第一篇:八年级数学上册 12.3.2《等边三角形》教学反思 新人教版
12.3.2等边三角形教学反思
等边三角形是继等腰三角形之后重点研究的一项知识内容,在实际生活中总能找到等边三角形的影子,它不仅使我们的生活变得丰富多彩,让我们在生活中体验到特殊的对称美,而且为我们的数学研究提供了重要素材.这一课的内容不仅是等腰三角形的延续,而且为今后证明角相等、线段相等提供了重要依据,在教材中处于非常重要的地位,起着承前启后的作用.
等边三角形能够应用到很多领域中,如建筑学中,2008年北京奥运会奥林匹克公园多功能演播塔,每层建筑的平面图形都是等边三角形;埃及金字塔的设计;在航空,航天、造船等行业以及机床,轴承和汽车零部件等制造业的一些图纸设计中都有等边三角形的存在.在生命哲学中,利用等边三角形的三角代表“道”、“理”、“用”;又如生活中的交通警告标志、台球桌上用于固定起始球放置的框等等,都与等边三角形息息相关,生活中的事物为我们的数学学习提供了丰富的研究素材,同时数学又服务于实际生活.
由于在我们的现实生活中随处可见等边三角形,学生在原有生活经验的基础上,对等边三角形已形成初步认识,在前两个学段又对等边三角形有了初步了解,因此本节课通过类比等腰三角形的性质能够发现等边三角形的性质,同时根据经验能够画一个等边三角形,易于掌握如何判断一个三角形是等边三角形.同时在原有几何知识的基础之上,能够合情推理,易于利用性质和判定解决等边三角形的相关问题.
由于本节课是以认知规律为主线,运用教师引导和学生自主探索、合作交流的学习方式,以达到帮助学生从感性认识发展到理性思考,促使学生逐渐形成方法,形成技能.课堂教学始终贯彻“教师为主导,学生为主体”的教学思想,渗透数学思想方法,让学生从归纳中形成能力.
第二篇:八年级数学上册 12.3.2 等边三角形教案 新人教版
12.3.2等边三角形(2)
一、教学目标
①经历猜测、验证的过程,理解含30°锐角直角三角形的性质.
②学会应用含30°锐角直角三角形的性质解决线段之间倍半关系的问题.
二、重点、难点
重点:含30°锐角直角三角形的性质的应用. 难点:含30°锐角直角三角形的性质的验证.
三、教学准备
每位学生准备两块含30°锐角直角三角板.
四、教学过程:
(一)板书标题,呈现教学目标:
1、会应用等边三角形性质和判定解决实际问题;
2、经历探索直角三角形中,30°角所对的边等于斜边的一半的过程,掌握其应用方法。
(二)引导学生自学:
看教材:课本第55页------第56页,把你认为重要部分打上记号。完成第56页的练习。想一想:
1、你能用别的办法证明55页的定理的吗?
2、定理的应用要具备什么条件?
(三)学生自学,教师巡视:
(四)检查自学效果:
提出问题将两个含30°角的三角尺摆放在一起,你能借助这个图形,找出Rt△ABC的直角边BD与斜边AB之间的数量关系吗? 探索分析,解决问题
由题意可判别△ABC是等边三角形,且AD为边BC上的高,可得BD=CD=
1AB. 2即:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半. 设问:你能用所学的知识验证以上结论吗? 如学生有困难,可设计以下填空题帮助探寻思路:
1.如图1,△ABC是等边三角形,AD⊥BC于D,则∠BAD=__°,BD=__BC=__AB.
2.如图2,△ABC中,若AC⊥BC,∠A=30°,则∠B=__°,延长BC到D使BD=AB,连结AD,则△ABD是__三角形,BC=
11____=____. 22教师小结:以上结论是直角三角形很重要的性质,以后经常要用到,一定要记准条件和结论,不要误记为“直角三角形中,30°角所对的直角边等于另一直角边的一半”或者“在一个三角形中,30°角所对的边等于长边的一半”. 检测练习,反馈调控
1. 如下图,在△ABC中,∠ACB=90°,∠A=30°,CD⊥AB,AB=4.
则BC=____()∠BCD=_____()BD=____.()2.小明沿倾斜角为30°的山坡从山脚步行到山顶,共走了200m,求山的高度. 例题讲解:出示教科书第55页例5.
如图是屋架设计图的一部分,点D是斜梁AB的中点,立柱BC、DE垂直于横梁AC,AB=7.4m,∠A=30°,立 柱BC、DE要多长?
学生仔细读题,分析其中的数量关系. 教师提示要准确选择直角三角形.
请个别学生板演详细过程,强调解题格式要规范. 备选题:
(1)如图,已知Rt△ABC中,∠A=30°,∠ACB=90°,BD平分∠ABC,求证:AD=2DC
(2)如图,已知△ABC中,AB=AC,∠C=30°,AB⊥AD,AD=2cm.求BC的长.
