第一篇:计算机在物理学中的应用教学大纲
甘肃民族师范学院物理教育专业课程教学大纲
计算机在物理学中的应用
一、说明
(一)课程性质
本课程是专业方向课。本课程需要有大学计算机以及普通物理的知识。
(二)教学目的本课程设计主要目的是熟悉和掌握MATLAB语言的应用环境、调试命令,各种基本命令和高级操作命令,函数和数据可视,操作界面设计等,为后续的专业课程提供有力的工具。以掌握MATLAB软件的基础知识为主,使学生通过编程实例掌握MATLAB语言的编程基础与技巧、并将之运用到的实际物理问题中。
(三)教学内容
本课程主要讲授三部分内容:
1.MATLAB程序设计基础
2.矩阵线性代数算法实现
3.数据处理
(四)教学时数:
30学时
(五)教学方式:
采用讲授、讨论和研究相结合的方法进行教学。
二、本文
第一章MATLAB程序设计基础
教学要点:
常量与变量 数组 运算符 m文件
教学时数:
10学时
教学内容:
第一节 常量与变量(3学时)
特殊常量一般变量
第二节 数组与运算符(4学时)
细胞数组与结构数组 算术运算符 关系运算符 逻辑算术符
第三节 m文件(3学时)
命令文件 函数文件
考核要求:
1.理解常量与变量区别。
2.掌握建立与引用数组的方法,熟练运用运算符。
3.掌握m文件编辑、调用与调试。
第二章矩阵线性代数算法实现
教学要点:
矩阵的生成 矩阵的部分扩充、删除、修改、变维、数据变换 特殊矩阵矩阵的基本运算齐次线性方程组通解的解法 非齐次线性方程组通解的解法
教学时数:
10学时
教学内容:
第一节 矩阵的生成与修改(3学时)
矩阵的生成的方法 矩阵的部分扩充、删除、修改、变维、数据变换 特殊矩阵
第二节 矩阵基本运算与高级运算(4学时)
矩阵的基本运算与矩阵函数 矩阵的逆与伪逆 矩阵与向量的范数 竞争的分解
第三节 求线性方程组的解(3学时)
齐次线性方程组通解的解法 非齐次线性方程组通解的解法
考核要求:
1.掌握矩阵的生成与修改的方法
2.掌握矩阵基本运算与高级运算
3.熟练求解线性方程组
第三章数据处理
教学要点:
曲线拟合 求解偏微分方程 泰勒展开
教学时数:
15学时
教学内容:
第一节 数据插值(3学时)
一维插值 二维插值 曲线拟合第二节 数值计算(3学时)
求解常微分方程 求解偏微分方程
第三节 符号计算(4学时)
符号定义 符号运算
考核要求:
1.掌握数据插值的方法
2.掌握数值计算。
3.掌握符号计算
三、参考书目:
1.徐金明,《MATLAB实用教程》,清华大学出版社,2005年。
2.孙蓬,《MATLAB基础教程》,清华大学出版社,2011年。
四、本课程使用教具和现代教育技术的指导性意见
本课程是专业方向课程,此课程的特点是力求理论的系统性。在教学中要采用常规教学与多媒体教学相结合的课堂教学方法以及图片,幻灯片等资料,使教学内容丰富多彩。
五、课外学习
(一)课外读书
1、目标
通过广泛而有序的课外读书获取、筛选信息,开阔学生的视野、丰富学生的知识、培养适应社会发展的各种能力。
2、阅读书目
(1)张圣勤,《MATLAB 7.0实用教程》,高等教育出版社,2006年。
3、学习要求
(1)复述性理解:理解读物所传递的基本信息和读物提供的内容;
(2)解释性理解:把读物内容转化为自己的认识;
(3)评价性理解:对所读材料内容做出自己的判断;
(4)创造性理解:逐步培养学生探究性阅读和创造性阅读的能力,提倡多角度的、有创意的阅读,利用阅读期待、阅读反思和批判等环节,拓展思维空间,提高阅读质量。
4、时间安排
课余时间以学生自学为主,教师不定期安排指导课不少于4个学时。
5、评价方式
通过检查学生的读书笔记、摘记、阅读卡等书面材料,以量化的形式定时、定量甚至定主题地来评价学生的阅读情况。同时通过学生间的互相检查,来达到评价的目的。使课外阅读能够趋于常规化,做到天天读、周周读、月月读,同时也充分挖掘了学生自我评价能力。评价可分为优、良、中、及格和不及格五个档次。
