均值定理证明不等式的方法技巧(五篇材料)

时间:2019-05-13 21:42:58下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《均值定理证明不等式的方法技巧》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《均值定理证明不等式的方法技巧》。

第一篇:均值定理证明不等式的方法技巧

均值定理证明不等式的方法技巧

1. 轮换对称型。

例1.若a,b,c是互不相等的实数,求

证:a

b

c

abbcac.2

策略:所证不等式是关于a,b,c的轮换对称式,注意到ab即可。

证明:a,b,c是互不相等的实数,a

2ab,然后轮换相加

b

2ac,b

c

2bc,ac

2ac.b

将上面三个同向不等式即a

相加得:2a

c

2ab

bcac。

b

c

abbcac.点评:分段应用基本等式,然后整体相加(乘)得结论,是证明轮换对称不等式的常用技

巧。

2. 利用“1”的代换型。

例2.已知a,b,cR,且 abc1,求证: 策略:做“1”的代换。证明:

1a1b1c

abc

a

abc

b

abc

c

1a

1b

1c

9.acacbb

332229.bacbca

3.逆向运用公式型。

策略:为脱去左边的根号,将a

12,b

12转换成1

1a

2

1,1b

2

,然后逆向运

用均值不等式: 若a,bR

则 ab

ab2

.例3.已知a,bR,ab1求证: a

b

2.证明:a

1212

34

1

a

2b2b

1232

1a

1234a2.同理b12

于是有 a

ab2.点评:依据求证式的结构,凑出常数因子,是解决此类问题的关键。

4. 挖掘隐含条件证明不等式。

例4.已知a,bR,ab1求证:1

1111.ab9

a,bR,ab1

12

ab说明a,bR,ab1的背后隐含策略:由于ab

4ab

2

着一个不等式ab

.14

证明:a,bR,ab1ab。

11111ab12

而 11111189.abababababab11

119.ab

5. 用均值不等式的变式形式证明不等式。例5.已知a,b,cR,求证: a2b2

b

c

c

a

2abc.策略:本题的关键在于对a2b2,b2c2,c2a2的处理,如果能找出

a

b与ab间的关系,问题就可以

解决,注意到

a

b

2ab2a

b



ab

2a

b



ab 其中a,b,cR即可。

证明:a,b,cR

222222

ab

abc

bc。a

b

c

c

a

三式相加得:a2b2

b

c

c

a

2abc

a

点评:解题时要注意ab2ab的变式应用。常用

b2

ab2

(其中

a,bR)来解决有关根式不等式的问题。

第二篇:均值不等式的证明方法

柯西证明均值不等式的方法 by zhangyuong(数学之家)

本文主要介绍柯西对证明均值不等式的一种方法,这种方法极其重要。一般的均值不等式我们通常考虑的是AnGn: 一些大家都知道的条件我就不写了

x1x2...xn

n

x1x2...xn

我曾经在《几个重要不等式的证明》中介绍过柯西的这个方法,现在再次提出:

二维已证,四维时:

abcd(ab)(cd)2ab2cd4八维时:

(abcd)(efgh)4abcd4efgh8abcdefgh

abcd

4abcd

这样的步骤重复n次之后将会得到

x1x2...x2n

n

n

x1x2...x2n

令x1x1,...,xnxn;xn1xn2...x2

n

x1x2...xn

n

A

由这个不等式有

A

nA(2n)A

nn

n

x1x2..xnA

2n

n

(x1x2..xn)2A

n

1

n2

n

即得到

x1x2...xn

n

n

x1x2...xn

这个归纳法的证明是柯西首次使用的,而且极其重要,下面给出几个竞赛题的例子:

例1:

n

若0ai1(i1,2,...,n)证明

i1

11ai

n

1(a1a2...an)n

例2:

n

若ri1(i1,2,...,n)证明

i1

1ri1

n

1(r1r2...rn)n

这2个例子是在量在不同范围时候得到的结果,方法正是运用柯西的归纳法:

给出例1的证明:

当n2时11a1

11a2

(1

a1a2)2(1a1)(1a2)

设pa1a2,q

(1q)(2p)2(1pq)

p2qpq2qp(1q)2q(q1)p2q,而这是2元均值不等式因此11a1

11a22

n

11a3

11a4



此过程进行下去

n

因此

i1

1ai

1(a1a2...a2n)2

n

令an1an2...a2n(a1a2...an)nG

n

有

i1n

11ai

11ai

(2n)

n

11G

n

n2n

n

n

1(GG

n1G

n)

n

1G

即

i1

例3:

已知5n个实数ri,si,ti,ui,vi都1(1in),记RT

n

1n

n

r,S

ii

1n

n

s

i

i

1n

n

t,U

ii

1n

n

u

i

i,V

1n

n

v,求证下述不等式成立:

ii

i1

(risitiuivi1risitiuivi1)(RSTUV1RSTUV1)

n

要证明这题,其实看样子很像上面柯西的归纳使用的形式

其实由均值不等式,以及函数f(x)ln因此

e1e1

x

x

是在R上单调递减

RSTUV

(RSTUV1RSTUV1)

n

我们要证明:

n

(rstuv

i1

iii

i

risitiuivi1

i

1)

证明以下引理:

n

(x

i1

xi1

i

x21x21

n

1)

n2时,(令A

x11x11)()2

A(x1x21x1x2)(x1x21x1x2)

2A(x1x2x1x21)A(x1x21x1x2)(1x1x2x1x2)2A(x1x21x1x2)

(A1)(x1x21)2A(x1x21)显然成立

2n

n

n

此(i1

xi1xi1

n)(G1G1)

2n

n

(GGGG

n

n

n

n

11

2n2

n),G

n

(G1G1

n)

因此(i1

xi1xi1

n)

所以原题目也证毕了

这种归纳法威力十分强大,用同样方法可以证明Jensen:

f(x1)f(x2)

f(x1x2),则四维:

f(x1)f(x2)f(x3)f(x4)2f(x1x2)2f(x3x4)4f(x1x2x3x4)

一直进行n次有

f(x1)f(x2)...f(x2n)

n

f(x1x2...x2n

n),令x1x1,...,xnxn;xn1xn2...x2

n

x1x2...xn

n

n

A

f(x1)...f(xn)(2n)f(A)

n

n

f(nA(2n)A

n)f(A)

所以得到

f(x1)f(x2)...f(xn)

n

f(x1x2...xn

n)

所以基本上用Jensen证明的题目都可以用柯西的这个方法来证明

而且有些时候这种归纳法比Jensen的限制更少

其实从上面的看到,对于形式相同的不等式,都可以运用归纳法证明

这也是一般来说能够运用归纳法的最基本条件

第三篇:常用均值不等式及证明证明

常用均值不等式及证明证明

这四种平均数满足HnGn

AnQn

、ana1、a2、R,当且仅当a1a2

an时取“=”号

仅是上述不等式的特殊情形,即D(-1)≤D(0)≤D(1)≤D(2)由以上简化,有一个简单结论,中学常用

均值不等式的变形:

(1)对实数a,b,有a

2b22ab(当且仅当a=b时取“=”号),a,b02ab

(4)对实数a,b,有

aa-bba-b

a2b2

2ab0

(5)对非负实数a,b,有

(8)对实数a,b,c,有

a2

b2c2abbcac

abcabc(10)对实数a,b,c,有

均值不等式的证明:

方法很多,数学归纳法(第一或反向归纳)、拉格朗日乘数法、琴生不等式法、排序

不等式法、柯西不等式法等等

用数学归纳法证明,需要一个辅助结论。

引理:设A≥0,B≥0,则ABAnnAn-1B

n

注:引理的正确性较明显,条件A≥0,B≥0可以弱化为A≥0,A+B≥0(用数学归纳法)。

当n=2时易证;

假设当n=k时命题成立,即

那么当n=k+1时,不妨设ak1是则设

a1,a2,,ak1中最大者,kak1a1a2ak1 sa1a2ak

用归纳假设

下面介绍个好理解的方法琴生不等式法

琴生不等式:上凸函数fx,x1,x2,,xn是函数fx在区间(a,b)内的任意n个点,设fxlnx,f

x为上凸增函数所以,在圆中用射影定理证明(半径不小于半弦)

第四篇:均值不等式证明

均值不等式证明

一、已知x,y为正实数,且x+y=1求证

xy+1/xy≥17/

41=x+y≥2√(xy)

得xy≤1/4

而xy+1/xy≥

2当且仅当xy=1/xy时取等

也就是xy=1时

画出xy+1/xy图像得

01时,单调增

而xy≤1/4

∴xy+1/xy≥(1/4)+1/(1/4)=4+1/4=17/4

得证

继续追问:

拜托,用单调性谁不会,让你用均值定理来证

补充回答:

我真不明白我上面的方法为什么不是用均值不等式证的法二:

证xy+1/xy≥17/4

即证4(xy)²-17xy+4≥0

即证(4xy-1)(xy-4)≥0

即证xy≥4,xy≤1/4

而x,y∈R+,x+y=

1显然xy≥4不可能成立

∵1=x+y≥2√(xy)

∴xy≤1/4,得证

法三:

∵同理0

xy+1/xy-17/4

=(4x²y²-4-17xy)/4xy

=(1-4xy)(4-xy)/4xy

≥0

∴xy+1/xy≥17/4

试问怎样叫“利用均值不等式证明”,是说只能用均值不等式不能穿插别的途径?!

二、已知a>b>c,求证:1/(a-b)+1/(b-c)+1/(c-a)>0

a-c=(a-b)+(b-c)≥2√(a-b)*(b-c)

于是c-a≤-2√(a-b)*(b-c)<0

即:1/(c-a)≥-1/【2√(a-b)*(b-c)】

那么

1/(a-b)+1/(b-c)+1/(c-a)

≥1/(a-b)+1/(b-c)-1/【2√(a-b)*(b-c)】

≥2/【√(a-b)*(b-c)】-1/【2√(a-b)*(b-c)】=(3/2)/【2√(a-b)*(b-c)】>0

三、1、调和平均数:Hn=n/(1/a1+1/a2+...+1/an)

2、几何平均数:Gn=(a1a2...an)^(1/n)

3、算术平均数:An=(a1+a2+...+an)/n4、平方平均数:Qn=√(a1^2+a2^2+...+an^2)/n这四种平均数满足Hn≤Gn≤An≤Qn的式子即为均值不等式。

概念:

1、调和平均数:Hn=n/(1/a1+1/a2+...+1/an)

2、几何平均数:Gn=(a1a2...an)^(1/n)

3、算术平均数:An=(a1+a2+...+an)/n4、平方平均数:Qn=√

这四种平均数满足Hn≤Gn≤An≤Qn

a1、a2、…、an∈R+,当且仅当a1=a2=…=an时劝=”号

均值不等式的一般形式:设函数D(r)=^(1/r)(当r不等于0时);

(a1a2...an)^(1/n)(当r=0时)(即D(0)=(a1a2...an)^(1/n))

则有:当r注意到Hn≤Gn≤An≤Qn仅是上述不等式的特殊情形,即D(-1)≤D(0)≤D(1)≤D(2)

由以上简化,有一个简单结论,中学常用2/(1/a+1/b)≤√ab≤(a+b)/2≤√

方法很多,数学归纳法(第一或反向归纳)、拉格朗日乘数法、琴生不等式法、排序不等式法、柯西不等式法等等

用数学归纳法证明,需要一个辅助结论。

引理:设A≥0,B≥0,则(A+B)^n≥A^n+nA^(n-1)B。

注:引理的正确性较明显,条件A≥0,B≥0可以弱化为A≥0,A+B≥0,有兴趣的同学可以想想如何证明(用数学归纳法)。

原题等价于:((a1+a2+…+an)/n)^n≥a1a2…an。

当n=2时易证;

假设当n=k时命题成立,即

((a1+a2+…+ak)/k)^k≥a1a2…ak。那么当n=k+1时,不妨设a(k+1)是a1,a2,…,a(k+1)中最大者,则

ka(k+1)≥a1+a2+…+ak。

设s=a1+a2+…+ak,{/(k+1)}^(k+1)

={s/k+/}^(k+1)

≥(s/k)^(k+1)+(k+1)(s/k)^k/k(k+1)用引理

=(s/k)^k*a(k+1)

≥a1a2…a(k+1)。用归纳假设

下面介绍个好理解的方法

琴生不等式法

琴生不等式:上凸函数f(x),x1,x2,...xn是函数f(x)在区间(a,b)内的任意n个点,则有:f≥1/n*

设f(x)=lnx,f(x)为上凸增函数

所以,ln≥1/n*=ln

即(x1+x2+...+xn)/n≥(x1*x2*...*xn)^(1/n)

在圆中用射影定理证明(半径不小于半弦)。

第五篇:不等式证明,均值不等式

1、设a,bR,求证:ab(ab)abab2abba2、已知a,b,c是不全相等的正数,求证:a(b2c2)b(c2a2)c(a2b2)>6abc

3、(abc)(1119) abbcca24、设a,bR,且ab1,求证:(a)(b)

