等边三角形教学反思

时间:2019-05-15 02:07:46下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《等边三角形教学反思》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《等边三角形教学反思》。

第一篇:等边三角形教学反思

等边三角形教学反思

本节课让学生在认识等腰三角形的基础上,进一步认识等边三角形。学习等边三角形的定义、性质和判定,再折一折的过程中体会等边三角形的特征,三条边相等,三个角也相等,都是60度。让学生在探索图形特征以及相关结论的活动中,进一步发展空间观念,锻炼思维能力。让学生在学习活动中,进一步产生对数学的好奇心,增强动手能力和创新意识。

在教学过程中,我穿插习题进行练习,让学生在学习新的知识的同时,能运用知识解决问题。让他们在掌握新知识的同时,复习前面已学过的知识。同样等边三角形也配相应的题目进行巩固。在课本后面的练习中,介绍既是直角三角形又是等腰三角形的是等腰直角三角形。将课本知识进行进一步拓展。

纵观整节课,感觉优点能够做到环节紧凑,思路清晰,从而形成一个较好的教学框架:首先是创设情境,导入新课;其次是放手学生,探究新知;最后是归纳总结,拓展延伸。能够利用电脑多媒体的优势,练讲结合。从学生感兴趣的问题入手,主动进入到学习的情境中去。而不是让老师牵着鼻子被动前行。但不足之处也有几点:只备教材,而对学生却备得不够。如在学生动手折等边三角形时,很多学生都没成功。在教学过程中,语言不够简炼。尤其是对一些数学术语把握得不够。

总之,在这节课中,我充分考虑到学生的知识基础,给学生充分的自主探究机会,尝试提出问题,解决问题。发展学生的自主探究的能力。通过这次研讨课,我感觉自己受益非浅,并由衷地庆幸自己能获得这次难得的机会,并时时提醒自己,在以后的教学中,努力进取,从而逐步提高自己的教学水平。

第二篇:等边三角形教学反思

等边三角形教学反思

篇一:等边三角形>教学反思

本节课的教学重点是等边三角形判定定理的发现与证明。含30 °角的直角三角形性质的应用。在探索证明等腰三角形的过程中,我首先利用等边三角形的定义,然后探索等边三角形和等腰三角形之间的区别与联系,通过有一个角是60 °的等腰三角形是等边三角形。在探索过程中,让同学们全面理解等边三角形的性质和判定。此外,本节课也探索了含30 °角的直角三角形性质,并巩固练习相关知识点。在整节课的教学中,我认为有几点需要注意的:

在学习含30°角的直角三角形性质的应用时,用两个含有30 °角的三角板来拼凑一个等边三角形,学生直观的看到一个三角板中的30 °角所对应的直角边与斜边的倍数关系,使学生充分理解这条性质,并及时举例来巩固知识。

时间安排比较紧凑,上课要讲解精髓,不可有废话。讲学稿上自我检测部分上课没有时间完成,留给同学们课后完成。

在探索等边三角形的判定定理过程中,要让同学们真正理解,这样在做题时才会对症下药,运用起来才不会混淆。在讲解练习时,我还是尽量讲慢些,也一定要逼一些学生把自己的思维过程交代清楚,以求得自己对学生学习情况的全局掌握性。

篇二:等边三角形教学反思

纵观整节课,感觉优点能够做到环节紧凑,思路清晰,从而形成一个较好的教学框架:首先是创设情境,导入新课;其次是放手学生,探究新知;最后是归纳总结,拓展延伸。从学生感兴趣的问题入手,主动进入到学习的情境中去。而不是让老师牵着鼻子被动前行。学生对含有 30 °角的直角三角形的性质认识到位,掌握并能熟练应用。并且教给学生学会构造直角三角形来解决相关的计算或证明题。

但不足之处也有几点:

1、重点备教材,而对学生可能出现的问题却备得不够。如在学生动手拼两个直角三角形成等边三角形时,还有一些细节没有处理好。

2、在教学过程中,语言不够简炼。还要苦练基本功,提高自己的授课水平。

3、学生板演时字迹潦草,强调书写及规范解题步骤。

总之,在以后的教学中,要努力进取,从而逐步提高自己的教学水平。

篇三:等边三角形教学反思

一、本节课的教学重点是认识等腰三角形和等边三角形以及它们的特征。教材的安排是首先呈现几个不同类型的三角形,让学生通过测量边的长度,发现他们的共同特点是两条边相等,从而引出等腰三角形的概念。然后利用折纸这个活动,来进一步的体会等腰三角形的特点。等边三角形的编排与之类似。