(二)课外讨论
1、目标
通过有组织的课外专题讨论形式,培养学生的语言表达能力和逻辑推理能力、激发学生的创造性思维能力,丰富学生的知识、使学生成长为适应社会发展需求的合格人才。
2、讨论内容
讨论MATLAB在物理学中应用的相关问题。
3、讨论要求
围绕教学中心制定讨论计划,通过有组织的课外讨论,使学生在语言表达能力和逻辑推理能力、以及创造性思维能力等方面得到较大提高,掌握小型讨论会的组织方法,并能够较为熟练地掌握各种讨论技巧和方法。
4、时间安排
全学期组织二次班级讨论会,可以设置兴趣小组,或者集体讨论。
5、评价方式
教师参与学生讨论会,并对学生讨论的综合能力做出客观评价,同时鼓励学生间的互相评价和自我评价。评价可分为优、良、中、及格和不及格五个档次。
(三)实践活动
1、目标
实践活动的教学安排,主要目的是促使学生比较扎实的掌握专业技能,提高学生专业实践能力与创新素质。主要办法是强化实训教学的力度。在校内专业实验室,由辅导教师专门指导,解决所遇到的各种难题。
2、实践内容
利用MATLAB解量子力学、电动力学、理论力学、统计物理中相关方程。
3、实践要求
对实践内容有所了解,甚至熟练掌握。
4、时间安排
双周进行一次实践活动。
5、评价方式
根据学生的出勤、实习态度,完成的实训报告及各项操作的质量,实训小组的团队配合,个人创新能力等多方面综合评定。
主要项目标准:
(1)考勤、纪律、态度占10%;
(2)实训报告占40%;
(3)操作演练达标占40%;
(4)其他综合占10%;
实践活动结束,指导教师根据学生在每一阶段的成绩综合给出最终评价;评价可分为优、良、中、及格和不及格五个档次。
(四)课外作业
1、目标
(1)复习巩固上课所学的知识或检查课堂效果;
(2)培养学生的软件应用,提高信息素质;
(3)培养学生严谨、认真的学习习惯。
2、作业内容
每章讲完后根据学生的实际情况布置适当的作业。
3、作业要求
快速阅读科技文献并翻译相关科技文献。
4、时间安排
约每二周布置一次作业。
5、评价方式
任课教师按照作业要求对学生作业给出最终评价;评价可分为优、良、中、及格和不及格五个档次。
第二篇:材料物理学教学大纲
《材料物理学》课程教学大纲
一、课程基本信息
课程编号:13103102
课程类别:专业核心课程
适应专业:材料物理
课程总的教学时数:64学时
课程总学分:3 学分
课程简介:
材料物理是介于物理学与材料学之间的一门边缘学科,它旨在利用物理学中的一些学科的成果来阐明材料中的种种规律和转变过程。本课程试图从物理学的角度来说明物质的微观结构、组织形貌、原子电子运动状况以及它们与材料性能和成分之间的关系, 即突出了物理学的主干,从物理学的一些基本概念、基本原理、基本定律出发, 并建立相应的物理模型, 阐述材料本身的结构、性质和它们在各种外界条件下发生的变化及其变化规律。本书课程内容丰富、涉及面广、实用性强。主要介绍金属结构理论;缺陷物理;材料强化;导电物理基础;材料的介电行为;铁电物理;磁性物理;材料的相变;非晶态物理;低维材料结构。授课教材:《材料物理》王国梅、万发荣主编,武汉理工大学出版社,2004
参考书目:
[1]《材料物理学概论》,李言荣、恽正中主编,清华大学出版社,2001年。
[2]《材料物理导论》,熊兆贤主编,科学出版社,2002年。
[3]《材料物理导论》,徐毓龙主编,电子科技大学出版社,1995年。
二、课程教育目标
材料物理学是材料学中一门重要的基础课程,通过这门课程的教学,达到以下目标:
(1)要求学生能够掌握典型固体材料的结构、物理现象、性质、形成机制和应用,了解材料的制备技术和发展状况;
(2)要求学生能够掌握材料物理的基本概念,基本理论和方法技术。
三、教学内容与要求
第一章概论2学时
第二章材料结构理论
教学重点:晶体学中的一些基本概念和初步计算方法
教学难点:材料结构的实验表征方法
教学时数:6学时
