第一篇:数列通项公式与前n项和公式关系教案
数列通项公式与前n项和公式关系教案
教学目标
1.了解数列的通项公式an与前n项和公式Sn的关系.
2.能通过前n项和公式Sn求出数列的通项公式an.
3.培养学生辩证统一的观点.
教学重点与难点
重点:认清两者之间的关系.
难点:通过Sn求出an的基本方法.
教学过程设计
(一)课题引入
师:回忆一下什么是数列的通项公式?什么是数列的前n项和?
生:如果数列{an}的第n项an 与n之间的函数关系可以用一个公式来表示,这个公式叫做这个数列的通项公式.即an=f(n),数列的前n项和Sn=a1+a2+„+an.
师:那么Sn是否也可以表示成关于项数n的函数式?
(由前两个概念,学生不难得出正确答案,教师进一步指出这个函数式称为数列的前n项和公式)
生:Sn可以表示成关于项数n的函数式.
师:现在研究一下an与Sn两者之间的关系,(板书).需要考虑哪几种关系?
(培养学生的辩证统一的观点,对今后的数学学习是有益的,掌握此观点,学生就可以主动地探讨其他数学问题)
生:应考虑已知an是否可以求出Sn;反之,已知Sn是否可以求出an.
师:回答正确.两者之间的关系,应该是辩证统一的.这节课我们主要研究后一种,即已知Sn是否可以求出an.
(二)提示Sn与an的关系
师:(板书)
例1 已知数列的前n项和Sn=n+n.求:(1)a1,a2,a3,a4;(2)通项公式an .
(由形象思维到抽象思维,由特殊到一般,是研究数学问题的一般规律,在教学中可以起到突出重点,突破难点的作用.给学生一个台阶,使学生在自己发现结论的过程中体现知识形成过程的教学)
师:(板书)
因为Sn=a1+a2+„+an,则a1=S1=2,a2=S2-a1=4,a3=S3-a1-a2=6
a4=S4-a1-a2-a3=8,„„
所以通项公式an=2n.
师:请问an=2n是依据什么得出的?
生:由前4项猜想得出的.
师:这样猜想得出的结果是否可靠?因为这是一种不完全归纳法,因此需要论证才能严谨,现阶段我们有没有什么数学方法可以验证结论的正确性?
生:没有.
师:那么我们不妨换一个角度来考虑问题.如果结果不是通过“归纳、猜想”得到的,而是通过演绎推理获得,那么无需证明.即是否能通过Sn推导出an?
(“归纳—猜想—证明”与演绎推理是研究数学问题的两大类方法,也是学生应熟练掌握的.而学生在运用“归纳—猜想—证明”时,往往容易忽视“证明”这个环节,而此环节恰恰是“归纳—猜想—证明”中最重要的部分,若缺少“证明”,此法即为不完全归纳法.)
师:引导学生观察板书,可发现:
a2=S2-a1中a1写成S1,即a2=S2-S1;
a3=S3-a1-a2中,a1+a2可写成S2,即a3=S3-S2;
a4=S4-a1-a2-a3中,a1+a2+a3可写成S3,即a4=S4-S3,那么an是否与Sn也有以上关系?
生:因Sn=a1+a2+a3+„+an,则an=Sn-(a1+a2+„+an-1).又Sn-1=a1+a2+„+an-1,则an=Sn-Sn-1.
师:现在大家一起来考虑这个关系式对于任意数列,任意自然数n都能立?
(设疑可以调动学生的思维,也为下一步教学作铺垫)
师:带着这个问题,我们来讨论一道题.
(板书)例2 已知数列的前n项和Sn=n2+n+2,求数列的通项公式an.
生:(板书)an=Sn-Sn-1=n2+n+2-[(n-1)2+(n-1)+2]=2n.
(做完之后,部分学生就会提出疑问,这时教师应及时因势利导,指导学生讨论,顺理成章地引出本节课的难点;若没有学生提出质疑,教师也可设问引出)
生:这个结果有问题.此题与例1得出的通项公式an是一致的,说明两个数列应是同一个数列,而它们的前n项和Sn又不相等,这不是矛盾吗?