在教学中我把重点放在活动上。先是引导学生看书上的图示,理解做的步骤,然后让学生自己动手去做,在等腰三角形的操作中,学生做得很好,在做等边三角形时,有些学生看图不细,点的位置不正确导致做的效果不好。从这点也反映了学生看图能力有待加强。三角形做出来之后,充分地让学生折一折、比一比、看一看,让学生在这个过程中,体会出等腰三角形和等边三角形的特征。因为我在这给学生留的时间较充裕,所以学生基本上都能自己总结出来。但也是因为这里用时较多,所以在练习时时间很紧张,没能当堂完成。

二、交代清楚自己的思维过程。

但是不可避免的,这一部分的练习内容肯定是较错的。因为等腰三形中涉及到底角和顶角,两腰相等,学生明白概念和实际动手运用概念是要有一个过程的。更何况对于一些抽象思维能力不太好的学生来说,还是很困难的。所以在讲练习时,我还是宁可讲慢些,也一定要逼一些学生把自己的思维过程交代清楚,以求得自己对学生学习情况的全局掌握性。

第三篇:《等腰三角形和等边三角形》优秀教学反思

今天和学生们继续学习了三角形的知识——《等腰三角形和等边三角形》,因为昨天刚听了华应龙老师的研讨会,今天有点心血来潮,也来摸摸我们学生的底,他们的自学能力到底有多高?

课前我把全班三十五人分为七个组,每个组指派正副组长两名。上课伊始,我让学生先自学课本,我不给任何指导意见,这样做基于不干扰学生探究知识的思路。

十分钟后,小组自学活动结束,每组汇报探究的成果,孩子们零零碎碎地把本节课所要学的知识一个个抖落出来。课前我也将这些知识点作了一个预设,罗列了如下:等腰三角形、腰、底、底角、顶角、等边三角形……接着我引导学生对这些概念结合图形进行深入理解,最终学完了本节课,学生饶有兴趣地学习了一节课。

课后我反思了这节课,颇有收获:

一、每个学生都有自学能力

我以为学生没办法自学,很茫然,其实不然,他们在自学课本时,有自己的认识、收获和想法,尽管有点不够准确或不完善的想法,但相比较往日习惯等待灌输的做法的确有些触动。学生能够揭示本课的知识点,可能基于他们语文学习的课前预习,尽管能力不强,但值得肯定的。

二、每个学生都能发表自己的想法

往日的课堂,我抛出的问题无人问津的情况经常有,而今天围绕学生挖掘的知识点展开提问或让学生相互提问,学生很乐意说自己的想法,没有拘束,真切地感受到学生的课堂学生做主。当然这节课中我也意识到一个好的和一个不好的个人素养,当一个孩子发言胆怯时,同伴的掌声鼓励了他们的勇气,说得不好的地方,请本组同伴帮忙,让学生切实感受小组合作的力量;当一个孩子发言错误时,总会引来其他孩子一些不怀好意的笑声,我及时制止并教育学生要懂得尊重别人、倾听别人的意见,谁没有犯错的时候,讽刺的笑声应该从课堂中消失。

三、每个学生都想发表自己的想法

学生在学习的过程中卡壳时,启发后还有困难,只能由老师揭示答案。一些学生情不自禁地说:“我也是这样想的。”我笑着说:“机不可失,时不再来,给你机会时为什么不讲?下次要大胆发表你的意见,哪怕就是错的,至少你思考了。”孩子们调皮地说:“我怕说错。”他们道出了自己的想法,也是我在以往教学中做得不够的地方。孩子们需要鼓励和赏识,才乐意说出自己的想法。

第四篇:《等边三角形》教学设计

《等边三角形》教学设计

教学目标

(一)知识目标:经历探索等腰三角形性质和等腰三角形成为等边三角形的条件及其推理证明过程,掌握等边三角形的性质与判定定理。

(二)能力目标:

1.经历运用几何符号和图形描述命题的条件和结论的过程,建立初步的符号感,发展抽象思维;

2.经历观察、实验、猜想、证明的数学活动过程,发展合情推理能力和初步的演绎推理能力,能有条理地、清晰地阐述自己的观点。

(三)情感态度与价值观目标:

1.积极参与数学学习活动,对数学有好奇心和求知欲;

2.在数学活动中获得成功的体验,锻炼克服困难的意志,建立自信心。教学重点:等边三角形性质定理与判定定理的发现与证明. 教学难点:

1.等边三角形判定定理的发现与证明; 2.引导学生全面、周到地思考问题. 教学方法:探索发现法。教具准备:一张等边三角形纸片。教学过程

(一)导入新课: [师]在前两节课我们研究证明了等腰三角形的性质和判定定理,我们知道,在等腰三角形中有一种特殊的等腰三角形──三条边都相等的三角形,叫等边三角形。

这节课我们就来学习等边三角形。(板书课题)

(二)提出问题,创设情境,探究等边三角形性质

[师]大家一起来思考并回答下面的三个问题:

1.等腰三角形有哪些性质?

2.把等腰三角形的这些性质用到等边三角形中,你能得到什么结论? 3.你能证明你的结论吗?请与同学交流你的探究过程。(给学生思考和讨论时间,再选学生上黑板演示探究过程。)

[生甲]等腰三角形性质有三条:(1)“等边对等角”(2)“三线合一”(3)等腰三角形是轴对称图形,只有一条对称轴,对称轴是底边的垂直平分线。

(学生有忽略轴对称性质的。)

[生乙]根据“等边对等角”可知,等边三角形的三个角相等,再根据三角形内角和定理,可以知道每个内角都等于60°;

[生丙]根据“三线合一”可知,等边三角形每一条边的高、中线与对角的平分线互相重合;

[生丁]根据轴对称性质可知,等边三角形是轴对称图形,有三条对称轴,对称轴是每条边的垂直平分线。

[师]老师这里有一张等边三角形纸片,请你演示一下等边三角形的轴对称性。(生丁欣然接过,折叠给大家看。)

[生丁]大家看,这三条折痕就是等边三角形的对称轴。

[师]对称轴是折痕吗?对称轴应该是什么图形,折痕又是什么图形?(同学七嘴八舌争论。)

[生乙]因为对称轴是直线,折痕是线段,所以对称轴是折痕所在直线。[师]大家说的很好,将等边三角形的性质总结很全面,老师再补充一条:根据等边三角形的定义可以知道,“等边三角形的三条边相等。”

大家要记住:定义通常具备性质与判定双重含义。(板书等边三角形的四条性质。)同学们会用符号语言来表示这些性质吗?(不同学生分别叙述等边三角形性质的表达式)。

(三)创设情境,探究等边三角形的判定

[师]我们继续探究等边三角形的判定方法,请思考下面的问题: 1.一个三角形满足什么条件就可以成为等边三角形? 2.一个等腰三角形满足什么条件就可以成为等边三角形? 3.你能证明你的结论吗?请与同学交流你的探究过程。(给出思考和讨论时间,再找学生板演)。

[生戊](微笑着)根据老师说“定义通常具备性质与判定双重含义”,通过等边三角形定义可知:三条边相等的三角形等边三角形。

(同学赞许,笑。)

[生己]一个三角形满足“三个角相等,且每个角都等于60°”就是等边三角形。可以通过“等角对等边”证明得到定义。(演示证明过程。)

[生庚]老师,我反对,不用那么多条件,只要满足“三个角相等”或“有两个角等于60°”就可以了。归纳为“如果一个三角形三个角都相等,那么它就是等边三角形。”

[生甲]我认为,归纳为“三个角相等的三角形是等边三角形”就可以了,我是对比定义才这样说的。

[师]我问一下:“有两个角等于60°”的条件可以吗?你为什么没有归纳呢? [生辛]可以!(同学笑——“老师没有问你。”)

[生庚]也可以,那么,归纳为“有两个角等于60°的三角形是等边三角形。” [生丙]不对,那样不严密,大家看,有两个角相等就是等腰三角形了。唉,我发现等腰三角形满足“有一个角等于60°”就是等边三角形了,归纳为“有一个角等于60°的等腰三角形是等边三角形。”

[师]你们能证明吗?