教学内容:概述,原子结合与结合键,晶体结构与晶体学,准晶、非晶和液晶,材料结构的实验研究
教学方式:课堂讲授
教学要求:
(1)了解材料中原子的结合方式:离子键、共价键、极化键、金属键。
(2)掌握晶体学中的一些基本概念和初步计算方法。
(3)了解准晶、非晶、液晶的概念。
(4)熟悉材料结构的实验表征方法。
第三章缺陷物理
教学重点:点缺陷的概念、分类及其对材料物理性能的影响
教学难点:面缺陷
教学时数:6学时
教学内容:缺陷物理概述,点缺陷,原子扩散理论,离子晶体中的点缺陷及其导电性,位
错,面缺陷
教学方式:课堂讲授
教学要求:
(1)掌握点缺陷的概念、分类及其对材料物理性能的影响。
(2)了解材料中原子的扩散现象和扩散机制。
(3)了解离子晶体中的点缺陷及其导电性。
(4)掌握位错概念及其对晶体性质的影响。
(5)了解面缺陷和晶界能。
第五章导电物理
教学重点:金属材料和半导体材料的导电机制,能带理论
教学难点:半导体的物理效应
教学时数:8学时
教学内容:导电物理概述,材料的导电性能,半导体与p-n结,半导体的物理效应,半导
体陶瓷的缺陷化学理论基础,能带理论的应用
教学方式:课堂讲授
教学要求:
(1)掌握金属材料和半导体材料的导电机制。
(2)了解材料的导电性能与材料的结构的关系。
(3)了解一些功能材料如p-n结和晶体管。
(4)了解材料中光电的相互联系及其应用。
第六章电介质物理
教学重点:电介质理论,电介质的极化响应及行为,电介质的电荷转移、电导、损耗及击
穿等特性
教学难点:静电场中的电介质行为
教学时数:10学时
教学内容:电介质概述,静电场中的电介质行为,变动电场中的电介质行为及损耗,极化
驰豫,动态介电系数,固体电介质的电导与击穿
教学方式:课堂讲授
教学要求:
(1)掌握电介质的极化响应及行为。
(2)掌握电介质的电荷转移、电导、损耗及击穿等特性。
(3)了解电介质的概念、分类及四大基本常数。
(4)掌握电介质理论。
第七章铁电物理
教学重点:铁电物理学的一些基本概念,铁电体的电畴和电滞回线
教学难点:铁电体的电畴和电滞回线
教学时数:8学时
教学内容:铁电物理的一般性质,铁电体的电畴和电滞回线,铁电相变与晶体的结构变化,铁电体物理效应,铁电物理效应的实验研究
教学方式:课堂讲授
教学要求:
(1)掌握铁电物理学的一些基本概念。
(2)了解自发极化产生的机制、铁电相变与晶体结构的变化。
(3)了解极化状态在各种外界条件下的变化,即各种物理效应:介电响应、压电、热释电、电致伸缩、光学效应等。
(4)掌握铁电体的电畴和电滞回线。
第八章磁性物理
教学重点:物质磁性的来源、原子磁矩的计算和材料中原子磁矩的计算规则,磁性分类、顺磁性和抗磁性概念及居里-外斯定理
教学难点:磁畴与磁畴结构
教学时数:10学时
教学内容:磁性物理概述,原子和离子固有的磁矩,物质的抗磁性和顺磁性,铁磁性的分
子场理论,亚铁磁性的分子场理论,铁磁体中的磁晶各向异性、磁致伸缩,磁
畴与磁畴结构
教学方式:课堂讲授
教学要求:
(1)掌握物质磁性的来源、原子磁矩的计算和材料中原子磁矩的计算规则。
(2)掌握磁性分类、顺磁性和抗磁性概念及居里-外斯定理。
(3)了解铁磁性的分子场理论和亚铁磁性的超交换理论。
(4)了解铁磁性物质内部的能量和磁畴的形成。
第九章 材料的相变
教学重点:相变的基本类型,有序-无序相变,朗道相变理论
教学难点:朗道相变理论
教学时数:6学时
教学内容:概述,相变的基本类型,马氏体相变,有序无序相变,朗道相变理论概要,相
变微观理论简介,相变的实验研究
教学方式:课堂讲授
教学要求:
(1)掌握相变的基本类型和划分的依据
(2)了解马氏体相变和朗道相变理论
(3)了解相变微观理论。
第十章 非晶态物理基础
教学重点:非晶态固体的结构,非晶态半导体
教学难点:非晶态半导体
教学时数:4学时
教学内容:概述,非晶态固体的结构,非晶态固体结构模型,非晶态固体的形成,非晶态
半导体
教学方式:课堂讲授
教学要求:
(1)掌握非晶态固体的结构特点以及非晶态半导体的电子态和能带模型
(2)知道非晶态固体的形成(3)了解非晶态半导体的电导
第十二章 低微材料结构
教学重点:薄膜的结构和缺陷,薄膜的表面和界面
教学难点:界面结构和界面特性、电接触
教学时数:4学时
教学内容:薄膜的形成,薄膜的结构和缺陷,薄膜的表面和界面,薄膜的尺寸效应薄膜和
基片的附着
教学方式:课堂讲授
教学要求:
(1)掌握薄膜形成的理论基础,掌握薄膜的尺寸效应
(2)知道附着机理和附着的基本概念
(3)了解薄膜的内应力
四、作业
该课程原则上每次课都布置作业,除了教材中的习题,也可以补充一些典型习题。
五、考核方式与成绩评定
考核方式:考试。
成绩评定:总评成绩=平时成绩(30%)+期末考试(70%),其中平时成绩是平时作业与出勤情况,视具体情况而定。
执笔人:
责任人:
2013年8月
第三篇:《计算机应用基础》教学大纲
计算机应用基础教学大纲
自我介绍、点名
了解同学的计算机基础
提问:平时都使用计算机吗?
一般使用计算机干些什么?
可能有的同学会觉得这门课程的内容太基础了,开机关
机、上网打游戏,使用word、excel等这些内容每天操作好几遍,甚至几十遍,有什么好学的。那我问一下:
世界上第一台计算机是谁发明的?计算机由那几个部分
组成的?
经常使用excel的同学,怎么进行数据的函数计算、数据
筛选和分类汇总、作图?
《计算机应用windows and excel》课程教学大纲
一、课程的地位及任务
计算机已经成为当今社会的一项基本技能。就像从前普及汉字,消除文盲一样,现在计算机盲也是不被社会所适应的。
因此,《计算机应用基础》课程是普及计算机文化教育的一门公共课,是大专院校各专业的必修课程。其主要任务是让学生掌握的计算机的基本知识,掌握计算机的基本结构、熟练掌握计算机基本操作技能,能熟练运用计算机进行文字、表格处理的能力,具有初步的Internet网使用和计算机安全知识,为学习计算机编程语言和计算机技术在专业课程中的应用打下基础,为将来运用计算机从事文字、表格处理和常规的网络信息检索、电子邮件收发、办公信息处理、和其他专业课的学习奠定基础。
二、课程的教学内容和教学要求
课程的教学内容包括书上的10张内容:基本原理、基本操作等。
今天稍后我们要讲述的第一张内容的知识点主要包括:
了解计算机的发展历史、计算机的分类和计算机的应用领域。
数据与编码:了解计算机中的数制及其转换。
微机系统的基本组成:掌握硬件系统、软件系统的基本组成;
计算机应用基础教学大纲
了解微机的基本配置及性能指标
计算机系统安全概述:了解计算机系统安全的意义、了解计算机系统安全的立法情况、掌握常见的病毒种类及防治方法。
如果时间容许的话,我们今天还要介绍Windows基本操作。
接下来每张内容的知识点我们都会在每次课前介绍。
三、课程学时分配
十章内容、根据你们的掌握情况进行详略设置,最后一节课考前指导和答疑。
讲课过程中也将根据你们的兴趣安排其他的内容:如word、ppt制作等。前提是书本的内容的掌握。
四、课程练习及作业要求
课程习题分为理论课习题和实验课习题。理论课习题根据当节课授课内容进行布置,使学生能够及时作到复习,要求学生独立、高质完成。
实验课习题应根据课堂讲述内容,在课后回家进行练习,最终达到熟练操作的目的。
五、考试形式及要求
平时成绩+考试成绩(笔试)
平时成绩:出勤、随堂考核、提问、课堂纪律等
六、说明
本课程是实践性很强的一门课程,也就是说上机的练习非常关键。但是由于学校条件的限制,无法解决你们的上机问题,所以请你们回家后务必将本节课所讲的知识在电脑上联系一遍。另外,本门课程的讲授需要利用多媒体技术或计算机室进行直观教学或现场教学,讲授操作方法、演示操作步骤和操作效果,以提高课堂教学效果。目前组织单位正在积极协调,但如果不能满足多媒体,也请同学们谅解,并积极配合。
第四篇:《原子物理学》教学大纲(修订)2016
《原子物理学》教学大纲