师:问题提的很好,大家想一想,开动脑筋,讨论一下,这其中的道理究竟是什么?
(分组讨论,此时学生思维是非常活跃的,方法也很多,教师在巡视过程中,应注意发现积极有意义的成份)
生:我用前面归纳a1,a2,a3,„的方法计算了一下,得出:a1=S1=4,a2=S2-S1=4,a3=S3-S2=6,a4=S4-a1-a2-a3=8,那么所谓通项公式an=2n,是从第二项开始的,而不包括a1.
师:那么问题出在哪儿?
生:如果应用上述关系式an=Sn-Sn-1,求a1,应为a1=S1-S0,但是S0又表示什么含义呢?
师:这个问题提的在理,S0表示什么意义?
(教师在教学过程中,一定要抓住学生在回答问题时积极有意义的因素,这样可以激发学生学习的兴趣,有利于培养学生良好的思维品质)
师:我们在-开始已经指出前n项和公式Sn是关于n的函数解析式,自变量n的范围是大于0的自然数,因此S0是没有意义的,即a1=S1-S0此关系式是无任何意义的.
生:可见,an=Sn-Sn-1这个关系式的缺憾就是不能表示首项a1,它成立的条件应该是n≥2.
师:那么a1如何确定?
生:a1可以由a1=S1确定.
师:这样我们把an=Sn-Sn-1这个关系式就找完备了.即(板书)
那么例2的正确解法为:
(板书)解:n=1时,a1=S1=4.
n≥2时,an=Sn-Sn-1=n+n+2-[(n-1)+(n-1)+2]=2n.
生:我有一个想法,可以避免关系式中出现S0.
师:说出来大家一起研究.
(教师一定要保护学生思考的积极性,这样可以培养学生的发散性思维)
生:(板书)an+1=Sn+1-Sn=(n+1)2+(n+1)+2-n2-n-2=2n+2.
由于通项公式是关于项数n的函数解析式,所以an+1=f(n+1)=2n+2.
应用换元法求函数解析式:f(n)=2n.这样得到通项公式:an =2n.
这种做法避免了S0,但为什么还是错误的.
师:这种想法有一定道理,但只要我们进一步探讨,就会发现其中的问题.
an+1=Sn+1-Sn=2n+2,此式也只揭示了数列从第2项起,项与项数的函数关系,因此f(n+1)与f(n)的定义域不同,这种做法,虽然表面上避免了S0的出现,但它与前一种方法本质上是同出一辙的.
师:由上述两例中不难看出,由前n项和Sn求通项公式an时,n=1的情况有时可以统一,如例1,有时只能分类得到,如例2,那么如何区别呢?这里只要验证n=1时,an(n≥2)的表达式是否可以表示a1即可.
(三)举例巩固
师:我们已经得到了前n项和Sn与通项公式an的关系,现在运用这一关系解决如下几个问题.
例3 已知数列{an}的前n项和Sn,满足:log2(Sn +1)=n+1.求此数列的通项公式
an.
(例3的目的是巩固已学习过的知识,并且规范做题格式.学习数学其中一个很重要的目的是培养学生严谨的逻辑性,而这恰恰体现在学生做题的格式是否规范化上)
师:由例1,例2可知,要求出通项公式an,须求出Sn,即应由log2(Sn +1)=n+1,求出Sn,再利用数列前n项和Sn与通项公式an之间的关系,得到数列的通项公式an.
生:(板书)
解:由log2(Sn+1)=n+1,得Sn=2n+1-1
当n=1时,a1=S1=22-1=3;
当n≥2时,an=Sn-Sn-1=2n+1-1-(2n-1)=2n.
例4 在数列{an}中,a1=0,an+1+Sn=n2+2n(n∈N+).求数列{an}的通项公式.
师:现在我们的任务是如何求出数列前n项和Sn.
生:由已知an+1+Sn=n+2n,得Sn=n+2n-an+1.