[生辛]如果这个角等于60°,(指的是等腰三角形的顶角)根据等边对等角和三角形内角和定理,可以计算出其他两个角也等于60°,再根据等角对等边就可以证明了。

[师]同学有补充吗?

[生丁]如果这个角等于60°(指的是等腰三角形的一个底角),同样也可以判定等边三角形。

[师]两个角有什么不同吗?两位同学的说法有没有重复?

[生乙]不重复,应该综合起来,因为要分这个角是顶角和底角两种情况进行证明。

[师]说的好,分两种情况证明,就可以发现这个命题:第一种,如果顶角为60°;第二种,底角为60°。

大家还有不同意见吗?

[生丁]有两条边相等的等腰三角形是等边三角形。(指着等腰三角形的一腰和底边就讲了起来。)

[师]他说的对吗?

[生戊]他说的是有两条边相等,但是他指的是一腰和底边,那就成了三条边相等了,所以不对。

[生辛]如果只有两条边相等只能判定是等腰三角形,所以不对。[师]那么谁来总结一下?

[生庚]等边三角形的判定方法有三个:(1)三条边相等的三角形是等边三角形;(2)三个角相等的三角形是等边三角形;(3)有一个角等于60°的等腰三角形是等边三角形。

[师]很好,定义独立于性质与判定定理之外,所以判定定理有两条。(板书判定定理及内容)

谁能用符号语言叙述一下等边三角形的判定定理?

(找两名学生分别叙述后,再选一名学生综合定理来叙述。)

(四)例题演练,熟练等边三角形的性质与判定。

例1:如图,△ABC是等边三角形,DE∥BC,分别交AB、AC于点D、E,求证:△ADE是等边三角形

[师]哪位同学来先分析、再板书?

ADEBC

[生壬]大家先跟我看已知,由△ABC是等边三角形可知△ABC的三个内角相等,再由DE∥BC可知∠ADE=∠B,∠AED=∠C,所以△ADE的三个内角都相等,可得△ADE是等边三角形。

(然后开始板演,证明过程略)

[师]大家还记得老师说过的“综合分析法”吧?

通过已知可以知道△ABC三内角相等,运用平行线性质可实现角度的代换;看求证,需要我们来证明△ADE三个内角相等;运用等量代换就可以实现了。

这种分析方法,同学们要加强练习。

例2如图,等边三角形ABC中,AD是BC上的高,∠BDE=∠CDF=60°图中有哪些与BD相等的线段?

[师]请同学们准确运用等边三角形的性质与判定方法,先猜想出答E案,再进行说明。

(五)课堂练习:

1.画出等边三角形的三条对称轴,说说你的发现。

2.如图,△ABC是等边三角形,∠B和∠C的平分线相交于D,2AFBDCAD1BD、CD•的垂直平分线分别交BC于E、F,求证:BE=CF.

(六)课堂小结

BEFC这节课,我们自主探索、思考了等腰三角形成为等边三角形的条件,并对这个结论的证明有意识地渗透分类讨论的思想方法.这节课我们学的定理非常重要,在我们今后的学习中起着非常重要的作用。

那么那位同学谈一下本节课你的收获。

(七)教学反思:

本节课为了增加学生的切身体验,让学生自主探索去获得等边三角形的性质与判定定理,从初二学生刚刚有一点几何推理的基础入手,一方面加强几何语言的训练,另一方面强化集合推理的书写,所以在学生板书后还有必要的说明。

整体感觉学生在小组长的带领下,基本能完成探究任务。在探究、表达的过程中,一个人是没有能独立完成的,都离不开小组内合作与小组间探讨,许多时候是在你一言我一语的补充中发现自己的不足和综合性的必要的。

本节课的不足是能表达准确、板书准确的学生人数偏少,不能实现人人都发言、人人有观点,看起来这方面训练还是少;还有对于学生探究指导的不到位,首先没有达到“不愤不启,不悱不发”的程度。

今后的教学侧重于每个学生对课堂活动的参与、在参与过程中给学生比较系统的方法指导、强化学生几何语言和几何推理的训练。

第五篇:等边三角形

12.3.2 等边三角形

【教学目标】

1.知识与能力:

理解并掌握等边三角形的定义,探索等边三角形的性质和判定方法;能够用等边三角形的知识解决相应的数学问题.

