人教版数学不等式解读(5篇)

时间:2019-05-13 21:41:41下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《人教版数学不等式解读》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《人教版数学不等式解读》。

第一篇:人教版数学不等式解读

人教版数学不等式解读

课程目标:不等关系与相等关系都是客观事物的基本数量关系,是数学研究的重要内容。建立不等观念、处理不等关系与处理等量问题是同样重要的。在本模块中,学生将通过具体情境,感受在现实世界和日常生活中存在着大量的不等关系,理解不等式(组)对于刻画不等关系的意义和价值;掌握求解一元二次不等式的基本方法,并能解决一些实际问题;能用二元一次不等式组表示平面区域,并尝试解决一些简单的二元线性规划问题;认识基本不等式及其简单应用;体会不等式、方程及函数之间的联系。

一、知识结构

大纲教材中,一元二次不等式安排在集合之后、简易逻辑之前,作为初中一元一次不等式的自然延伸和新高一的起步内容之一,而课标教材把一元二次不等式安排在模块5,根据浙江省高中新课程实施意见,应在高二(上)学习;二元一次不等式(组)与简单的线性规划问题从大纲教材解析几何部分的一个单元移到模块5;删除一元高次、分式不等式,把绝对值不等式移到选修4-5,把不等式证明也移到选修4-

5、1-2(文)、2-2(理)。

二、教学要求──立足基础、螺旋上升,促进主动学习、激励自主发展

1.基本要求

(1)了解不等式(组)的实际背景。

(2)理解不等式(组)对于刻画不等关系的意义和价值。

(3)会用不等式(组)表示实际问题中的不等关系,能用不等式(组)研

究含有不等关系的实际问题。

(4)了解不等式一些基本的性质。

(5)了解从实际情境中抽象出一元二次不等式模型的过程,理解一元二次

不等式的概念。

(6)理解并掌握一元二次不等式、二次函数及一元二次方程之间的关系。

(7)理解并掌握解一元二次不等式的过程。

(8)会求一元二次不等式的解集。

(9)掌握求解一元二次不等式的程序框图及隐含的算法思想。

(10)了解从实际情境中抽象出二元一次不等式(组)模型的过程。

(11)理解二元一次不等式(组)及其解集的概念。

(12)了解二元一次不等式的几何意义,理解(区域)边界的概念及其实、虚线的含义。

(13)会用二元一次不等式(组)表示平面区域。

(14)了解线性约束条件、目标函数、线性目标函数、线性规划、可行域、可行解、最优解的概念。

(15)掌握简单的二元线性规划问题的解法。

(16)了解基本不等式的代数、几何背景及其证明过程。

(17)理解算术平均数、几何平均数的概念。

(18)会用基本不等式解决简单的最大(小)值问题。

(19)通过基本不等式的实际应用,感受数学的应用价值。

2.发展要求

(1)理解并掌握不等式的基本性质。

(2)体会不等式的基本性质在不等式证明中所起的作用。

(3)一元二次不等式解法及应用。

(4)能把一些简单的实际问题转化成二元线性规划问题并加以解决。

(5)掌握基本不等式应用及其使用的条件。

三、课标教材特点分析

1.教学内容

通过前后移动、左右拆分等动作试图把体现和刻画不等关系的意义、价

值、方法和思想的有关内容进行了一次整编,使得内容上 “形式的大拼盘”在不等关系和不等思想这个层次上得到“实质性的统一”。从多角度(实际背景、几何意义、代数算理、不等思想等)体现课程标准基础性、发展性、应用性和思想性的要求。

2.教学要求

(1)在解不等式方面,课标教材有二个特点:基本要求进一步降低、重视直观合情推理。在大纲教材删除指、对数不等式和根式不等式之后又删除了一元高次不等式、分式不等式,绝对值不等式移到选修4-5(选修IB之一,不作高考要求);在课标教材的例题中,解一元二次不等式前都是先研究相应的一元二次方程的根、二次函数的图象,这是大纲教材所不及的。