师:这样求出的Sn,是否能利用数列的前n项和与通项公式的关系,求出通项公式呢?显然是不行的,因为数列的前n项和公式Sn是关于项数n的函数关系式,而Sn
=n2+2n-an+1并不是关于项数n的函数关系式.
生:不妨也利用数列前n项和Sn与通项公式an的关系,将an+1表示为an+1=Sn+1-Sn,那么an+1+Sn=n2+2n就转化为关于Sn+1,Sn的关系式,再求Sn.
师:(板书)由于an+1=Sn+1-Sn,则an+1+Sn=Sn+1-Sn+Sn=Sn+1,即Sn+1=n2+2n.
师:再如何通过Sn+1求Sn?
生:可以利用函数知识,因为前n项和Sn是关于项数n项的函数解析式,即已知
Sn+1=f(n+1)=n2+2n,可以求出Sn=f(n)=Sn.
师:(板书)Sn+1=n+2n=(n+1)-1,则Sn=n-1.
(以下省略,得出结果)
(四)课堂练习
已知数列前n项和Sn,求数列的通项公式an.
1.Sn=n-2n+2;
2.Sn=n+222
-1;
答案:
(五)课堂小结
通过本节课,我们学习了已知数列前n项和Sn,如何求出数列通项公式an的方法.
在运用上述关系时,一定要注意an=Sn-Sn-1成立的条件:n≥2,a1应由S1确定.
(六)布置作业
已知数列{an}的前n项和Sn,求它的通项公式:
(1)Sn=an2+bn(a,b为已知常数);(2)Sn=an2+bn+c(a,b,c为已知常数);
(3)Sn=n3+n-1.
作业答案:
(1)an=2an-a+b(n∈N+).
课堂教学设计说明
1.本节课的内容教材中基本未涉及,但这类问题在各级各类考试中均有所涉及,因此在日常教学中,应适时补充,究其授课深度应视学生程度而定,因材施教.
2.数列中,有三个基本问题.即关于数列的通项问题;关于数列的前n项和问题;关于数列的极限问题.一般说来,数列中的其他问题都是围绕这三个问题展开的.可见,研究这三个问题是十分有意义,也是十分必要的.
数列{an}的前n项和公式,实际上就是数列{Sn}的通项公式,因此,Sn与an之间有着密切的联系.
{Sn}:S1,S2,S3,S4,„,Sn-1,Sn,„
{an}:a1,a2,a3,a4,„,an,„
不难看出:Sk+ak+1=Sk+1(k∈N+),3.从辩证统一的观点看问题,Sn与an之间的关系,应包含两层关系.一类为知
Sn求an;另一类为知an求Sn,本节课所授内容只是其中一类.至于另一类问题将是以后教学中的一个难点内容,即“数列求和”,辩证统一的观点在中学数学中处处可见,教师应注意对学生进行这方面的教育,有助于提高学生的数学素质,培养学生研究数学问题的能力.
4.对于概念课的教学,切忌直接给出概念或公式,这样无助于学生思维品质的培养,无助于学生能力的训练.常此以往下去,学生解决问题能力无从谈起.在教学中应尽可能地再现公式推导的过程,探讨问题解决的过程比结论本身更具意义.在课堂教学中,鼓励学生进行想象的创造性思维.如果学生对问题有自己独特见解时,这可能是我们从数学活动中得到额外的有价值信息的机会,教师切莫认为学生是离谱的想象,要从中挖掘出有积极意义的部分,激发学生创造性智能,这才是我们数学教育的本质.正如爱因斯坦指出的:“发展独立思考和独立判断的一般能力,应当始终放在首位,而不应当把获得专业知识放在首位.”