2.过程与方法:

在探索等边三角形的性质和判定的过程中,体会知识间的关系,感受数学与生活的联系.

3.情感、态度与价值观:

培养学生的分析解决问题的能力,使学生养成良好的学习习惯.

【教学重点】

理解并掌握等边三角形的定义,探索等边三角形的性质和判定方法;能够用等边三角形的知识解决相应的数学问题. 【教学难点】

等边三角形性质和判定的应用. 【教学方法】

创设情境-主体探究-合作交流-应用提高.

【教学过程】

一、创设问题情境,激发学生兴趣,引出本节内容

在等腰三角形中,有一类特殊的三角形——三条边都相等的三角形,我们把这样的三角形叫做等边三角形.

活动1 请你探索等边三角形的性质和判定方法. 学生活动设计:

学生独立思考,然后进行交流,在交流中完成:(1)所有性质的探索;(2)性质的证明. 教师活动设计:

让学生归纳所有性质,并证明所有的性质(可以口述). 归纳:

等边三角形三个内角都相等,并且每个内角都是60°. 三个角都相等的三角形是等边三角形.

有一个角是60°的等腰三角形是等边三角形.

二、问题探究、巩固练习活动2 问题

如图(1),兴趣小组在一次测量活动中测得∠APB=60°,AP=BP=200 m,他们便得出了结论:池塘最长处不小于200 m.他们的结论对吗?

图(1)

学生活动设计:

学生在独立思考的基础上进行讨论,经过讨论可以发现,只需要证明△ABP是等边三角形即可.根据条件AP=BP知,此三角形是等腰三角形,又∠APB=60°,可以得到三角形是等边三角形,进而可以得到AB=200 m,所以兴趣小组的结论是正确的.

教师活动设计:

让学生充分讨论,根据所学的数学知识利用逻辑推的方式进行证明,证明过程中注意学生表述的准确性和严谨性.另外本问题的解决方法不止一种,注意学生的不同解法(比如可以利用三个角相等的三角形是等边三角形)

〔解答〕略. 活动3 如图(2),在等边△ABC的边AB、AC上分别截取AD=AE,那么△ADE是等边三角形吗?为什么?

ADBEC

图(2)

学生活动设计:

学生首先独立思考,然后可以分组讨论,观察问题中的条件,要证明△ADE是等边三角形可以有两种方法:

方法1 证明有两边相等,且有一个角是60°; 方法2 证明三个角都相等(是60°).

对于方法1,根据条件容易得到,AD=AE且∠A=60°于是结论成立;对于方法2由于不容易实现,学生可以课下思考.

教师活动设计:

鼓励学生大胆猜测结论,然后进行证明. 〔解答〕因为△ABC是等边三角形,所以AB=AC,∠A=60°.

又因为AD=AE,所以△ADE是等边三角形. 活动4 如图(3),将两个含有30°角的三角板摆放在一起形成一个等边三角形,你能借助这个图形,找到Rt△ABC的直角边BC与斜边AB之间的数量关系吗?你能证明你的结论吗?

ABCD

图(3)

学生活动设计:

学生观察图形,分析数量关系,发现∠BAD=60°,而∠B=∠D=60°,所以△ABD是等边三角形,所以AB=BD=2BC,进而得到:

直角三角形中30°角所对的直角边等于斜边的一半. 然后进行证明. 教师活动设计:

鼓励学生寻找不同的解决问题的方法,上述可以是方法1,可能有如下方法,如图(4).

ADBC

图(4)

作∠DCB=60°,由于∠B=60°,所以∠BDC=60°,于是△BDC是等边三角形,即BC=BD=DC;另一方面,由于∠A=30°,∠BDC=60°,根据三角形的外角得到∠ACD=30°,再根据等角对等边得到AD=DC,因此得到AB=AD+DB=2BC,结论成立.

〔解答〕略.