(2)在不等式证明方面采取分步到位、螺旋上升的策略,但现阶段浙

江省高考对不等式证明的要求是降低的。虽然在选修1-2(文)、2-2(理)的推理与证明中提出用综合法与分析法是选修IA之一,作为浙江高考要求;但选修4-5中不等式选讲中不等式证明的常用方法及柯西、排序、均值不等式及其应用,还介绍了数学归纳法与贝努利不等式,这些内容是选修IB之一,不作为浙江高考要求。另外,基本不等式只要求了解其代数、几何背景及证明过程,应用上只要求用于求简单的最值问题。

3.教学意义

数学是思维的体操,不等式作为大纲教材的一个重点和难点,在培养学

生演绎推理能力方面起到重要作用,但大纲教材在推理的技巧性和严密性上多层次人为的过度强调,在演绎推理难度上不断提升,往往使得学生成为思维的机器,而不是思维的主人。课标教材强调合情推理和演绎推理并重,强调不等式的背景和实际应用,把不等式作为刻画现实世界中不等关系的数学工具,作为描述优化问题的一种数学模型,而不是从数学到数学的纯理论,使思维成为自然的可能,将使学生成为思维的主人。

练;强调学生体验知识的形成过程,淡化一些技巧性的要求;强调

利用图象的直观性和合情推理,淡化纯演绎推理。

3.1不等关系与不等式

这一节让学生从大文化和实际背景认识不等关系的普遍性,如章头图及其说 明诗:“横看成岭侧成峰,远近高低各不同”(这首苏东坡的《题西林壁》的后二句大家更熟悉:不识庐山真面目,只缘身在此山中);具体要求也和原教材有很大的不同,原教材作为研究不等式的理论基础,先结出实数大小比较的基本原理,再归结出五大定理和几个推论,部分还结出了证明。而课标教材也先结出实数大小比较的基本原理,但把五大定理和几个推论整理为不等式的八大性质,并只作一些简要的说明,并强调这些关于不等式的事实和性质是解决不等式问题的依据,所以在教学中,我们不必在这些性质的证明中化过多的时间,而应该着眼于通过实际背景、几何意义、具体例子来说明这些性质的合理性,对一些不等式的推断作一些分析验证;在此过程中更要重视学生的参与,师生在实际背景、几何意义、具体例子的共同作用下接受合情推理及其结论,尽可能减少学习过程中被迫无奈的成分(包括教师作为成人已具有的,而学生未具备的文化背景和经验)。另外,我个人认为引入不等关系和性质的实际背景、具体例子和性质本身都可以根据实际情况(当地学生情况和我省模块1-4-5-2-3的现实)作一些必要的调整,如问题1的内容(点到平面的距离)、章头图的形式(人教A版用熔岩峰岭图、上海教材用城市道路和高楼图)、八条性质的设置(如减对称性,增倒数性质)。

3.2一元二次不等式及其解法

在大纲教材中,集合和逻辑联结词之后简易逻辑和函数之前安排了借助二次 函数解决二次不等式有关问题,究其用意,一是让使学生进一步完善二次函数这一中学里最重要的函数的认识结构,并在理解抽象的函数概念时有一个具体的函数模型;二是巩固有关集合的基本概念;三是巩固并熟悉使用“或”、“且”二个逻辑联结词,并为学习“简易逻辑”打好基础;四是为下一章研究某些函数的定义域、值域、单调性作准备。课标教材为了防止师生在学习集合和函数概念时,借助二次不等式对函数的定义域、值域、单调性等细小问题进行大量繁琐的所谓重点训练,而忽视对函数概念的本质的理解、忽视对函数性质的讨论、忽视函数的实际应用,故课标教材采取了釜底抽薪的方法,把二次不等式放到必修5。但已经参与实验的教师中,特别是在一些多次使用传统教材的教师中,有许多人对此提出质疑,我认为这主要是受使用大纲教材(把二次不等式放在集合与函数之