第二篇:关于自然数数列前n项和公式证明
自然数平方与立方数列前n项和公式证明
huangjianwxyx
以下公式,尤其是二、三公式的推导体现了递推消项数学思想。
一、证明:Sn=k=1+2+3+…+n=(1+n)n/2证:(略)
二、证明:Sn=k2=1²+2²+3²+…+n²= [n(n+1)(2n+1)]/6
k1k1nn
证:(n+1)³-n³=(n³+3n²+3n+1)-n³=3n²+3n+1,则:
2³-1³=3×1²+3×1+1(n从1开始)
3³-2³=3×2²+3×2+1
4³-3³=3×3²+3×3+1
5³-4³=3×4²+3×4+1
6³-5³=3×5²+3×5+1
…
(n+1)³-n³=3×n²+3×n+1(至n结束)
上面左右所有的式子分别相加,得:
(n+1)³-1³=3×[1²+2²+3²+…+n²]+3×[1+2+3+…+n]+n (n+1)³-1=3Sn+3×[n(n+1)/2]+n
Sn=1²+2²+3²+…+n²= [n(n+1)(2n+1)]/6
三、证明:Sn=k3=13+23+.....+n3=n2(n+1)2/4=[n(n+1)/2] 2
k1n
证:(n+1)4-n4=[(n+1)2+n2][(n+1)2-n2]=(2n2+2n+1)(2n+1)=4n3+6n2+4n+1则:
24-14=4*13+6*12+4*1+1(n从1开始)
34-24=4*23+6*22+4*2+1
44-34=4*33+6*32+4*3+1
...(n+1)4-n4=4*n3+6*n2+4*n+1(至n结束)
上面左右所有的式子分别相加,得:
(n+1)4-1=4*(13+23+.....+n3)+6*(1²+2²+3²+…+n²)+4*(1+2+3+...+n)+n4*(13+23+.....+n3)=(n+1)4-1+6*[n(n+1)(2n+1)/6]+4*[(1+n)n/2]+n=[n(n+1)]2
Sn=13+23+.....+n3=[n(n+1)/2] 2
第三篇:等比数列前n项和公式教案
课题: §2.5等比数列的前Ⅱ.讲授新课
n项和
[分析问题]如果把各格所放的麦粒数看成是一个数列,我们可以得到一个等比数列,它的首项是1,公比是2,求第一个格子到第64个格子各格所放的麦粒数总合就是求这个等比数列的前64项的和。下面我们先来推导等比数列的前n项和公式。
1、等比数列的前n项和公式:
当q1时,Sna1(1q)1qn ①
或Sna1anq1q
②
当q=1时,Snna1
当已知a1, q, n 时用公式①;当已知a1, q, an时,用公式②.公式的推导方法一:
一般地,设等比数列a1,a2a3,an它的前n项和是
Sna1a2a3an
Sna1a2a3an由 n1aaq1n2n2n1a1qSna1a1qa1qa1q得
23n1na1qqSna1qa1qa1qa1qn(1q)Sna1a1q
∴当q1时,Sna1(1q)1qn ①
或Sna1anq1q
②
当q=1时,Snna1
公式的推导方法二:
有等比数列的定义,a2a1a3a2anan1q
根据等比的性质,有a2a3ana1a2an1Sna1Snanq
即 Sna1Snanq(1q)Sna1anq(结论同上)
围绕基本概念,从等比数列的定义出发,运用等比定理,导出了公式. 公式的推导方法三:
Sna1a2a3an=a1q(a1a2a3an1)
=a1qSn1=a1q(Snan)
(1q)Sna1anq(结论同上)
课题: §2.5等比数列的前●教学过程 Ⅰ.课题导入
首先回忆一下前一节课所学主要内容: 等比数列的前n项和公式: 当q1时,Sna1(1q)1qnn项和
①
或Sna1anq1q
②
当q=1时,Snna1
当已知a1, q, n 时用公式①;当已知a1, q, an时,用公式②
课 题:数列复习小结
教学过程:
一、本章知识结构
二、知识纲要
(1)数列的概念,通项公式,数列的分类,从函数的观点看数列.(2)等差、等比数列的定义.(3)等差、等比数列的通项公式.(4)等差中项、等比中项.
(5)等差、等比数列的前n项和公式及其推导方法.
三、方法总结
1.数列是特殊的函数,有些题目可结合函数知识去解决,体现了函数思想、数形结合的思想.
2.等差、等比数列中,a1、an、n、d(q)、Sn “知三求二”,体现了方程(组)的思想、整体思想,有时用到换元法.