一、教学目的与任务
课程性质:《原子物理学》是物理教育专业的专业必修课程。本课程着重从物理实验规律出发,引进近代物理关于微观世界的重要概念和原理,探讨原子、原子核及基本粒子的结构和运动规律,解释它们的宏观性质,以及在现代科学技术上的重大应用。本课程强调物理实验的分析、微观物理概念、物理图像和物理模型的建立和理解。
教学目的:物理学对物质微观结构的研究已经从原子层次深入到了原子核及基本粒子等层次,原子物理学又作为进一步学习原子层次以下其它物质微观结构层次的起点,通过原子物理学课程的学习,使学生掌握原子结构及核结构图象,原子的能级与辐射,外磁场对原子的作用、原子光谱规律及其产生机制等知识,使学生逐步掌握原子物理学中的实验事实和基本规律、基本原理及研究有关问题的思路和方法,培养学生发现和提出问题、建立物理模型、定性分析与定量计算的能力、理论联系实际的能力和独立获取知识的能力,开阔学生的思路,激发学生的探索和创新精神,提升其科学技术的整体素养,并为进一步学习量子力学、固体物理学及近代物理实验等课程打好基础。
二、教学基本要求
从原子结构模型出发使学生对原子的结构有个初步认识,理解原子核式结构,掌握原子能级概念和光谱的一般知识;理解氢原子的波尔理论,了解伏兰克-赫兹实验;了解氢原子能量的相对论效应;了解斯特恩-盖拉赫实验,理解原子的空间取向量子化;了解碱金属光谱的精细结构,电子自旋与轨道的相互作用;理解两个价电子的原子态,了解泡利原理;理解原子磁矩及外磁场对原子的作用,了解顺磁共振和塞曼效应;掌握原子的壳层结构和原子基态的电子组态;了解康普顿效应,理解X射线的衍射。
三、教学内容、要求与学时分配
绪论 2学时
介绍原子物理学的地位与作用、研究对象与研究方法、发展史以及学习上应注意的问题。第一章 原子的基本状况 3学时 1.1 原子的质量和大小 1学时 1.2 原子核式结构 1学时 1.3 同位素 1学时 教学重点与难点:
(1)卢瑟福原子核式结构模型;
(2)α粒子散射理论与卢瑟福散射公式及其应用。本章教学要求:
(1)了解α粒子散射实验对认识原子结构的作用;(2)掌握原子的核式结构。
第二章 原子的能级和辐射
10学时 2.1 光谱—研究原子结构的重要途径之一 1学时 2.2 氢原子光谱和原子光谱的一般情况 1学时 2.3 玻尔的氢原子理论和关于原子的普遍规律 1学时 2.4 类氢离子的光谱 1学时 2.5 夫兰克-赫兹实验与原子能级 1学时 2.6 量子化通则 1学时
2.7 电子的椭圆轨道与氢原子能量的相对论效应 1学时 2.8 史特恩-盖拉赫实验与原子空间取向的量子化 1学时 2.9 原子的激发与辐射 激光原理 1学时 2.10对应原理和玻尔理论的地位。
1学时 教学重点与难点:
(1)应用里德伯公式计算氢原子和类氢离子的谱线;(2)量子化通则及索末菲量子化条件。本章教学要求:
(1)掌握氢原子光谱的实验规律;
(2)掌握氢原子的玻尔理论和索末菲量子化条件,建立量子化概念;(3)掌握原子轨道磁矩概念,了解磁场对原子的作用;(4)了解史特恩-盖拉赫实验,掌握空间量子化条件。第三章 量子力学初步 2学时 3.1 物质的二象性 3.2.测不准原理
3.3 波函数及其物理意义 1学时 3.4 薛定谔波动方程 3.5 量子力学问题的几个简例
3.6 量子力学对氢原子的描述 1学时 教学重点与难点:
(1)波函数及其物理意义;(2)量子力学对氢原子的描述。本章教学要求:
介绍量子力学对氢原子的描述结果,其它内容在量子力学中学习。第四章 碱金属原子和电子自旋 8学时 4.1 碱金属原子的光谱 1学时 4.2 原子实的极化和轨道的贯穿 1学时 4.3 碱金属原子光谱的精细结构 2学时 4.4 电子自旋同轨道运动的相互作用 2学时 4.5 单电子辐射跃迁的选择定则 1学时 4.6 氢原子光谱的精细结构与*蓝姆移动 1学时 教学重点与难点:
(1)碱金属原子光谱的规律;(2)单电子辐射跃迁的选择定则;