间)的经验和习惯性的影响。对此,我有二个建议:部分现阶段一时难以适应的老教师,在尽可能实现课标教材设计意图的情况下可以暂时沿用以往的办法来处理;学生数学基本能力和思想(主要是本节内容学习过程中的蕴含的有关能力,如实际背景抽象出数学模型的能力、数形结合的能力、从直观到理性和从特殊到一般的认识能力)较好的班级也可以暂时沿用以往的办法来处理。但我们应努力改变这种情况。

人教A版先通过一个上网费用问题引入一元二次不等式的概念,让学生了解 从实际情境中抽象出一元二次不等式模型的过程,理解一元二次不等式的概念。然后借助具体二次函数的图象研究二次函数的零点和一元二次方程根的关系,并观察当一点P在二次函数图象上移动(即点P的横坐标x变化)时,其纵坐标y有什么变化?进而归纳出一般一元二次不等式的解法,最后让学生自主完成求解一般一元二次不等式的过程的程序框图。从实际背景到数学模型,从直观感受到理性认识,从特殊到一般,这种处理符合学生的认知规律,有助于学生认清知识的形成过程,加深对知识的理解,更重要的是在此过程中学生能有体验的感受,往往使学生领悟到数学的思想方法。故教学中要重体验淡模式、重应用淡技巧、重背景控难度。总之,要重视理解并掌握解一元二次不等式的过程,突出数形结合的思想,理解二次函数、方程、不等式的关系,达到求一元二次不等式的解集的基本要求即可,相关内容在选修4-5中将进一步讨论。

3.3二元一次不等式(组)与简单的线性规划问题

不等关系在日常生活、现实生产、科学实验中大量存在,如上网时间费用、刹车距离与车速关系、资源利用、人力调配、生产安排等问题。不等式是用来刻画不等关系的优化工具,二元一次不等式(组)刻画区域的准确性和可活动性使之成为解决二元线性规划问题的有效工具。本节安排了线性规划及其实习作业内容,教学中要立足于实际问题是数学问题的源泉,解决实际问题是数学研究的主要目的之一;同时,由于浙江省先安排上模块5,后上模块2,故高一教学时应作适当调整,一种是把整节切割到直线方程之后,另一种是适当补充直线方程有关内容(如倾斜角、斜率等),我倾向选择后一种方案(主要基于二点理由:倾斜角、斜率比较直观,三角函数已学),主要理由是遵循教材设计意图(不等关系);另外,多元条件极值是有一定难度的,教学中不应再过多展开,要让学生通过自主研究理解掌握基本解法即可,如可让学生自主探究完成二元一次不等式表示的平面区域(象探究一元二次不等式的解法一样,经历观察、尝试、思考等探究的过程);最后,要帮助学生实现从实际问题中抽象出二元一次不等式(组),这是本节的难点。

3.4基本不等式:abab

首先,我们应明确,本节的重点是应用数形结合的思想理解基本不等式,从 不同角度探索它的证明过程(证明意识的培养),难点是利用之求最大(小)值,一般不等式证明不是本节的重点和难点,选修1-2(文)、2-2(理)、4-5中将会继续研究;其次,基本不等式只限于二元;第三,教学中应突出用基本不等式解决简单问题,特别是实际问题(如周长、面积、造价等)的最大(小)值;第四,不要有意设置一些特殊问题去强调所谓“一正、二定、三相等”。

第二篇:人教数学数学选修不等式选讲简介

人教数学(A版)培训手册之三十九──“不等式选讲”简介

人教A版普通高中数学课程标准实验教科书(选修4-5)《不等式选讲》是根据教育部制订的《普通高中数学课程标准(实验)》(以下简称课程标准)的选修4系列第5专题“不等式选讲”的要求编写的。根据课程标准,本专题介绍一些重要的不等式和它们的证明、数学归纳法和它的简单应用

一、内容与要求1.回顾和复习不等式的基本性质和基本不等式。

2.理解绝对值的几何意义,并能利用绝对值不等式的几何意义证明以下不等式:(1)∣a+b∣≤∣a∣+∣b∣;(2)∣a-b∣≤∣a-c∣+∣c-b∣;(3)会利用绝对值的几何意义求解以下类型的不等式:∣ax+b∣≤c;∣ax+b∣≥c;∣x-c∣+∣x-b∣≥a。3.认识柯西不等式的几种不同形式。理解它们的几何意义。(1)证明柯西不等式的向量形式:|α||β|≥|α·β|。(2)证明:(a+b)(c+d)≥(ac+bd)。(3)证