3.求等比数列的前n项和时要考虑公比是否等于1,公比是字母时要进行讨论,体现了分类讨论的思想. 4.数列求和的基本方法有:公式法,倒序相加法,错位相减法,拆项法,裂项法,累加法,等价转化等.
四、知识精要:
1、数列
[数列的通项公式] an2、等差数列 [等差数列的概念] [定义]如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用字母d表示。[等差数列的判定方法]
1. 定义法:对于数列an,若an1and(常数),则数列an是等差数列。2.等差中项:对于数列an,若2an1anan2,则数列an是等差数列。[等差数列的通项公式]
如果等差数列an的首项是a1,公差是d,则等差数列的通项为ana1(n1)d。[说明]该公式整理后是关于n的一次函数。[等差数列的前n项和] 1.Snn(a1an)2a1S1(n1)SnSn1(n2)[数列的前n项和] Sna1a2a3an
2.Snna1n(n1)2d
[说明]对于公式2整理后是关于n的没有常数项的二次函数。[等差中项] 如果a,A,b成等差数列,那么A叫做a与b的等差中项。即:Aab2或2Aab
[说明]:在一个等差数列中,从第2项起,每一项(有穷等差数列的末项除外)都是它的前一项与后一项的等差中项;事实上等差数列中某一项是与其等距离的前后两项的等差中项。[等差数列的性质]
1.等差数列任意两项间的关系:如果an是等差数列的第n项,am是等差数列的第m项,且mn,公差为d,则有anam(nm)d
2.对于等差数列an,若nmpq,则anamapaq。
3.若数列an是等差数列,Sn是其前n项的和,kN*,那么Sk,S2kSk,S3kS2k成等差数列。
3、等比数列 [等比数列的概念] [定义]如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,那么这个数列就叫做等比数列,这个常数叫做等比数列的公比,公比通常用字母q表示(q0)。[等比中项] 如果在a与b之间插入一个数G,使a,G,b成等比数列,那么G叫做a与b的等比中项。即G2ab。[等比数列的判定方法] 1. 定义法:对于数列an,若an1anq(q0),则数列an是等比数列。
22.等比中项:对于数列an,若anan2an,则数列an是等比数列。1[等比数列的通项公式]
n1如果等比数列an的首项是a1,公比是q,则等比数列的通项为ana1q。
[等比数列的前n项和] Sna1(1q)1qn(q1)Sna1anq1q(q1)当q1时,Snna1
[等比数列的性质] 1.等比数列任意两项间的关系:anamqnm
2. 对于等比数列an,若nmuv,则anamauav
4.若数列an是等比数列,Sn是其前n项的和,kN*,那么Sk,S2kSk,S3kS2k成等比数列。如下图所示:
4、数列前n项和(1)重要公式:
123n123n222n(n1)22;
; n(n1)(2n1)612n333[121n(n1)] 2(2)裂项求和:
n(n1)1n1n1;
第四篇:《数列通项公式》教学设计
《数列通项公式》教学设计
【授课内容】数列通项公式 【授课教师】陈鹏 【授课班级】高三6班
【授课时间】2009年10月20日晚自习【教学目标】
一、知识目标:
1.解决形如an+1=pan +f(n)通项公式的确定。
2.通过学习让学生掌握和理解an+1=pan +f(n)此类型的通项公式的求法。
二、能力目标:
在实践中通过观察、尝试、分析、类比的方法导出数列通项公式,培养学生类比思维能力。通过对公式的应用,提高学生分析问题和解决问题的能力。利用学案导学,促进学生自主学习的能力。
三、情感目标:
通过公式的推导使学生进一步体会从特殊到一般,再从一般到特殊的思想方法。【教学重点】
通过学习让学生能够熟练准确的确定掌an+1=pan +f(n)此类型的通项公式,并 能解决实际问题。【教学难点】
1.如何将an+1=pan +f(n)转化为我们学过的两个基础数列(等差和等比)。2.理解和掌握an+1=pan +f(n)此类型数列通项公式确定的数学思想方法。【教学方法】探索式 启发式 【教学过程】 一.引入:
1、等差、等比数列的通项公式?