(3)电子自旋概念的建立和碱金属原子光谱的精细结构。本章教学要求:
(1)掌握碱金属原子光谱的实验规律,了解原子实的极化和轨道贯穿;(2)了解光谱的精细结构及电子自旋同轨道运动的相互作用;(3)掌握单电子原子跃迁的选则定则;(4)掌握描述原子中电子状态的四个量子数。第五章 多电子原子 8学时
5.1 氦及周期系第二族元素的光谱和能级 2学时 5.2 具有两个价电子的原子态 2学时 5.3 泡利原理与*同科电子 1学时 5.4 复杂原子光谱的一般规律 1学时 5.5 辐射跃迁的选择定则 1学时
5.6 原子的激发和辐射跃迁的一个实例——氦氖激光器 1学时 教学重点与难点:
(1)应用LS耦合矢量模型讨论多电子原子的原子态;(2)辐射跃迁的选择定则。本章教学要求:
(1)掌握氦及第二族元素光谱的实验规律;(2)掌握角动量耦合的意义和原子状态符号的书写。第六章 在磁场中的原子 6学时 6.1 原子的磁矩 1学时 6.2 外磁场对原子的作用 1学时 6.3 史特恩-盖拉赫实验的结果 1学时 6.4 顺磁共振 1学时 6.5 塞曼效应 2学时 6.6 *抗磁性、顺磁性和铁磁性 教学重点与难点:(1)原子的磁矩;(2)外磁场对原子的作用;(3)塞曼效应的理论解释。本章教学要求:
(1)掌握原子轨道磁矩概念,了解磁场对原子的作用;
(2)了解顺磁共振和塞曼效应,理解正常塞曼效应的理论解释。第七章 原子的壳层结构 2学时 7.1 元素性质的周期性变化
7.2 原子的电子壳层结构 1学时 7.3 原子基态的电子组态 1学时 教学重点与难点: 教学重点与难点:(1)原子结构与元素性质周期变化的内在联系;(2)周期表中原子内层电子分布的一般规律;(3)原子基态的电子组态。本章教学要求:
(1)掌握原子结构与元素性质周期变化的内在联系;
(2)掌握周期表中原子内层电子分布的一般规律和原子基态的电子组态。第八章 X射线 5学时
8.1 X射线的产生及其波长和强度的测量 1学时 8.2 X射线的发射谱 1学时 8.3 同X射线有关的原子能级
1学时 8.4 X射线的吸收 1学时 8.5 康普顿效应
1学时 8.6 X射线在晶体中的衍射 教学重点与难点:
(1)X射线的产生机制及原子内层电子结构;(2)同X射线有关的原子能级。本章教学要求:
(1)了解X射线的产生机制及原子内层电子结构;(2)了解莫塞莱定律的物理实质;
(3)了解康普顿效应,理解X射线的衍射。第九章 分子结构和分子光谱 9.1 分子的键联 9.2 分子光谱和分子能级 9.3 双原子分子的电子态 9.4 双原子分子的振动光谱
9.5 双原子分子光谱的转动结构和分子常数的测定 9.6 组合散射(拉曼效应)9.7 多原子分子简述 教学重点与难点:
(1)双原子分子的电子态;(2)双原子分子光谱的转动结构和分子常数的测定;(3)组合散射(拉曼效应)。
*本章教学要求:可根据需要选讲。
第十章 原子核 8学时 10.1 原子核的基本性质 1学时 10.2 原子核的放射衰变 1学时
10.3 射线同实物的相互作用和放射性的应用 1学时 10.4 核力 1学时 10.5 原子核结构模型 1学时 10.6 原子核反应 1学时 10.7 原子核裂变和原子能 1学时 10.8 原子核裂变和原子能利用的展望 1学时 教学重点与难点:
(1)放射性衰变规律及对衰变常数、半衰期和平均寿命的理解;(2)核反应中的守恒定律、反应能阈能和反应截面。本章教学要求:
(1)了解原子核的基本性质和成分;理解结合能的意义并能熟练计算;(2)掌握衰变规律及衰变方程;理解衰变常数、半衰期和平均寿命的物理意义;
(3)掌握反应能的概念;掌握裂变和聚变的基本特点和条件;(4)掌握几种类型的反应方程;了解放射性同位素的应用。第十一章 基本粒子
11.1 基本粒子和粒子的相互作用 11.2 粒子的观测 11.3 守恒定律和对称原理 11.4 共振态
11.5 强子分类和层子模型 11.6 关于电磁相互作用 11.7 弱相互作用 教学重点与难点:(1)粒子的分类;