明:

≥。4.用22222参数配方法讨论柯西不等式的一般情况:5.用向量递归方法讨论排序不等式。6.了解数学归纳法的原理及其使用范围,会用数学归纳法证明一些简单问题。7.会用数学归纳法证明贝努利不等式:(1+x)>1+nx(x>-1,n为正整数)。了解当n为实数时贝努利不等式也成立。

8.会用上述不等式证明一些简单问题。能够利用平均值不等式、柯西不等式求一些特定函数的极值。9.通过一些简单问题了解证明不等式的基本方法:比较法、综合法、分析法、反证法、放缩法。

二、内容安排 本专题内容分成四讲,结构如下图所n

示:

本专题的内容是在初中阶段掌握了不等式的基本概念,学会了一元一次不等式、一元一次不等式组的解法,多数学生在学习高中必修课五个模块的基础上展开的.作为一个选修专题,教科书在内容的呈现上保持了相对的完整性.第一讲是“不等式和绝对值不等式”,它是本专题的最基本内容,也是其余三讲的基础.

本讲的第一部分类比等式的基本性质,从“数与运算”的基本思想出发讨论不等式的基本性质,这是关于不等式在运算方面的一些最基本法则.接着讨论基本不等式,介绍了基本不等式的一个几何解释:“直角三角形斜边上的中线不小于斜边上的高”,并把基本不等式推广到三个正数的算术—几何平均不等式.对于一般形式的均值不等式,则只作简单介绍,不给出证明.在此基础上,介绍了它们在解决实际问题中的一些应用,如最基本的等周问题,简单的极值问题等。第二部分讨论了有关绝对值不等式的性质及绝对值不等式的解法.绝对值是与实数有关的一个基本而重要的概念,讨论关于绝对值的不等式具有重要的意义.

绝对值三角不等式是一个基本的结论,教科书首先引导学生借助于实数在数轴上的表示和绝对值的几何意义,引导学生从数的运算角度探究归纳出绝对值三角不等式,接着联系向量形式的三角不等式,得到绝对值三角不等式的几何解释,最后用代数方法给出证明.这样,数形结合,引导学生多角度认识这个不等式,逐步深化对它的理解.利用绝对值三角不等式可以解决形如的函数的极值问题,教科书安排了一个这样的实际问题

对于解含有绝对值的不等式,教科书只讨论了两种特殊类型不等式的解法,而不是系统地对这个问题进行研究。教科书引导学生探讨了形如解法,以及形如或或的不等式的的不等式的解法.学生通过这两类含有绝对值的不等式能够基本学到解含有绝对值的不等式的一般思想和方法。第二讲是“证明不等式的基本方法”.对于不等式的深入讨论必须首先掌握一些基本的方法,所以本讲内容也是本专题的一个基础内容。本讲通过一些比较简单的问题,介绍了证明不等式的几种常用而基本的方法:比较法、综合法、分析法、反证法和放缩法. 比较法是证明不等式的最基本的方法,比较法可以分为两种,一种是相减比较法,它的依据是:

另一种是相除比较法,是把不等式两边相除,转化为比较所得商式与1的大小关系,它的依据是:当b>0

时,在比较法的两种方法中,相减比较法又是最基本而重要的一种方法。在证明不等式的过程中,根据对于不等式的条件和结论不同探索方向作分类,证明方法又可以分为分析法和综合法。在证明不等式时,可以从已知条件出发逐步推出结论的方法是综合法;寻找结论成立的充分条件,从而证明不等式的方法就是分析法.证明不等式的方法还可以分为直接证法和间接证法,反证法是一种间接证法.它从不等式结论的反面出发,即假设要证明的结论不成立,经过正确的推理,得出矛盾结果,从而说明假设错误,而要证的原不等式结论成立