(五)当堂训练
课本P56 练习
(六)课堂小结
通过这节课的学习,你又学到关于直角三角形的哪些知识?(学生思考、讨论、整理.帮助学生进一步认识直角三角形的性质.)
(七)布置作业:备选题:
1、2 教学反思:
第三篇:新课标人教版八年级数学上册《等边三角形》教学反思
本节课让学生在认识等腰三角形的基础上,进一步认识等边三角形。学习等边三角形的定义、性质和判定,再折一折的过程中体会等边三角形的特征,三条边相等,三个角也相等,都是60度。让学生在探索图形特征以及相关结论的活动中,进一步发展空间观念,锻炼思维能力。让学生在学习活动中,进一步产生对数学的好奇心,增强动手能力和创新意识。
总之,在这节课中,我充分考虑到学生的知识基础,给学生充分的自主探究机会,尝试提出问题,解决问题。发展学生的自主探究的能力。通过这次研讨课,我感觉自己受益非浅,并由衷地庆幸自己能获得这次难得的机会,并时时提醒自己,在以后的教学中,努力进取,从而逐步提高自己的教学水平。
第四篇:新人教版八年级数学上册《等边三角形》教学反思
回顾等腰三角形的知识内容,从问题中激发学习新知识的欲望,引入新课。在复习回顾等腰三角形的知识时,有这样一题:等腰三角形是轴对称图形,对称轴有条。引起学生的争论,提出了新课的学习任务,结合前置学习,完成新知识的学习。
在新课知识学习时,等边三角形的对称轴是什么和等腰三角形对称轴的条数这两个问题,通过对学生的不同见解或不成熟的看法的争论得到强化。
利用几何画板展示问题,能够更好地进行题目的变化,在图形的变化过程中感受研究方法的不变,几何量关系的不变;更好地揭示了图形中的旋转变化,训练学生的识图能力;更好地用动态的观念和方法认识题目,为今后研究动态型几何问题作一些准备。学生面对新的学习媒体,学习热情比较高涨,旋转进行的全等变换有较为深刻的感受,翻折进行的全等变换也做得比较好(体现在提升学习的最后一题)。
本课还有一个难点是学生对三个三角形连续全等的书写,利用优秀同学的示范,学生亲自书写训练,相互评价提高的作用还可以更好地发挥作用,同备课组有老师用的是两个三角形全等,另一组全等同理推出的方法处理这个问题,这种处理方法也是可以介绍给学生的。
充分利用证得的全等得到边相等、角相等进行后面的问题的研究也是学生必须强化的意识。
第五篇:《12.3.2等边三角形》(第一课时)教学设计
湖北省方文兵
《12.3.2等边三角形》教学设计(第一课时)
一、教材分析 “等边三角形”是第十二章《轴对称》第三节第二小节的内容,共有两课时。其中第一课时的内容是等边三角形的概念、性质、判定和相关知识的应用。该节内容是在等腰三角形的基础上学习。
更是今后证明角相等、线段相等的重要工具,在教材中处于非常重要的地位,起着承前启后的作用。
二、学生分析
1、学生是八年级的学生。
2、学生已经建立了对几何的学习兴趣和基本的几何学习方法。
3、学生已经学习了三角形、等腰三角形和轴对称的内容。
4、学生应用所学知识解决实际问题的能力需要进一步加强。
5、学生使用规范的几何语言书写几何解题过程的能力需要进一步加强。
三、教学目标
1、知识与技能
1)了解等边三角形是特殊的等腰三角形,等边 三角形是轴对称图形; 2)会阐述、推证等边三角形的性质和判定方法。
2、过程与方法
经历“猜想—验证—总结归纳—应用”的探究过程,培养探究数学问题、解决问题的能力。
3、情感、态度与价值观
1)体验数学充满着探索与创造,感受数学的严谨性,对数学产生强烈的好奇心和求知欲。
2)在学习中获得成功的体验,感受数学学习的乐趣, 建立自信心。
四、重点难点
1、重点:等边三角形的性质和判定。
2、难点:等边三角形性质的应用。
五、教学方法
本节课从“引导学生学习的方式、启发学生思考的方法、规范学生表达与书写的思路”的层面讲授新内容,帮助学生“猜想-验证-总结归纳-应用”新知识,从而达到学习新课的目的。
六、教学用具
本节课使用多媒体教学,采用PPT与几何画板相结合的方式。
七、设计思路
新课教学分三个过程,第一个过程是引入部分。本过程分两个阶段:第一阶段通过实例引入等边三角形;第二阶段阐述本节课的三维教学目标。
第二个过程是新知探究部分。本过程分三个阶段:第一阶段归纳等边三角形的两个定义,发现等边三角形是特殊的等腰三角形; 第二阶段探索等边三角形的性质;第三阶段探索等边三角形的判定。
