)设正数列a0,a1,an…,an,…满足

anan2an1an2=2an1(n2)且a0a11,求{an}的通项公式.解将递推式两边同除以aann1an2整理得:

2a

n1aa1 n1n

2设ban

a

1n=

a,则b1na=1,bn2bn11,故有 10

b22b11⑴b32b21⑵

…………

bn2bn11(n1)

由⑴2

n2

+ ⑵2

n

3+…+(n1)20得b222n1=2n

n121,即

ana=2n

1.n1

逐项相乘得:an=(21)2(221)2(2n1)2,考虑到a01,故 a

n

1(21)(21)

(n0).(21)222n2

(n1)

五、取倒数法

例6已知数列{aan

1n}中,其中a11,,且当n≥2时,an

2a,求通项公式an。

n11

解将aan1n

2a两边取倒数得:1n11

a12,这说明{1

}是一个等差数列,首项

nan1an是

a1,公差为2,所以11(n1)22n1,即a1n.1

an2n1

六、取对数法

例7若数列{aa

2n}中,1=3且an1an(n是正整数),则它的通项公式是an=▁▁▁(2002

年上海高考题).解由题意知an>0,将an1a2

2lgalgan

1n两边取对数得lgan1

n,即

lga2,所以数n

列{lgalga1n1

n}是以lga1=lg3为首项,公比为2的等比数列,lgan12nlg32,即

a2n1

n3.七、平方(开方)法

例8若数列{an}中,a1=2且an3a

2n1(n2),求它的通项公式是an.解将an

a22a22

2n1两边平方整理得ann13。数列{an}是以a1=4为首项,3为公

差的等差数列。a2

na21(n1)33n1。因为an>0,所以ann1。

八、待定系数法

待定系数法解题的关键是从策略上规范一个递推式可变成为何种等比数列,可以少走弯路.其变换的基本形式如下:

1、an1AanB(A、B为常数)型,可化为an1=A(an)的形式.例9若数列{an}中,a1=1,Sn是数列{an}的前n项之和,且SSn

n134S(n1),n

求数列{an}的通项公式是an.解 递推式SSnn1

34S可变形为1n

S3

14(1)

n1Sn设(1)式可化为

1S3(n1

S)(2)n

比较(1)式与(2)式的系数可得2,则有

1S23(1S2)。故数列{1

2}是

n1

nSn

11S23为首项,3为公比的等比数列。1

S2=33n13n。所以Snn3n

1。当n2,anSnS132123n

n1

n3n1232n83n

1

2。数列{a

123n(n1)n}的通项公式是an32n83n12

(n2)。

2、an

n1AanBC(A、B、C为常数,下同)型,可化为an1Cn1=A(anCn)的形式.例10在数列{an}中,a11,an12an43n1,求通项公式an。解:原递推式可化为:

an13n2(an3n1)①

比较系数得=-4,①式即是:an143n2(an43n1).则数列{a1n43n}是一个等比数列,其首项a143115,公比是2.∴an43n152n1 即a1n43n52n1.3、an2Aan1Ban型,可化为an2an1(A)(an1an)的形式。例11在数列{an}中,a11,a22,当nN,an25an16an ①求通项公式

an.解:①式可化为:

an2an1(5)(an1an)

比较系数得=-3或=-2,不妨取=-2.①式可化为:

an22an13(an12an)

则{an12an}是一个等比数列,首项a22a1=2-2(-1)=4,公比为3.∴an12a1n43n.利用上题结果有:

an43n152n1.4、an1AanBnC型,可化为an11n2A[an1(n1)2]的形式。例12 在数列{a

3n}中,a1

2,2anan1=6n3① 求通项公式an.解①式可化为:

2(an1n2)an11(n1)2②比较系数可

得:

=-6,29,②式为2bnbn1 

1{bn} 是一个等比数列,首项b1a16n9

∴bn

91,公比为.22

91n1

()22

n

即 an6n99()故an9()6n9.九、猜想法

运用猜想法解题的一般步骤是:首先利用所给的递推式求出a1,a2,a3,……,然后猜想出满足递推式的一个通项公式an,最后用数学归纳法证明猜想是正确的。

例13 在各项均为正数的数列{an}中,Sn为数列{an}的前n项和,Sn=通项公式。

n

(an+),求其2an

第四篇:高中数学-公式-数列

数列

1、等差数列的通项公式是ana1(n1)d,前n项和公式是:Snn(a1an)1=na1n(n1)d。22.等差数列 {an} anan1d(d为常数)2anan1an1(n2,nN*)ananbSnAn2Bn。

na1(q1)nn

12、等比数列的通项公式是ana1q,前n项和公式是:Sna1(1q)(q1)1q

2n-13.等比数列 {an}anan-1an1(n2,nN)ana1q;