在证明不等式的过程中,有时通过对不等式的某些部分作适当的放大或缩小达到证明的目的,这就是所谓的放缩法. 教科书对以上方法都结合实例加以介绍。本讲内容对进一步

讨论不等式提供了思想方法的基础. 本讲的教学内容中,用反证法和放缩法证明不等式是新的课程标准才引入到中学数学教学中的内容。第三讲是“柯西不等式和排序不等式”.本讲介绍两个基本的不等式:柯西不等式和排序不等式,以及它们的简单应用. 柯西不等式是基本而重要的不等式,是推证其他许多不等式的基础,有着广泛的应用.教科书首先介绍二维形式的柯西不等式,再从向量的角度来认识柯西不等式,引入向量形式的柯西不等式,再介绍一般形式的柯西不等式,以及柯西不等式在证明不等式和求某些特殊类型的函数极值中的应用。在介绍了二维形式的柯西不等式的基础上,教科书引导学生在平面直角坐标系中,根据两点间的距离公式以及三角形的边长关系,从几何意义上发现二维形式的三角不等式。接着借助二维形式的柯西不等式证明了三角不等式。在一般形式的柯西不等式的基础上,教科书安排了一个探究栏目,让学生通过探究得出一般形式的三角不等式。排序不等式也

是基本而重要的不等式,一些重要不等式可以看成是排序不等式的特殊情形,例如不等式

.有些重要不等式则可以借助排序不等式得到简捷的证明。教科书在讨论排

序不等式时,展示了一个“探究——猜想——证明——应用”的研究过程,目的是引导学生通过自己的数学活动,初步认识排序不等式的数学意义、证明方法和简单应用。

柯西不等式、三角不等式和排序不等式也是数学课程标准正式引入到高中数学教学中。第四讲是“数学归纳法证明不等式”.本讲介绍了数学归纳法及其在证明不等式中的应用.对于某些不等式,必须借助于数学归纳法证明,所以在不等式选讲的专题中安排这个内容是很有必要的。教科书首先结合具体例子,提出寻找一种用有限步骤处理无限多个对象的方法的问题.然后,类比多米诺骨牌游戏,引入用数学归纳法证明命题的方法,并分析了数学归纳法的基本结构和用它证明命题时应注意的问题(两个步骤缺一不可).接着举例说明数学归纳法在证明不等式中的应用,特别地,证明了贝努利不等式。本专题的教学重点:不等式基本性质、基本不等式及其应用、绝对值不等式的解法及其应用;用比较法、分析法、综合法证明不等式;柯西不等式、排序不等式及其应用; 教学难点:三个正数的算术-几何平均不等式及其应用、绝对值不等式解法;用反证法,放缩法证明不等式;运用柯西不等式和排序不等式证明不等式;

本专题教学约需18课时,具体分配如下(仅供参考)第一讲 不等式和绝对值不等式

一、不等式约3课时

二、绝对值不等式约2课时第二讲 证明不等式的基本方法

一、比较法约1课时

二、综合法与分析法约2课时

三、反证法与放缩法约1课时

第三讲 柯西不等式与排序不等式一、二维形式的柯西不等式约1课时二、一般形式的柯西不等式约1课时

三、排序不等式约2课时

第四讲 数学归纳法证明不等式

一、数学归纳法约2课时

二、用数学归纳法证明不等式约2课时

学习总结报告约1课时

三、编写中考虑的几个问题

根据课程标准,本专题应该强调不等式及其证明的几何意义与背景,以加深学生对这些不等式的数学本质的理解,提高学生的逻辑思维能力和分析解决问题的能力,我们在教科书的编写中努力去实现课程标准的思想。

