学习矩阵的心得

时间:2019-05-14 14:18:24下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《学习矩阵的心得》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《学习矩阵的心得》。

第一篇:学习矩阵的心得

矩阵理论学习报告

矩阵的现代概念在19世纪逐渐形成。1801年德国数学家高斯把一个线性变换的全部系数作为一个整体。1844年,德国数学家爱森斯坦讨论了“变换”(矩阵)及其乘积。1850年,英国数学家西尔维斯特首先使用矩阵一词。1858年,英国数学家凯莱发表《关于矩阵理论的研究报告》。他首先将矩阵作为一个独立的数学对象加以研究,并在这个主题上首先发表了一系列文章,因而被认为是矩阵论的创立者,他给出了现在通用的一系列定义,如两矩阵相等、零矩阵、单位矩阵、两矩阵的和、一个数与一个矩阵的数量积、两个矩阵的积、矩阵的逆、转置矩阵等。并且凯莱还注意到矩阵的乘法是可结合的,但一般不可交换,且m*n矩阵只能用n*k矩阵去右乘。1854年,法国数学家埃米尔特使用了“正交矩阵”这一术语,但他的正式定义直到1878年才由德国数学家费罗贝尼乌斯发表。1879年,费罗贝尼乌斯引入矩阵秩的概念。至此,矩阵的体系基本上建立起来了。

通过这次在朱善华老师的课程上我了解了很多获益匪浅,我通过矩阵的学习,系统地掌握了矩阵的基本理论和基本方法,进一步深化和提高 矩阵的理论知识,掌握各种矩阵分解的计算方法,了解矩阵 的各种应用,其主要内容包括矩阵的基本理论,矩阵特征值 和特征向量的计算,矩阵分解及其应用,矩阵的概念,了解单 位阵、对角距阵、三角矩阵、零矩阵、数量矩阵、对角距阵 等。这些内容与方法是许多应用学科的重要工具。矩阵的应 用是多方面的,不仅在数学领域里,而且在力学、物理、科技等方面都十分广泛的应用。我通过学习得知,矩阵是数学中的一个重要的基本概念,是代数学的一个主要研究对象,也是数学研究和应用的 一个重要工具。从行列式的大量工作中明显的表现出来,为 了很多目的,不管行列式的值是否与问题有关,方阵本身都 可以研究和使用,矩阵的许多基本性质也是在行列式的发展 中建立起来的,而矩阵本身所具有的性质是依赖于元素的。在逻辑上,矩阵的概念应先于行列式的概念,然而在历史上 次序正好相反。矩阵和行列式是两个完全不同的概念,行列式代表着一 个数,而矩阵仅仅是一些数的有顺序的摆法。利用矩阵这个工具,可以把线性方程组中的系数组成向量空间中的向量; 这样对于一个多元线性方程组的解的情况,以及不同解之间 的关系等一系列理论上的问题,就都可以得到彻底的解决。

认识总是随着时间和已有知识的积累在不断修正,我对矩阵论的认识也大致如此。从一开始的认为只能解线性方程,到如今发现它的几乎无所不能,我想我收获到的不仅仅是这种简单的知识,更是一种世界观,那就是对所有的事物都不要轻易地下定论。同时,当我们知道的越多,就会发现未知的东西越多。作为一门已经发展了一百多年的学科,我对矩阵论的认识只是沧海一粟,唯有终身学习,不断探索,才可能真正领悟到其中之真谛,我亦将为此付诸行动。

控制理论与控制工程

肖雪峰

第二篇:结构矩阵程序设计心得

结构矩阵程序设计心得体会

结构矩阵分析的原理、方法以及在计算机上的实现是结构力学的重要内容之一。学好这门课,是对本科土木专业学生的基本要求。

本学期我们开始学习结构矩阵分析原理与程序设计,其中包括理论课时——第一章结构矩阵分析原理、第二章平面钢架静力分析的程序设计。其实,结构矩阵分析的基本原理与传统的结构力学原理相同,只是把计算过程用矩阵运算来表示,从而使复杂多变的结构受力在计算机上实现。

矩阵位移法分为一般刚度法和直接刚度法,二者基本原理相同,形成整体刚度方程的方法不同,我们学习的是直接刚度法。理论课结束后,我们有亲自上机把所学的方法在计算机上逐步实现,从而提高我们对结构矩阵的学习兴趣及理解。