4、当m+n=p+q=2t(m、n、p、q∈N)时,对等差数列{an}有:amanapaq2at;对等比数列{an}

有:amanapaqat。

5、等差数列中, am=an+(n-m)d, daman;等比数列中,an=amqn-m;q=nmn

{anbn}等也是等比数列。

7、设Sn表示数列前n项和;等差数列中有:Sn,S2nSn,S3nS2n,也是等差数列;在等比数列中,2an;am6、若{an}、{bn}是等差数列,则{kanbbn}(k、b、a是非零常数)是等差数列;若{an}、{bn}是等比数列,则{kankan}、Sn,S2nSn,S3nS2n,是等比数列。

8、等差(或等比)数列的“间隔相等的连续等长片断和序列”(如a1+a2+a3,a4+a5+a6,a7+a8+a9…)仍是等差(或等比)数列;

9、等差数列中:a1ana2an1a3an2;

等比数列中:a1ana2an1a3an2

10、对等差数列{an},当项数为2n时,S偶S奇nd;项数为2n-1时,S奇S偶a中项(n∈N*)。

11、由Sn求an,an={S1(n1)

*SnSn1(n2,nN)

一般已知条件中含an与Sn的关系的数列题均可考虑用上述公式;

12、首项为正(或为负)的递减(或递增)的等差数列前n项和的最大(或最小)问题,转化为解不等式an0an0解决; 或a0a0n1n1 注意验证a1是否包含在后面an 的公式中,若不符合要单独列出。

13、熟记等差、等比数列的定义,通项公式,前n项和公式,在用等比数列前n项和公式时,勿忘分类讨论思想;

14、若一阶线性递归数列an=kan-1+b(k≠0,k≠1),则总可以将其改写变形成如下形

式:anbk(an1b)(n≥2),于是可依据等比数列的定义求出其通项公式; k1k115、当等比数列an的公比q满足q<1时,limSn=S=

na1。一般地,如果无穷数列an的前n项和的极限n1qlimSn存在,就把这个极限称为这个数列的各项和(或所有项的和),用S表示,即S=limSn。n

第五篇:《数列通项公式》教学设计

《数列通项公式》教学设计

【授课内容】数列通项公式 【授课教师】陈鹏 【授课班级】高三6班

【授课时间】2009年10月20日晚自习【教学目标】

一、知识目标:

1.解决形如an+1=pan +f(n)通项公式的确定。

2.通过学习让学生掌握和理解an+1=pan +f(n)此类型的通项公式的求法。

二、能力目标:

在实践中通过观察、尝试、分析、类比的方法导出数列通项公式,培养学生类比思维能力。通过对公式的应用,提高学生分析问题和解决问题的能力。利用学案导学,促进学生自主学习的能力。

三、情感目标:

通过公式的推导使学生进一步体会从特殊到一般,再从一般到特殊的思想方法。【教学重点】

通过学习让学生能够熟练准确的确定掌an+1=pan +f(n)此类型的通项公式,并 能解决实际问题。【教学难点】

1.如何将an+1=pan +f(n)转化为我们学过的两个基础数列(等差和等比)。2.理解和掌握an+1=pan +f(n)此类型数列通项公式确定的数学思想方法。【教学方法】探索式 启发式 【教学过程】 一.引入:

1、等差、等比数列的通项公式?

2、如何解决an+1–an =f(n)型的通项公式?

3、如何解决an+1∕an =f(n)型的通项公式?