(一)重视展现不等式的几何背景,力求让学生对重要不等式有直观理解

数量关系和空间形式是数学研究的两个重要方面,不等式则是从数量关系的角度来刻画现实世界的。我们一般借助于代数方法证明不等式。代数证明要经过一系列的变形,人们常常不能很直接地看出其中的数量关系。而借助于几何的方法,把不等式中的有关量适当地用图形中的几何量表示出来,则往往能很好地指明不等关系,使学生从几何背景的角度,直观地,从而也是直接地理解不等式。本专题中的重要不等式都有明显的几何背景,教科书注意呈现不等式的几何背景,帮助学生理解不等式的几何本质。如对于是借助于面积关系,绝对值三角不等式是借助于向量和三角形中的边长关系,柯西不等式是借助于向量运算,排序不等式是借助于三角形的面积。这样,逐渐引导学生在面对一个数学问题时能从几何角度去思考问题,找到解决问题的途径

(二)重视数学思想方法的教学

数学思想是对于数学知识(数学中的概念、法则、性质、公式、公理、定理、方法等)的理性的、本质的、高度抽象和概括的认识,带有普遍的指导意义,蕴涵于运用数学方法分析、处理和解决数学问题的过程之中。数学方法是研究或解决数学问题并使之达到目的的手段、方式、途径或程序。数学思想方法的教学是中学数学教学中的重要组成部分,有利于学生加深对于具体数学知识的理解和掌握。本专题的内容包涵了丰富的数学思想方法,如应用重要不等式解决实际问题中体现出来的优化思想,在重要不等式的呈现过程中的数形结合思想,在解不等式中体现的转化的思想,函数思想,以及证明不等式的比较法、综合与分析法、放缩法、反证法、数学归纳法,在证明柯西不等式中的配方法等,对于这些数学思想和方法,教科书都及时作归纳和总结,使学生能够结合具体的问题加以理解和体会。

(三)重视引导学习方式和教学方式的改进

在目前的中学数学教学实践仍存在一些问题,就学生的学习而言,比较突出的就是被动的接受式的学习,教师偏重于灌输式的教学,启发式的教学原则做得不够。学生的问题意识不强,发现问题的能力不强,独立地解决问题的能力也不强。针对这种情况,教科书重视引导学生提出问题,教科书设置了许多探究栏目,鼓励学生主动探究,引导学生通过类比提出问题及其解决方法,对于数学结论进行特殊化、作推广。例如,在讲述了基本不等式以后,教科书就提出了一个思考问题:“对于三个正数会有怎样的不等式成立呢?”在证明了关于三个正数的均值不等式以后,又直接给出了一般的均值不等式;在证明了二维和三维的柯西不等式以后,就设置了一个探究性问题“对比二维形式三维形式的柯西不等式,你能猜想一般形式的柯西不等式吗?”;再如“一般形式的三角不等式应该是怎样的?如何应用一般形式的柯西不等式证明它?请同学自己探究。”等等,这样的探究性问题在教科书中处处可见。

(四)注意发展数学应用意识

重要不等式在许多实际问题中可以得到应用,在实际工作中常常能起到节约能源,降低成本,提高效率,加快速度等作用。在本专题中,教科书注意体现数学在实际工作中的广泛应用,编写了一些体现数学应用的例、习题。如经典的等周问题、盒子体积问题、施工队临时生活区选点问题、关于面积和体积的最值问题。通过这些简单的应用问题,使学生体会数学在实践中的作用。

四、对教学的几个建议

(一)注意把握教学要求

无论是不等式还是数学归纳法,都已经发展成为内容非常丰富的初等数学分支,也出版了一些专门的论著,老师们对于这些内容一般都有丰富的教学经验,很容易把这些内容作一

些拓展和补充。所以,在这个专题的教学中,要特别注意把握好教学要求,不要随意提高教学要求,而应该按照数学课程标准的要求来控制教学的深广度。课程标准对于本专题的几个教学内容都明确的教学要求,如:对于解含有绝对值的不等式,只要求能解几种特殊类型的不等式,不要求学生会解各种类型的含有绝对值的不等式。对于数学归纳法在证明不等式的要求也只要求会证明一些简单问题。只要求通过一些简单问题了解证明不等式的基本方法,会利用所学的不等式证明一些简单不等式,等等。