(2)对基本粒子的守恒定律和对称性的理解。
*本章教学要求:可根据需要选讲。
四、课程教学方法与手段
注重科学性与思想性相统一的原则,理论联系实际,注意知识的直观性、实践性和逻辑结构性,兼顾具体与抽象,采取讲授兼讨论、演示(可配合多媒体课件教学)兼探究等深入浅出的教学方法。从微观结构的考虑入手,揭示与之相关的宏观现象与规律的本质。使学生掌握原子的结构与性质及有关问题;掌握原子能级概念和光谱的一般知识;理解氢原子的波尔理论;掌握原子的壳层结构和原子基态的电子组态。按对各部分教学内容的要求不同,将课程内容分为掌握、理解、了解三级,对部分内容根据学生所学后续课程的不同,可以适当升、降一级,由教师在教学过程中灵活掌握。
五、教材与学习资源
教 材:褚圣麟编.《原子物理学》,高等教育出版社,2014.参考书:
[1]杨福家.原子物理学(第三版).高等教育出版社,2000.[2]2顾建中.原子物理学.高等教育出版社,1998.[3]周尚文.原子物理学.兰州大学出版社,1995.[4]C.赫兹堡.原子光谱和原子结构.科学出版社,1959.[5]W.C.理查兹等.原子结构和原子光谱.人民教育出版社,1982.[6]郭敦仁.量子力学初步.人民教育出版社,1979.[7]海森堡.原子核物理学.科学出版社,1958.[8]R.高特里奥等.近代物理学.科学出版社,1981.[9]E.h.威切曼.量子物理学.伯克利物理学教程(第三卷),人民教育出版社.网上学习资源:
1、http://210.45.192.19/kecheng/2009shengji/6/dianzijiaoan.html
2、http://web.gdei.edu.cn/wlx/jiaoyanchengguo/jpkc/29pmtkakt q5eo.xhtml
3、http://www.xiexiebang.com/ec-webpage-show/check CourseNumber.do ?courseNumber=15571062
六、本课程与其他课程的关系
本课程需在高等数学、力学、电磁学、光学之后开设,同时又是量子力学、激光原理、固体物理等后继课程的前导课程。建议在三年级第一学期开设为宜。
七、课程考核方式与成绩评定 期末考试70%+作业和课堂表现30%
八、其它问题说明
大纲基本内容(不带*号部分)要求在54学时内完成,带*号部分内容做为选学内容由教师在教学过程中灵活掌握。
第五篇:原子物理学教学大纲
原子物理学 课程教学大纲
一、课程说明
(一)课程名称、所属专业、课程性质、学分;
课程名称:原子物理学 所属专业:物理学专业 课程性质:基础课 学
分:4
(二)课程简介、目标与任务;
原子物理学是物理类专业本科生的专业必修课,以物质结构的第一个微观层次(原子)为研究对象,是联接经典物理和近代物理的一门承上启下的课程。在理论方法上,该课程揭露经典理论在原子这一微观层次遭遇到的困难,并且为了解决这些困难而引入量子力学,学生将在本课程中较为系统地学习到量子力学的基本概念、基本原理、基本思想和方法。在应用实践上,通过本课程的学习,学生将系统性地了解和掌握原子物理学的发展历史,获得有关原子的电子结构、性质及其与外场相互作用的系统性知识,为以后从事相关的科学研究、生产应用和教学工作打下良好的基础。
(三)先修课程要求,与先修课之间的逻辑关系和内容衔接;
先修课程:《高等数学》、《数学物理方法》、《力学》、《理论力学》、《热学》、《电磁学》、《光学》
关系:《高等数学》和《数学物理方法》是学习原子物理学的数学基础。《力学》、《理论力学》、《热学》、《电磁学》和《光学》包含了学生在学习原子物理学之前需要掌握的必要的经典物理知识。有了这些准备知识才能理解为何不能用经典理论来研究原子体系,从而必须引入量子力学。
(四)教材与主要参考书;