2、如何解决an+1–an =f(n)型的通项公式?
3、如何解决an+1∕an =f(n)型的通项公式?
二.新授内容:
例1:设数列{an}中,a1=1, an+1=3an , 求an的通项公式。
解:略
例2:设数列{an}中,a1=1, an+1=3an+1, 求an的通项公式。分析:设an+1=3an+1为an+1+A=3(an+A)
例3:设数列{an}中,a1=1, an+1=3an+2n, 求an的通项公式。
分析:设an+1=3an+2n为an+1+A(n+1)+B=3(an+An+B)
思考:设数列{an}中,a1=1, an+1-3an=2n, 求an的通项公式。
分析:法一:设an+1=3an+2n 为an+1+A2n+1 =3(an+A2n)
法二:an+1=3an+2n的等式两边同时除以2n方可解决
三.总结:
形如an+1=pan +f(n)此类数列通项公式的求法,可以通过适当的策略将问题化归为等差数列或等比数列问题加以解决。四.练习:
1、设数列{an}中,a1=1, an+1=2an+3, 求an的通项公式。
2、设数列{an}中,a1=1, an+1=3an+2n+1, 求an的通项公式。
3(2009全国卷Ⅱ理)设数列的前项和为sn ,已知a1=1, sn+1=4an +2(I)设bn=an+1 –2an,证明数列{bn}是等比数列(II)求数列的通项公式。
【课后反思】
递推数列的题型多样,求递推数列的通项公式的方法也非常灵活,往往可以通过适当的策略将问题化归为等差数列或等比数列问题加以解决。等差、等比数列是两类最基本的数列,是数列部分的重点,自然也是高考考查的热点,而考查的目的在于测试灵活运用知识的能力,这个“灵活”往往集中在“转化”的水平上。转化的目的是化陌生为熟悉,当然首先是等差、等比数列,根据不同的递推公式,采用相应的变形手段,达到转化的目的。
因而求递推数列的通项公式问题成为了高考命题中颇受青睐的考查内容。求递推数列通项公式的方法策略是:公式法、累加法、累乘法、待定系数法、换元法等等。只要仔细辨析递推关系式的特征,准确选择恰当的方法,是迅速求出通项公式的关键。
一、学情分析和教法设计:
1、学情分析:
学生在前一阶段的学习中已经基本掌握了等差、等比数列这两类最基本的数列的定义、通项公式、求和公式,同时也掌握了与等差、等比数列相关的综合问题的一般解决方法。本节课作为一节专题探究课,将会根据递推公式求出数列的项,并能运用累加、累乘、化归等方法求数列的通项公式,从而培养学生观察、分析、归纳、猜想的能力、逻辑思维能力以及演绎推理的能力。
2、教法设计:
本节课设计的指导思想是:讲究效率,加强变式训练、合作学习。采用以问题情景为切入点,引导学生进行探索、讨论,注重分析、启发、反馈。先引出相应的知识点,然后剖析需要解决的问题,在例题及变式中巩固相应方法,再从讨论、反馈中深化对问题和方法的理解,从而较好地完成知识的建构,更好地锻炼学生探索和解决问题的能力。
在教学过程中采取如下方法:
①诱导思维法:使学生对知识进行主动建构,有利于调动学生的主动性和积极性,发挥其创造性; ②分组讨论法:有利于学生进行交流,及时发现问题,解决问题,调动学生的积极性; ③讲练结合法:可以及时巩固所学内容,抓住重点,突破难点。
二、教学设计:
1、教材的地位与作用:
递推公式是认识数列的一种重要形式,是给出数列的基本方式之一。对数列的递推公式的考查是近几年高考的热点内容之一,属于高考命题中常考常新的内容;另一个面,数学思想方法的考查在高考中逐年加大了它的份量。化归思想是本课时的重点数学思想方法,化归思想就是把不熟悉的问题转化成熟悉问题的数学思想,即把数学中待解决或未解决的问题,通过观察、分析、联想、类比等思维过程,选择恰当的方法进行变换、转化,归结到某个或某些已经解决或比较容易解决的问题上,最终解决原问题的一种数学思想方法;化归思想是解决数学问题的基本思想,解题的过程实际上就是转化的过程。因此,研究由递推公式求数列通项公式中的数学思想方法是很有必要的。