第三个过程是应用小结部分。本过程分三个阶段:第一阶段是对等边三角形相关知识的应用;第二阶段是课堂小结,总结本节课的内容并与等腰三角形的内容进行区别;第三阶段是作业布置。
八、教学过程
(一)引入
用PPT展示一组生活中的图片,让学生观察并发现其中蕴含的几何图形——等边三角形,理解数学源于生活的道理。
从知识与技能、过程与方法、情感态度与价值观等三个方面阐述本节课的学习目标。
图形不要多,学生对等边三角形早在小学就认识了,注意时间的把握。
(二)新知探究
1、探究定义
定义:三边相等的三角形是等边三角形。
可以比较来下定义。学生接受很快。略讲 等边三角形是特殊的等腰三角形。
师:引导学生从“三角形按边分类”的结果考虑等边三角形与等腰三角形的关系,并用几何画板演示由一般三角形到等腰三角形再到等边三角形的变化过程。
生:先回顾三角形按边分类的结果,然后猜想等边三角形与等腰三角形的关系,然后仔细观察几何画板上由一般三角形到等腰三角形再到等边三角形的变化过程中三条边在数量上的变化,验证自己的猜想,确定结果。
第二定义:腰和底相等的等腰三角形是等边三角形。
2、探究性质
为本节课利用等腰三角形知识来探究等边三角形的问题埋下铺垫。
1)从边和角的角度探究性质
性质1:等边三角形的三条边都相等。
性质2:等边三角形的三个内角都相等,并且每个角都等于60°。性质3:等边三角形三边都存在“三线合一”,即等边三角形每个内角的平分线、该角对边的中线、高相互重合。
性质4:等边三角形是轴对称图形,有三条对称轴,每条边上的中线(每条边上的高、每个角的平分线)所在的直线是它的对称轴。
性质可以让学生自己探究
3、探究判定
1)在“任意三角形”上探究判定
判定1:三条边都相等的三角形是等边三角形。探究过程:
师:引导学生从边的角度出发思考,当一个三角形三边满足什么条件时这个三角形是等边三角形。
生:根据定义得出当三角形的三角边相等时,这个三角形是等边三角形。判定2:三个角都相等的三角形是等边三角形。探究过程:
师:引导学生从角的角度出发思考,当一个三角形的三个角满足什么条件时这个三角形是等边三角形。
生:根据等腰三角形判定方法的得出过程,思考一个三角形的三个角满足什么条件时,该三角形是等边三角形。观察几何画板中一个斜三角形变化成等边三角形时,随着三个角的度数由任意的度数变化成60°时,三边的边长有什么变化,最后满足了什么条件。依此归纳判定方法,并进行证明。在所得的判定方法的基础上,根据老师的提示得出该判定方法的一个推论:
两个角相等并且都等于60°的三角形是等边三角形。2)在“等腰三角形”上探究判定
判定3:腰和底相等的等腰三角形是等边三角形。探究过程:
师:引导学生从边的角度出发思考,当等腰三角形的边满足什么条件时这个等腰三角形是等边三角形。生:根据第二定义得出当等腰三角形的底边和腰边相等时,这个等腰三角形是等边三角形。
判定4:有一个角是60°的等腰三角形是等边三角形。探究过程:
师:引导学生从角的角度出发思考,当等腰三角形的角满足什么条件时这个等腰三角形是等边三角形。
生:考虑等腰三角形在角之间已经满足的关系,在这个基础上考虑,这些角进一步满足什么条件时该三角形是等边三角形。在老师的帮助下得出有一个角等于60°的等腰三角形是等边三角形的结论,然后分别以60°的角为顶角和底角两种情况进行证明。
组织学生经历独立思考——合作交流——验证猜想等活动,生动活泼地获取知识,从而帮助学生积累数学活动的经验,发展应用数学知识的意义,增强学好数学的愿望和信心。
上面的用大多时间让学生自主比较探究,最后老师总结。例题
1、如图,△ABD,△AEC都是等边三角形,求证BE=DC
2、如图,AB=AC,∠A=40°,AB的垂直平分线MN交AC于点D,求∠DBC的度数。
(三)应用小结
1、新知应用
1)△ABC是等边三角形,以下三种分法分别得到的△ADE是等边三角形吗,为什么?
①过边AB上一点D作DE∥BC,交边AC于E点.②作∠ADE=60°,D、E分别在边AB、AC上.③在边AB、AC上分别截取AD=AE.2)等边三角形三条中线相交于一点。画出图形,找出图中所有的全等三角形,并证明他们全等。
2、课堂小结
让学生从定义、性质和判定三个方面总结本节课所学的内容,并与等腰三角形做比较。
3、作业
1)课本练习第2题(p54)
2)课外兴趣小组在一次测量池塘△ABP的活动中,测得∠APB=60°,AP=BP=200m,他们便得出了一个结论:池塘最长处不小于200m,他们的结论对吗?