此次上机实战不仅是知识的检验更是团队配合的较量,在得到老师给出的题目之后,我们迅速有效地分配任务:把代码输入计算机程序,再进行调试程序,调试完成后根据书中例题检验程序的正确性。在这一系列的过程中来不得半点粗心大意,一个小小的错误,可以在结果中可以被放大数百倍数千倍,就像老师挂在嘴边那句话:输入的是垃圾,输出的可定时垃圾。

程序调试完成我们的工作就成功了一半,此后,把所给题目转换成代码,然后通过程序的运行,得到输出到答案。而这个过程中,把题目转换成数字代码尤为重要,只要仔细认真倒也并非难事,我们发现:计算机能用到结构力学中,着实又方便有精确。结果输出后,我们再画出受力图,最后整理成文档,就算功德圆满了。

在这次结构设计程序过程中,我们的确遇到几个难题,不知从何下手,冥思苦想得不到结局之法,最后还是团队间互相商量,查看书籍,询问老师等,终于把问题一一解决。譬如说,带有铰接点的结构如何在平面钢架的源程序中实现,经过多方查询,只要分三步走即可:第一、可以在铰接点处,把一个杆分成两个单元;第二、靠近铰接的地方,设置一个很短的单元;第三、让这个单元的刚度EI值取得很小。也就是说,加一个很小的单元,把这个单元的弯曲刚度取得很小,这个单元就接近铰接点了,计算时让把这个当做钢节点。这次上机,让我们掌握了如何处理一般钢架问题、桁架问题、已知支架位移问题、平面钢架含铰接点问题、连续梁问题、组合梁问题等等,使我们对结构矩阵法有了更深的理解与掌握,思路更加开阔,相信为以后的工作打下良好的基础,在遇到问题后,进行简化成平面钢架静力分析,解决用手算相当复杂的问题。同时,我们懂得了互相帮助的重要性,遇到问题,群力群策,使问题得到完美解决。

第三篇:结构矩阵_程序设计_心得

结构矩阵程序设计心得

短短几周的时间里我们进行了结构矩阵程序设计,大家在忙碌而紧张地完成了各自组所要完成的任务。使我们对结构力学分析有了进一步的了解以及对其内容得到了深化,使我们受益匪浅。

论教学中我们熟知了矩阵位移法分析平面结构的基本原理和计算方法,以此为基础我们进行了以计算机为媒介的程序设计,从而使结构复杂,受力复杂的结构受力分析简单化、程序化、模块化。我们利用所学过的VB知识来设计程序,矩阵程序设计的步骤通常为两大步:一,做程序的框架设计,把矩阵位移法的计算过程用流程图来表示。二,利用计算机语言进行程序设计,我们利用的是PAD软件设计方法。在程序设计中我们分别作出主次程序的PAD设计,按各模块的任务编写出程序。编写程序是一项复杂而艰巨的任务,我们组成员分块对程序进行了设计,结果很是乐观,我们的程序可以解决问题,这是对我们劳动成果的肯定。其中,在程序设计过程中不免出现各种小问题,我们都对其进行了细致的检查,我总结的易现问题的地方是:在对结构进行框架设计时一定要细心,要分别对节点总数、固定支座数、可动支座数、单元总数、直接节点荷载数等数据录入要细心准确;在调试程序时一定要结合程序特点;在画内力图时一定要注意作用的方向,一般弯矩图绘在受拉侧,轴力以拉力为正,剪力以绕着隔离体顺时针转动为正等

在这次课程程序设计中我学到了很多,就是我们在学习时一定要融会贯通,理论结合实际,把自己所学到的知识要有能统一起来的能力。我们一定要有团队合作意识,一定要相互学习互相探讨,这样我们才能将各自的问题达到及时的丁正,同时加强我们的交流与合作。还有就是感谢老师在这次学习中给我们的悉心指导,在此感谢老师。

第四篇:矩阵学习心得体会

矩阵学习心得体会

在线性代数的基本知识基础上,我通过矩阵的学习,系统地掌握了矩阵的基本理论和基本方法,进一步深化和提高矩阵的理论知识,掌握各种矩阵分解的计算方法,了解矩阵的各种应用,其主要内容包括矩阵的基本理论,矩阵特征值和特征向量的计算,矩阵分解及其应用,矩阵的概念,了解单位阵、对角距阵、三角矩阵、零矩阵、数量矩阵、对角距阵等。这些内容与方法是许多应用学科的重要工具。矩阵的应用是多方面的,不仅在数学领域里,而且在力学、物理、科技等方面都十分广泛的应用。