选用教材:杨福家, 《原子物理学》 第四版, 高等教育出版社, 2010 主要参考书: 1, C.J.Foot,《Atomic Physics》,Oxford University Press,2005 2, H.Friedrich,《Theoretical Atomic Physics》,Springer,2006 3, 褚圣麟,《原子物理学》,高等教育出版社,1987 4, 曾谨言,《量子力学》,科学出版社,2000 5, 卢希庭,《原子核物理》,原子能出版社,1981
二、课程内容与安排
绪 论 原子物理学的发展历史(2学时)【了解】
第一章 原子的组成和结构(5学时)
第一节 原子的质量和大小【掌握】 第二节 电子的发现【了解】 第三节 原子结构模型【了解】
第四节 原子的核式结构,卢瑟福散理论【重点掌握】【难点】 第五节 卢瑟福理论的成功和不足【掌握】
第二章 原子的量子态,玻尔理论(8学时)
第一节 背景知识:黑体辐射、光电效应和氢原子光谱【掌握】 第二节 玻尔的氢原子理论【重点掌握】【难点】 第三节 玻尔理论的实验验证【掌握】
第四节 玻尔理论的推广:椭圆轨道理论和碱金属原子光谱【重点掌握】 第五节 玻尔理论的成功与缺陷【掌握】
第三章 量子力学导论(18学时)【重点掌握】【难点】
第一节 波粒二象性 第二节 不确定关系 第三节 波函数及其统计解释 第四节 态叠加原理 第五节 薛定谔方程 第六节 薛定谔方程应用举例 第七节平均值和算符 第八节 量子力学总结
第九节 氢原子/类氢离子的量子力学解法 第十节 爱因斯坦关于辐射和吸收的唯象理论 第十一节 量子跃迁理论,含时微扰论 第四章 原子的精细结构,电子自旋(14学时)【重点掌握】【难点】
第一节 电子的轨道磁矩 第二节 施特恩-盖拉赫实验 第三节 电子的自旋和自旋磁矩
第四节 相对论量子力学初步,狄拉克方程 第五节 自旋轨道相互作用,原子的精细结构 第六节 外场对原子的作用,定态微扰论
第七节 外磁场对原子的作用,塞曼效应,帕邢-巴克效应 第八节 外电场对原子的作用,斯塔克效应,运动电场
第五章 多电子原子,泡利原理(10学时)【重点掌握】【难点】
第一节 多电子的耦合 第二节 氦原子的光谱和能级 第三节 泡利不相容原理
第四节 量子多体理论初步,平均场近似 第五节 原子的壳层结构,元素周期表 第六节 原子基态,洪特定则,朗德间隔定则 第七节 氦原子/类氦离子的量子力学解法
第六章 X射线(5学时)
第一节 X射线的发现和波动性【了解】 第二节 X射线的产生机制【掌握】 第三节 康普顿散射【重点掌握】 第四节 X射线在物质中的吸收【了解】
第七章 原子核物理概论(10学时)
第一节 原子核物理的研究对象和发展历史【了解】 第二节 核的基态性质一:核质量,结合能【掌握】 第三节 核力的介子理论【了解】 第四节 核的基态性质二:核矩【掌握】 第五节 原子核多体问题的困难【了解】
第六节 核结构模型:费米气体模型、液滴模型、壳模型、集体运动模型【了解】 第七节 放射性衰变的基本规律【掌握】
第八节 阿尔法衰变、贝塔衰变和伽玛衰变【掌握】 第九节 穆斯堡尔效应【掌握】 第十节 核反应,Q方程【掌握】
第十一节 核反应模型:复合核模型、光学模型、黑核模型、蒸发模型【了解】 教学方法:教学中始终突出以学生为本的教育理念,重视课程的规划和建设,按照课程体系制定规范的教学大纲和教学进度表;因材施教使学生掌握物理学的发展脉络和做科研的方法,使学生变被动学习为主动学习,真正达到从会学到好学;通过启发式教学培养学生较强的主动思考习惯,注重对大学生创新思维和解决实际问题能力的培养;及时与学生进行有效沟通,布置课后作业,必要时进行习题讲解;将科研前沿引入课堂,使学生了解原子物理、量子力学和量子多体理论的研究现状和发展前景;开发并实施多媒体教学手段,使得课程的教学实施建立在现代教育技术平台之上。
考核方式:采用平时作业、课堂提问、和期末闭卷考试相结合的方式综合评价学生的成绩。
制定人:房铁峰审定人: 批准人: 日 期:
司明苏