5、若ab1,求证:asinxbcosx

16、已知ab1,求证:ab

7、a,b,c,dR求证:1<441a21b225 2221 8abcd+++<2 abdbcacdbdac11118、求证2222<2 123n

1111<1

9、求证:2n1n22n10、求下列函数的最值

(1)已知x>0,求y2x

(2)已知x>2,求yx4的最大值(-2)x1的最小值(4)x

2111(3)已知0<x<,求yx(12x)的最大值()221611、若正数a,b满足ab(ab)1则ab的最小值是()

(22333)

12、已知正数a,b求使不等式(ab)k(ab)成立的最小k值为()(4)

13、求函数y

14、二次函数f(x)xaxxa的两根x1,x2满足0<x1<x2< 1,求a的取值范围()(0,15、关于x的方程x2m(x3)2m140有两个实数根,且一个大于1,一个小于1,则m的取值范围是()(m<-

22221)

416、关于x的方程mx2x10至少有一个负根,则m的取值范围是(m1)

17、关于x的方程2kx2x3k20有两个实数根,一个小于1,另一个大于1,求实数k的取值范围(k>0或k<-4)

218、为使方程x22px10的两根在(-2,2)内,求p的取值范围(-<p<

19、函数f(x)ax2x1有零点,则a的取值范围是(a

20、判断函数f(x)x-

21、已知方程x22343)41)411的零点的个数(一个)x395xk在1,1上有实数根,求实数k的取值范围(,)2162

22、已知方程7x2(m13)xm2m20有两个实数根,且一根在(0,1),一根在(1,2)上,求m的取值范围((2,1)(3,4))

23、关于的方程2axx10在(0,1)内恰有一解,求实数a的取值范围(1,)

24、若关于的方程lg(x

x2x220x)lg(8x6a3)0有唯一实根,求a的取值范围

下载均值定理证明不等式的方法技巧(五篇材料)word格式文档
下载均值定理证明不等式的方法技巧(五篇材料).doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    用均值不等式证明不等式[最终定稿]

    用均值不等式证明不等式【摘要】:不等式的证明在竞赛数学中占有重要地位.本文介绍了用均值不等式证明几个不等式,我们在证明不等式时,常用到均值不等式。要求我们要认真分析题目......

    均值不等式的证明

    均值不等式的证明设a1,a2,a3...an是n个正实数,求证(a1+a2+a3+...+an)/n≥n次√(a1*a2*a3*...*an).要简单的详细过程,谢谢!!!!你会用到均值不等式推广的证明,估计是搞竞赛的把对......

    均值不等式的证明5篇

    平均值不等式及其证明平均值不等式是最基本的重要不等式之一,在不等式理论研究和证明中占有重要的位置。平均值不等式的证明有许多方法,这里,我们选了部分具有代表意义的证明方......

    均值不等式的证明(5篇)

    均值不等式的证明设a1,a2,a3...an是n个正实数,求证(a1+a2+a3+...+an)/n≥n次√(a1*a2*a3*...*an).要简单的详细过程,谢谢!!!! 你会用到均值不等式推广的证明,估计是搞竞赛的把......

    不等式证明的方法与技巧

    不等式证明的方法与技巧陈怡不等式证明是不等式中的基本内容之一,也是其重难点所在。许多学生遇到不等式证明题不知所措,无从下手。因此,有必要从解题思路入手,总结一些不等式证......

    证明不等式的常用方法和技巧五篇

    证明不等式的常用方法和技巧 一、比较法 例1、求证:对任何非负数a和b,不等式二、分析法11(a+b)2+(a+b)≥a+ba成立 24 1ab2ab1ab2 ab例2、设0ba,求证: 8a28b三、综合法 例3、对......

    均值不等式及其应用

    教师寄语:一切的方法都要落实到动手实践中高三一轮复习数学学案均值不等式及其应用一.考纲要求及重难点要求:1.了解均值不等式的证明过程.2.会用均值不等式解决简单的最大(小)值......

    均值不等式说课稿

    《均值不等式》说课稿山东陵县一中 燕继龙李国星尊敬的各位评委、老师们:大家好!我今天说课的题目是 《均值不等式》,下面我从教材分析,教学目标,教学重点、难点,教学方法,学生学法......