我通过学习得知,矩阵是数学中的一个重要的基本概念,是代数学的一个主要研究对象,也是数学研究和应用的一个重要工具。从行列式的大量工作中明显的表现出来,为了很多目的,不管行列式的值是否与问题有关,方阵本身都可以研究和使用,矩阵的许多基本性质也是在行列式的发展中建立起来的,而矩阵本身所具有的性质是依赖于元素的。在逻辑上,矩阵的概念应先于行列式的概念,然而在历史上次序正好相反。

矩阵和行列式是两个完全不同的概念,行列式代表着一个数,而矩阵仅仅是一些数的有顺序的摆法。利用矩阵这个工具,可以把线性方程组中的系数组成向量空间中的向量;这样对于一个多元线性方程组的解的情况,以及不同解之间的关系等一系列理论上的问题,就都可以得到彻底的解决。

矩阵的研究历史悠久,拉丁方阵和幻方在史前年代已有人研究。

矩阵这一概念由19世纪英国数学家凯利首先提出。矩阵概念在生产实践中也有许多应用,比如矩阵图法以及保护个人帐号的矩阵卡系统(有深圳网域提出)等等。

矩阵的现代概念在19世纪逐渐形成。1801年德国数学家高斯把一个线性变换的全部系数作为一个整体。1844年,德国数学家爱森斯坦讨论了“变换”(矩阵)及其乘积。1850年,英国数学家西尔维斯特首先使用矩阵一词。1858年,英国数学家凯莱发表《关于矩阵理论的研究报告》。他首先将矩阵作为一个独立的数学对象加以研究,并在这个主题上首先发表了一系列文章,因而被认为是矩阵论的创立者,他给出了现在通用的一系列定义,如两矩阵相等、零矩阵、单位矩阵、两矩阵的和、一个数与一个矩阵的数量积、两个矩阵的积、矩阵的逆、转置矩阵等。并且凯莱还注意到矩阵的乘法是可结合的,但一般不可交换,且m*n矩阵只能用n*k矩阵去右乘。1854年,法国数学家埃米尔特使用了“正交矩阵”这一术语,但他的正式定义直到1878年才由德国数学家费罗贝尼乌斯发表。1879年,费罗贝尼乌斯引入矩阵秩的概念。

至此,矩阵的体系基本上建立起来了。

第五篇:矩阵心得体会

《矩阵论》学习心得体会

2011-2012第一学期,我在李胜坤老师的引领下,逐步学习了科学出版社出版、徐仲和张凯院等编著的《矩阵论简明教程》第二版。该书是大学本科期间所学习的《线性代数》的矩阵部分内容的深化,从数域扩展到矩阵,要想充分理解“矩阵论”的精髓,就得先好好的将《线性代数》复习——掌握其基本概念及重要定理、结论。

该书有8个章节,第一章是矩阵的相似变换,第二章讲的是范数理论,第三章介绍的是矩阵分析,第四章详细介绍的是矩阵分解,第五章罗列的是特征值的估计与表示,第六章介绍的是广义逆矩阵,第七章介绍的是矩阵的直积,最后一章介绍的是线性空间与线性变换。下面分章节谈论。

第一章中的特征值与特征向量、矩阵的相似对角化、向量内积是本科期间《线性代数》中的内容,我想作者的目的是借助以前大家都熟悉的知识,将我们引领到另一个崭新的知识领域,起到承上启下的作用,让我们对《矩阵论》感到不陌生。该章中的Jordan标准形、Hamilton-Cayley定理、酉相似的标准形是本科期间不曾深入学习的知识,这些知识为后续学习《矩阵论》吹响了号角。总之,第一章就是高等数学中的知识与“矩阵论”的衔接章节,同时也是后续章节学习的非常重要基础章节。我们要学好《矩阵论》就得学好该章,理解记忆其中的概念、结论。

第二章介绍向量范数与矩阵范数及其应用。介绍了向量范数的三公理、酉不变性、1范、2范、无穷范、p范、加权范数(也叫椭圆范数)以及很重要的一个不等式——Cauchy-Schwarz不等式、向量的收敛、发散性;矩阵范数的定义、m1范、m无穷范、F范及其酉不变性,矩阵范数与向量范数的相容性等。范数与矩阵的谱半径紧紧相连,有了范数作为研究矩阵的数学工具,我们将会更易更深入的理解、研究矩阵,并用矩阵指导实际生产实践。