2、教学重点、难点:
教学重点:根据数列的递推关系式求通项公式。教学难点:解题过程中方法的正确选择。
3、教学目标:(1)知识与技能:
会根据递推公式求出数列中的项,并能运用累加、累乘、化归等方法求数列的通项公式。(2)过程与方法:
①培养学生观察、分析、归纳、猜想的能力、逻辑思维能力以及演绎推理的能力;
②通过阶梯性练习和分层能力培养练习,提高学生分析问题和解决问题的能力,使不同层次的学生的能力都能得到提高。(3)情感、态度与价值观:
①通过对数列的递推公式的分析和探究,培养学生主动探索、勇于发现的求知精神;
②通过对数列递推公式和数列求和问题的分析和探究,使学生养成细心观察、认真分析、善于总结的良好思维习惯;
③通过互助合作、自主探究等课堂教学方式培养学生认真参与、积极交流的主体意识。
三、教学过程:
(1)复习数列的递推公式、等差和等比数列的递推公式,并解决问题。(2)课堂小结(3)作业布置
已知:a1a0,an1kanb,(k0)(1)k,b在何种条件下,数列an分别成等差数列,等比数列.(2)若数列a,又非等比数列且ab n既非等差数列,k10, 如何求an的通项公式.(3)利用(2)的方法分别求出以下数列an的通项公式, ①若a11,2an13an2.②若a11,an2an13anan1.三、课后反思:
递推数列的题型多样,求递推数列的通项公式的方法也非常灵活,往往可以通过适当的策略将问题化归为等差数列或等比数列问题加以解决。等差、等比数列是两类最基本的数列,是数列部分的重点,自然也是高考考查的热点,而考查的目的在于测试灵活运用知识的能力,这个“灵活”往往集中在“转化”的水平上。转化的目的是化陌生为熟悉,当然首先是等差、等比数列,根据不同的递推公式,采用相应的变形手段,达到转化的目的。
因而求递推数列的通项公式问题成为了高考命题中颇受青睐的考查内容。求递推数列通项公式的方法策略是:公式法、累加法、累乘法、待定系数法、换元法等等。只要仔细辨析递推关系式的特征,准确选择恰当的方法,是迅速求出通项公式的关键。
第五篇:《数列通项公式》教学反思
《数列通项公式》教学反思
数列是高考中必考的内容之一,而研究数列,要通项先行。本节课只是复习归纳了几种常见的求数列通项公式的方法,可以看到,求数列(特别是以递推关系式给出的数列)通项公式的确具有很强的技巧性,与我们所学的基本知识与技能、基本思想与方法有很大关系,因而在平日教与学的过程中,既要加强基本知识、基本方法、基本技能和基本思想的学习,又要注意培养和提高数学素质与能力和创新精神。这就要求无论教师还是学生都必须提高课堂的教与学的效率,注意多加总结和反思,注意联想和对比分析,做到触类旁通,将一些看起来毫不起眼的基础性命题进行横向的拓宽与纵向的深入,通过弱化或强化条件与结论,揭示出它与某类问题的联系与区别并变更为出新的命题。这样无论从内容的发散,还是解题思维的深入,都能收到固本拓新之用,从而有利于形成和发展创新的思维。从本节的教学效果看,基本的预设目标均已达成,教学效果明显。上完这节课我认真的做了教学反思,内容如下: 教学成功之处:
1、让学生真正成为学习的主人,保护学生的学习主动性,让学生自己主动上台板书,暴露问题,动脑、动手、动眼、动耳、动嘴,用自己的身体去亲自经历,用自己的心灵去亲自感悟,让学生做中学。
2、面向全体,照顾学生差异。给予学生充分展示机会,表扬学生点滴成功,分享学生成功快乐。一方面鼓励学生自己主动上台展示;