二.新授内容:

例1:设数列{an}中,a1=1, an+1=3an , 求an的通项公式。

解:略

例2:设数列{an}中,a1=1, an+1=3an+1, 求an的通项公式。分析:设an+1=3an+1为an+1+A=3(an+A)

例3:设数列{an}中,a1=1, an+1=3an+2n, 求an的通项公式。

分析:设an+1=3an+2n为an+1+A(n+1)+B=3(an+An+B)

思考:设数列{an}中,a1=1, an+1-3an=2n, 求an的通项公式。

分析:法一:设an+1=3an+2n 为an+1+A2n+1 =3(an+A2n)

法二:an+1=3an+2n的等式两边同时除以2n方可解决

三.总结:

形如an+1=pan +f(n)此类数列通项公式的求法,可以通过适当的策略将问题化归为等差数列或等比数列问题加以解决。四.练习:

1、设数列{an}中,a1=1, an+1=2an+3, 求an的通项公式。

2、设数列{an}中,a1=1, an+1=3an+2n+1, 求an的通项公式。

3(2009全国卷Ⅱ理)设数列的前项和为sn ,已知a1=1, sn+1=4an +2(I)设bn=an+1 –2an,证明数列{bn}是等比数列(II)求数列的通项公式。

【课后反思】

递推数列的题型多样,求递推数列的通项公式的方法也非常灵活,往往可以通过适当的策略将问题化归为等差数列或等比数列问题加以解决。等差、等比数列是两类最基本的数列,是数列部分的重点,自然也是高考考查的热点,而考查的目的在于测试灵活运用知识的能力,这个“灵活”往往集中在“转化”的水平上。转化的目的是化陌生为熟悉,当然首先是等差、等比数列,根据不同的递推公式,采用相应的变形手段,达到转化的目的。

因而求递推数列的通项公式问题成为了高考命题中颇受青睐的考查内容。求递推数列通项公式的方法策略是:公式法、累加法、累乘法、待定系数法、换元法等等。只要仔细辨析递推关系式的特征,准确选择恰当的方法,是迅速求出通项公式的关键。

一、学情分析和教法设计:

1、学情分析:

学生在前一阶段的学习中已经基本掌握了等差、等比数列这两类最基本的数列的定义、通项公式、求和公式,同时也掌握了与等差、等比数列相关的综合问题的一般解决方法。本节课作为一节专题探究课,将会根据递推公式求出数列的项,并能运用累加、累乘、化归等方法求数列的通项公式,从而培养学生观察、分析、归纳、猜想的能力、逻辑思维能力以及演绎推理的能力。

2、教法设计:

本节课设计的指导思想是:讲究效率,加强变式训练、合作学习。采用以问题情景为切入点,引导学生进行探索、讨论,注重分析、启发、反馈。先引出相应的知识点,然后剖析需要解决的问题,在例题及变式中巩固相应方法,再从讨论、反馈中深化对问题和方法的理解,从而较好地完成知识的建构,更好地锻炼学生探索和解决问题的能力。

在教学过程中采取如下方法:

①诱导思维法:使学生对知识进行主动建构,有利于调动学生的主动性和积极性,发挥其创造性; ②分组讨论法:有利于学生进行交流,及时发现问题,解决问题,调动学生的积极性; ③讲练结合法:可以及时巩固所学内容,抓住重点,突破难点。

二、教学设计:

1、教材的地位与作用:

递推公式是认识数列的一种重要形式,是给出数列的基本方式之一。对数列的递推公式的考查是近几年高考的热点内容之一,属于高考命题中常考常新的内容;另一个面,数学思想方法的考查在高考中逐年加大了它的份量。化归思想是本课时的重点数学思想方法,化归思想就是把不熟悉的问题转化成熟悉问题的数学思想,即把数学中待解决或未解决的问题,通过观察、分析、联想、类比等思维过程,选择恰当的方法进行变换、转化,归结到某个或某些已经解决或比较容易解决的问题上,最终解决原问题的一种数学思想方法;化归思想是解决数学问题的基本思想,解题的过程实际上就是转化的过程。因此,研究由递推公式求数列通项公式中的数学思想方法是很有必要的。

2、教学重点、难点:

教学重点:根据数列的递推关系式求通项公式。教学难点:解题过程中方法的正确选择。

3、教学目标:(1)知识与技能:

会根据递推公式求出数列中的项,并能运用累加、累乘、化归等方法求数列的通项公式。(2)过程与方法:

①培养学生观察、分析、归纳、猜想的能力、逻辑思维能力以及演绎推理的能力;