另外,在不等式和数学归纳法的许多问题中,常常需要一些技巧性比较强的恒等变形,在本专题的教学中则要控制这方面的教学要求,不要使教学陷于过于形式化和复杂的恒等变形的技巧之中,教学中不要补充一些代数恒等变形过于复杂或过于技巧化的问题和习题,以免冲淡对于基本思想方法的理解,也不要引入一些过于专业和形式化、抽象化的数学符号语言,对于数学归纳法的理解,不必要求学生对于方法的理解水平提高到专业数学工作者才需要的数学理论高度,而只需要通过一些学生容易理解的数学问题中加深对于方法的理解和掌握。对于大多数的学生来说,要重视通过比较简单的问题让学生认识、理解和掌握这部分的基本数学思想和方法。

当然,对于部分确有余力的学生,仍可以适当对于教学内容作一些拓展,如可以介绍一般的均值不等式的证明及其应用,以使学生对于这一重要不等式有一个比较完整的了解。

(二)要抓住教学重点

无论对于基本不等式、柯西不等式、排序不等式,还是解含有绝对值的不等式,不等式证明的方法,或数学归纳法的教学,都要抓住教学重点,抓住基本思想基本方法的教学,力求以简驭繁。对于几个重要不等式,最基本的是二元(二维)的情况,核心的思想也是在二元(二维)的不等式中得到直接的体现;对于不等式的证明的最基本的方法是比较法;解含有绝对值的不等式的最基本和有效的方法是分区间来加以讨论,把含有绝对值的不等式转化为不含绝对值的不等式;让学生能对数学归纳法思想真正理解和掌握,就能使学生灵活地加以应用。这样,学生就能掌握本专题最基本也是最重要的知识。

第三篇:数学:9.3一元一次不等式组教案(人教新课标七年级下)范文

9.3一元一次不等式组

教学目标:1.学生通过生活实例,了解一元一次不等式组的意义和一元一次不等式组的解集的概念。

2.学生能利用数轴熟练的确定一元一次不等式组的解集,培养学生的观察能力,分析能力。

3.掌握由两个一元一次不等式所组成的不等式组的解集的四种情况。

4.学生通过对一元一次不等式组的学习,认识到事物间的相依关系。

教学重点:根据一元一次不等式组的四种情况,说出一元一次不等式组的解集。教学难点:利用数轴确定一元一次不等式组的解集。教学过程: 一.创设情境:

1.你能列出解决这个问题的式子吗?

(小黑板)某学校初一()班准备一次秋季外出考察活动,该班级共有学生40人。学校根据预算要求该班这次活动的总经费不能超过2400元;旅游公司按成本计算这次活动总经费不能低于2000元。如果考虑双方的要求,学生所付的经费应该在哪一范围之内?

学生列式:设每人所付的经费为x元 40x≤2400 40x≥2000

40x2400 同时满足两个条件,列成不等式组 

40x2000给出定义:由几个含有同一个未知数的一次不等式组成的不等式组叫做一元一次不等式组。

2.(小黑板)判别下列不等式组中哪些是一元一次不等式组,并说明为什么?

x0x3x2(1)(2)(3) x30y3x42x354x103x14(4)(5)2(6)3x21

x30xy1x90二.尝试探究:

1.问题:怎样确定不等式组的解集呢? 40x2400x60 比如:的解集怎样确定呢?这个式子就是不40x2000x50等式组的解集吗?

2.利用数轴来确定不等式组的解集

x3x3x3x3 例:(1)(2)(3)(4)

x1x1x-1x1 本题教师和学生共同完成

巩固练习:(书四题,学生练习,学生板演,小组互相检查,教师巡视指导)

小组讨论:当a>b时,如何确定下列不等式组的解集?

xaxaxaxa(!)(2)(3)(4)

xbxbxbxb 课后思考:当a

三.归纳小结:

1.本节课我们认识了什么是一元一次不等式组及其解集,并学会了利用数轴来确定不等式组的解集。(利用例题中四个不等式组解集情况说明不等式组解集取法)

2.一元一次不等式组和二元一次方程组类似,也有不同的地方。两者都是由两个或几个一次式组成,但不等式组是同一个字母,方程组中有两个字母。3.具体求不等式组解集的方法,下节课我们接着学习。