第三章矩阵分析和第四章矩阵分解各是矩阵论的最重要章节之一。通过对矩阵的收敛性、矩阵级数、矩阵函数、矩阵微分、矩阵积分、矩阵四种分解等系统性学习研究,让我明白了矩阵理论在实际生活中的巨大作用——矩阵论将大大减少工程运算量及提高计算速度、精度。有了矩阵理论作指导,现实生活中很多不能解决或者很难解决的数学问题等都能够得到很好的解决。比如,提高计算机的计算速度、优化数字信号处理算法等。

第五章介绍了矩阵的非常重要的参数——特征值的估计及其表示,介绍了特征值界定估计、特征值包含区域等,让我们对特征值有了更进一步的了解,用书中的方法可以很高效的确定特征值的范围、估计特征值的个数。是研究矩阵的有效方法,为计算特征值指明了方向,解决了以前计算特征值的困扰。

第六章介绍的是广义逆矩阵,是逆矩阵的推广。广义逆矩阵是将可逆的方阵推广到不可逆矩阵、长方矩阵。介绍了广义逆矩阵的概念、逆矩阵的应用、Moor-Penrose逆A+的计算、性质以及在解线性方程组中的应用。我想该章更大的应用应该在解线性方程组中,解决生活中的计算问题,提供了又一高效办法。

第七章矩阵的直积是很易懂的知识,是以前向量直积在矩阵中的推广。对矩阵直积的研究对信号处理与系统理论中的随机静态分析与随机向量过程分析等有重要的指导作用,同时也是重要的数学工具,是研究信号处理人员必备的数学工具。

第八章线性空间与线性变换,其中线性空间是几何空间与n维向量空间概念的推广与抽象,线性变换则反映了线性空间元素之间的一种最基本的联系。该章的学习需要我们充分发挥我们的空间想象能力,同时该章也将会大大的启迪我们思维的灵活性、唤醒沉睡已久的新思维。

通过《矩阵论简明教程》的学习,开阔了我的数学视野,给我思考问题、解决实际问题提供了新的思维方法。我将努力借助《矩阵论》,使自己在信号处理领域走的更远。

下载学习矩阵的心得word格式文档
下载学习矩阵的心得.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    矩阵分析

    第一章: 了解线性空间(不考证明),维数,基 9页:线性变换,定理1.3 13页:定理1.10,线性空间的内积,正交 要求:线性子空间(3条)非零,加法,数乘 35页,2491011 本章出两道题 第二章: 约旦标准型 相......

    企业文化评估矩阵

    企业文化评估矩阵 企业文化评估矩阵概述 企业文化评估矩阵又称为企业文化诊断与评估系统(Corporate-Culture Measurement and Assessment System,CMAS),我国大部分企业文化研究......

    矩阵培训工作总结

    年度培训工作总结年度>培训>工作总结(一)一、思想上高度重视,组织上细致周密 1、加强领导,落实责任街道党工委非常重视干部的培训工作,健全了干部教育培训统筹协调机构。一是形......

    矩阵键盘实验报告

    自主学习用实验 矩阵键盘识别实验 一、实验目的 1、掌握 4×4 矩阵键盘的工作原理和键盘的扫描方式。 2、掌握键盘的去抖方法和键盘应用程序的设计。 二、实验设备 1、PC 机......

    2008抗震救灾责任矩阵

    抗震救灾项目的责任分配矩阵 责任矩阵分配(RAM)是一种讲所分解的工作落实到项目有关部门或个人,并明确表示他们在组织工作中的关系,责任和地位的方法和工具,它是在工作分解结构的......

    可逆矩阵教案

    §1.4 可逆矩阵 ★ 教学内容: 1. 2. 3. 4. ★ 教学课时:100分钟/2课时。 ★ 教学目的: 通过本节的学习,使学生 1. 理解可逆矩阵的概念; 2. 掌握利用行列式判定矩阵可逆以及......

    矩阵教学设计

    矩阵复习课 教学设计 江苏省海州高级中学 申磊 一、教学内容分析 《普通高中课程标准实验教科书·数学(选修4-2)》(苏教版)。本节课程不是大学教材中矩阵内容的简单下放,而是通过......

    《矩阵论》教学大纲

    《矩阵论》课程教学大纲 一、课程性质与目标 (一)课程性质 《矩阵论》是数学专业的选修课,是学习经典数学的基础,又是一门最具有实用价值的数学理论。它不仅是数学的一个重要的......