三、应用提高、拓展创新,培养学生解决问题的能力和创新意识 活动5 如图(5)是屋架设计图的一部分,点D是斜梁AB的中点,立柱BC、DE垂直于横梁AC,AB=7.4 m,∠A=30°,立柱BC、DE需要多长?

BDAEC

图(5)

师生活动设计:

学生根据所学知识自行探索,教师引导学生在探索的过程中发现解决问题的关键:直角三角形中30°角所对的直角边等于斜边的一半.

〔解答〕略. 活动6 如图(6),以△ABC的边AB、AC向外作等边△ABE和△ACD,连接BD、CE,(1)线段CE和BD有什么数量关系?证明你的结论.(2)能否求出∠DFC的度数?

EAGFBCD

图(6)

学生活动设计:

学生先独立思考再小组讨论,然后交流.(1)经过分析可以发现,只需要证明线段CE和BD所在的△AEC和△ABD全等即可,根据等边三角形的性质可以得到AC=AD,AE=AB,∠DAC=∠EAB=60°,进而得到∠EAC=∠BAD,根据SAS得到△AEC≌△ABD,于是结论成立;

(2)根据(1)可以得到∠BDA=∠ACE,又∠CGF=∠DGA(对顶角),可以得到∠DFC=60°,问题解决.

教师活动设计:

教师在学生交流的基础上,引导学生寻找解决这类问题时需要注意的地方,让学生写出规范的解题过程.

〔解答〕因为△ABE和△ACD是等边三角形,所以∠DAC=∠EAB=60°,AE=AB,AD=AC,所以∠EAC=∠DAB.

在△AEC和△ABD中,AEAB

EACBAD

ACAD所以△AEC≌△ABD.

所以BD=EC,∠BDA=∠ACE,又∠CGF=∠DGA,所以∠DFC=∠DAC=60°.

四、归纳小结、布置作业

小结:等边三角形的性质和判定以及应用. 作业:习题12.3 第8~14题.

下载等边三角形教学反思word格式文档
下载等边三角形教学反思.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    《等边三角形》优秀教学设计

    《等边三角形》优秀教学设计 教学目标 知识与技能 1.了解等边三角形是特殊的等腰三角形,等边三角形是轴对称图形; 2.会阐述、推证等边三角形的性质和判定方法; 3.经历应用等边三......

    新课标人教版八年级数学上册《等边三角形》教学反思

    本节课让学生在认识等腰三角形的基础上,进一步认识等边三角形。学习等边三角形的定义、性质和判定,再折一折的过程中体会等边三角形的特征,三条边相等,三个角也相等,都是60度。让......

    新人教版八年级数学上册《等边三角形》教学反思

    回顾等腰三角形的知识内容,从问题中激发学习新知识的欲望,引入新课。在复习回顾等腰三角形的知识时,有这样一题:等腰三角形是轴对称图形,对称轴有条。引起学生的争论,提出了新课的......

    等边三角形 教案

    13.3.2 等边三角形 教学目的: 1、使学生熟练地运用等腰三角形的性质求等腰三角形内角的角度。 2、熟识等边三角形的性质及判定. 3、通过例题教学,帮助学生总结代数法求几何角度,线......

    等边三角形说课稿

    等边三角形说课稿 一、教材分析 1、教材地位及作用 等边三角形是八年级数学上册的内容,安排在人教版第十二章第三节的第二小节。等边三角形被喻为最美丽的三角形,由于它具有一......

    八年级数学上册 12.3.2《等边三角形》教学反思 新人教版

    12.3.2等边三角形教学反思 等边三角形是继等腰三角形之后重点研究的一项知识内容,在实际生活中总能找到等边三角形的影子,它不仅使我们的生活变得丰富多彩,让我们在生活中体验......

    《等腰三角形和等边三角形》教学设计

    《等腰三角形和等边三角形》教学设计 南京市栖霞区摄山星城小学 葛庆婷 教学目标: 1. 使学生在实际操作中认识等腰三角形和等边三角形,知道等腰三角形和等边三角形的特征,并能......

    “等边三角形”教学设计(第二课时)

    【教学目标】 1.知识与技能: 使学生理解含30角的直角三角形的性质。 2.过程与方法: 通过探究含30角的直角三角形的性质,使学生进一步认识到数学来源于生活实践。......