四.布置作业:

练习册B册习题9.3

同步练习

第四篇:数学常用不等式

一:一些重要恒等式

1:

2:

3:

4:

5:三角中的等式(在大学中很有用)

6:欧拉等式二重要不等式 1:绝对值不等式

(e是自然对数的底,i是虚根单位)

(别看简单,常用)

2:伯努利不等式

(xi符号相同且大于-1)

特例 :3:柯西不等式

当且仅当x=0时等号成立

4:

5:

6:切比雪夫不等式

若,则

若,则三:常见的放缩(均用数学归纳法证)

1:

2:

3: 4:

5:

6:对数不等式(重要)

7:8:均值不等式我不说了(绝对的重点)

9:四:一些重要极限重要的等价量(书上有,但这些重要极限需熟背如流)

第五篇:七年级数学下册_第九章《不等式与不等式绷》综合测试题_人教新课标版

joe 有一个很,他是一个警察局里的美术家,一些人看见了罪犯然后告诉joe,他们告诉joe罪犯都长什么样。然后joe画下罪犯的图片,然后警察就会把照片放在报纸上或者在电视上找到罪犯。他想要画好任何一张关于罪犯的照片,但这个工作有些困难。许多人并不总是意见一致,所以他们可能描述同一个人是十分困难的。同样,他们总是不能很好的记住罪犯“这个罪犯中等身材,并且十分年轻。他有很长的棕色的直头发和大大的眼睛”一个女士说,但另一些女士说:他很高又很瘦,他有一头卷发。他大概有三十岁了。在结尾,真正的罪犯是个很矮和很胖的老男人,并且他又黑色的短头发

用心爱心 专心1

下载人教版数学不等式解读(5篇)word格式文档
下载人教版数学不等式解读(5篇).doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    2014年人教A版选修4-5教案 二 用数学归纳法证明不等式

    二 用数学归纳法证明不等式 教学要求: 了解数学归纳法的原理,并能以递推思想作指导,理解数学归纳法的操作步骤,能用数学归纳法证明一些简单的数学命题,并能严格按照数学归纳法证......

    人教新课程数学第二册教案

    一、位置 单元分析 一、 教学内容: 教材第1~9页,上下,前后,左右的认识,以及在此基础上从两个维度来确定物体的位置。 二、 教学目标: 1、 通过直观演示和动手操作,使学生认识“上、......

    人教八年级上数学教学计划

    2014-2015学年八年级数学上册教学计划 孙永刚 一、指导思想 教育学生掌握基础知识与基本技能培养学生的逻辑思维能力、运算能力、空间观念和解决简单实际问题的能力,使学生......

    七年级下学期数学教学计划(人教)

    七年级下学期数学教学计划 一.情况分析 1.学生情况: 本班级现有学生 人,其中男生 人,女生 人。从上学期的教学观察与测试结果看,这班学生的学习态度较端正,学习习惯较差,跟不上教......

    八年级数学教学计划人教板

    八年级是初中学习过程中的关键时期,学生基础的好坏,直接影响到将来是否能升学。下面是小编收集整理的八年级数学教学计划人教板,希望对你有所帮助!八年级数学教学计划(一)一、指导......

    2014年人教A版选修4-5教案 三 排序不等式

    三 排序不等式 教学要求:了解排序不等式的基本形式,会运用排序不等式分析解决一些简单问题,体会运用经典不等式的一般方法. 教学重点:应用排序不等式证明不等式. 教学难点:排序不......

    七年级数学不等式课件

    教学目标:通过对具体实例的学习,使学生能够了解生活中的不等量关系,理解不等式的概念,知道什么是不等式的解,为以后学习不等式的解法奠定基础.知识与能力:1.通过对具体事例的分......

    高三数学均值不等式

    3eud教育网 http://百万教学资源,完全免费,无须注册,天天更新!3.2 均值不等式 教案教学目标:推导并掌握两个正数的算术平均数不小于它们的几何平均数这个重要定理.利用均值定理求......