②通过阶梯性练习和分层能力培养练习,提高学生分析问题和解决问题的能力,使不同层次的学生的能力都能得到提高。(3)情感、态度与价值观:

①通过对数列的递推公式的分析和探究,培养学生主动探索、勇于发现的求知精神;

②通过对数列递推公式和数列求和问题的分析和探究,使学生养成细心观察、认真分析、善于总结的良好思维习惯;

③通过互助合作、自主探究等课堂教学方式培养学生认真参与、积极交流的主体意识。

三、教学过程:

(1)复习数列的递推公式、等差和等比数列的递推公式,并解决问题。(2)课堂小结(3)作业布置

已知:a1a0,an1kanb,(k0)(1)k,b在何种条件下,数列an分别成等差数列,等比数列.(2)若数列a,又非等比数列且ab n既非等差数列,k10, 如何求an的通项公式.(3)利用(2)的方法分别求出以下数列an的通项公式, ①若a11,2an13an2.②若a11,an2an13anan1.三、课后反思:

递推数列的题型多样,求递推数列的通项公式的方法也非常灵活,往往可以通过适当的策略将问题化归为等差数列或等比数列问题加以解决。等差、等比数列是两类最基本的数列,是数列部分的重点,自然也是高考考查的热点,而考查的目的在于测试灵活运用知识的能力,这个“灵活”往往集中在“转化”的水平上。转化的目的是化陌生为熟悉,当然首先是等差、等比数列,根据不同的递推公式,采用相应的变形手段,达到转化的目的。

因而求递推数列的通项公式问题成为了高考命题中颇受青睐的考查内容。求递推数列通项公式的方法策略是:公式法、累加法、累乘法、待定系数法、换元法等等。只要仔细辨析递推关系式的特征,准确选择恰当的方法,是迅速求出通项公式的关键。

下载高中数学数列求通项公式习题word格式文档
下载高中数学数列求通项公式习题.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    《数列通项公式》教学反思

    《数列通项公式》教学反思 数列是高考中必考的内容之一,而研究数列,要通项先行。本节课只是复习归纳了几种常见的求数列通项公式的方法,可以看到,求数列(特别是以递推关系式给出......

    数列通项公式之数学归纳法

    数列通项公式之数学归纳法 1.用数学归纳法证明:2. 已知数列{an}满足a1=a,an+1=1111n++++=(nN*) 2446682n(2n+2)4(n+1)1 2an(1)求a2,a3,a4; (2)推测通项an的表达式,并用数学归纳法加......

    关于递推数列通项公式的测试题

    关于递推数列通项公式的测试题 2Sn2例2.数列{an}中a11,an(n≥2),求数列{an}的通项an。 2Sn1例3.⑴ 数列{an}满足a11且an1an3n,求数列{an}的通项公式an;⑵ 数列{an}满足a11且an1an(3n......

    数列通项公式的求法简单总结

    艳阳教育高中数学辅导 数列通项公式的求法类型1 递推公式为an1anf(n) 解法:把原递推公式转化为an1anf(n),利用累加法(逐差相加法)求解。 例1. 已知数列an满足a1解:由条件知:an1a......

    数列、数列的通项公式教案(精选5篇)

    目的:要求学生理解数列的概念及其几何表示,理解什么叫数列的通项公式,给出一些数列能够写出其通项公式,已知通项公式能够求数列的项。重点:1数列的概念。按一定次序排列的一列数......

    求数列通项公式的方法总结史上最全的吐血分享[推荐5篇]

    求数列通项公式的方法总结史上最全的 各种数列问题在很多情形下,就是对数列通项公式的求解。特别是在一些综合性比较强的数列问题中,数列通项公式的求解问题往往是解决数列难......

    数列通项公式的求法教案(推荐5篇)

    课题:数列通项公式的求法 课题类型:高三第一轮复习课授课教师:孙海明 1、知识目标:使学生掌握数列通项公式的基本求法:(1)利用公式求通项(2)累加法求通项(3)累乘法求通项,并能灵活地运用......

    高中数学数列公式及结论总结(★)

    高中数学数列公式及结论总结一、高中数列基本公式: 1、一般数列的通项an与前n项和Sn的关系:an= 2、等差数列的通项公式:an=a1+(n-1)dan=ak+(n-k)d(其中a1为首项、ak为已知的第k......