第一篇:数列与不等式练习4
高二数学中午练习10.17
1、设Sn为等差数列an的前n项和,若a11,公差d2,Sk2Sk24,则k=
2、已知数列an满足a11,an12an1(nN*).则数列an的 通项公式为
112123123n3、求和:
4、在等差数列an中,a3a737,则a2a4a6a8________
5、等差数列an前9项的和等于前4项的和.若a11,aka40,则k=____________.
6、设{an}是一个公差为d(d0)的等差数列,它的前10项和S10110,且a1,a2,a4成等比数列.
(Ⅰ)证明:a1d;(Ⅱ)求公差d的值和数列{an}的通项公式.
第二篇:数列与不等式证明专题
数列与不等式证明专题
复习建议:
1.“巧用性质、减少运算量”在等差、等比数列的计算中非常重要,但用“基本量法”并树立“目标意识”,“需要什么,就求什么”,既要充分合理地运用条件,又要时刻注意题的目标,往往能取得与“巧用性质”解题相同的效果2.归纳——猜想——证明体现由具体到抽象,由特殊到一般,由有限到无限的辩证思想.学习这部分知识,对培养学生的逻辑思维能力,计算能力,熟悉归纳、演绎的论证方法,提高分析、综合、抽象、概括等思维能力,都有重大意义.
3.解答数列与函数的综合问题要善于综合运用函数方程思想、化归转化思想等数学思想以及特例分析法,一般递推法,数列求和及求通项等方法来分析、解决问题.
4.数列与解析几何的综合问题解决的策略往往是把综合问题分解成几部分,先利用解析几何的知识以及数形结合得到数列的通项公式,然后再利用数列知识和方法求解. 证明方法:(1)先放缩后求和;(2)先求和后放缩(3)灵活运用 例1.数列a
2nn满足a11,a22,an2(1cos2)asin2n
n2,n1,2,3,.(Ⅰ)求a3,a4,并求数列an的通项公式;(Ⅱ)设ba2n
1n
a,Snb1b2bn.证明:当n6S21n2n
n.分析:本题给出数列相邻两项的递推关系,且要对n分奇偶性。
解:(Ⅰ)因为acos
2
11,a22,所以a3(12)a1sin2
a112,a4(1cos2)a2sin22a24.一般地,当n2k1(kN*)时,a2
k1)2k1[1cos
(22]asin22k1
2k12
=a2k11,即a2k1a2k11.所以数列a2k1是首项为
1、公差为1的等差数列,因此a2k1k.当n2k(kN*)时,a2k2k2(1cos
22)a2k
2ksin2
22a2k.所以数列a2k是首项为
2、公比为2的等比数列,因此a2k2k.故数列an1n的通项公式为an
2,n2k1(kN*),n22,n2k(kN*).(Ⅱ)由(Ⅰ)知,ba2n1nan
123n2,Sn23n,①2n22222
12S1223n
n222242
n1② 1①-②得,1[1(1)2]2S1111nn222232n2n1n1n12n112n2n1.2所以S1nn2
n22n12n22
n.要证明当n6时,S1n(n2)
n2n成立,只需证明当n6时,2n
1成立.证法一
(1)当n = 6时,6(62)264864
341成立.(2)假设当nk(k6)时不等式成立,即k(k2)
k
1.则当n=k+1时,(k1)(k3)k(k2)(k1)(k2k12k3)2k(k2)(k1)(k3)
(k2)2k
1.由(1)、(2)所述,当n≥6时,n(n1)2
21.即当n≥6时,Sn2
1n
.证法二令cn(n2)n
22(n6),则c(n1)(n3)n(n2)3n2
n1cn2n1222
n10.所以当n6时,c68n1cn.因此当n6时,cnc664
341.于是当n6时,n(n2)221.综上所述,当n6时,Sn
21
n
.点评:本题奇偶分类要仔细,第(2)问证明时可采用分析法。
例题2.已知为锐角,且tan
21,函数f(x)x2tan2xsin(2
4),数列{an}的首项a1
2,an1f(an).(1)求函数f(x)的表达式;⑵ 求证:an1an;
⑶ 求证:
111a112(n2,nN*)11a21an
分析:本题是借助函数给出递推关系,第(2)问的不等式利用了函数的性质,第(3)问是转化成可以裂项的形式,这是证明数列中的不等式的另一种出路。
解:⑴tan2
2tan2(1)2
又∵为锐角 ∴2 ∴sin(2)1∴f(x)xx1
441tan21(21)2
∴a2,a3,an都大于0∴an0∴an1an2
∴
则S
1111121212111()(S)S a22a2a3ana2an13an13a22an1
⑵
an1anan∵a1
点评:数列中的不等式要用放缩来解决难度就较大了,而且不容易把握,对于这样的题要多探索,多角度的思考问题。
⑶
1an1
1111
2
ananan(1an)an1an111
1ananan1
例题4.已知函数f(x)xln1x,数列an满足0a11,∴
111111111111
2
an1fan;数列bn满足b1,bn1(n1)bn, nN*.求证:
1a11a21ana1a2a2a3anan1a1an1an1
∵a(12)21234, a(34)23
234
1 ,又∵n2an1an∴an1a31
∴1
2
1a2∴1
1n1a11
2
1
11a21an
点评:把复杂的问题转化成清晰的问题是数学中的重要思想,本题中的第(3)问不等式的证明更具有一般性。
例题3.已知数列aa
n满足a11,n12an1nN
(Ⅰ)求数列an的通项公式;(Ⅱ)若数列b1n满足4b114b24
b31
4bn1(an1)bn,证明:bn是等差数列;
(Ⅲ)证明:
11a12nNa 23an13
分析:本例(1)通过把递推关系式转化成等比型的数列;第(2)关键在于找出连续三项间的关系;第(3)问关键在如何放缩 解:(1)an12an1,an112(an1)
故数列{an1}是首项为2,公比为2的等比数列。ann12n,an21
(2)4
b114
b214
b31
4bn1(an1)bn,4
(b1b2bnn)
2nbn
2(b1b2bn)2nnbn①2(b1b2bnbn1)2(n1)(n1)bn1②
②—①得2bn1
2(n1)bn1nbn,即nbn2(n1)bn1③(n1)bn12nbn2④ ④—③得2nbn1
nbnnbn1,即2bn1bnbn1所以数列{bn}是等差数列
(3)
1a1111
2n112n12
设S
1n2ana11,2a3an1
(Ⅰ)0a(Ⅱ)aa2nn1an1;n12;
(Ⅲ)若a12
则当n≥2时,bnann!.分析:第(1)问是和自然数有关的命题,可考虑用数学归纳法证明;第(2)问可利用函数的单调性;第(3)问进行放缩。解:(Ⅰ)先用数学归纳法证明0an1,nN*.(1)当n=1时,由已知得结论成立;(2)假设当n=k时,结论成立,即0ak1.则当n=k+1时,因为0 1x1xx1 0,所以f(x)在(0,1)上是增函数.又f(x)在0,1上连续,所以f(0) 1, 得an1ananln1ananln(1an)0,从而an1an.综上可知0an1 an1.(Ⅱ)构造函数g(x)= x2 x2x2 -f(x)= ln(1x)x, 0 nn>0,从而an12 .(Ⅲ)因为 b12b1b n11,n12(n1)bn,所以bn0,n1bn,所以bba2nbn1bnn b2b1 1nn!————①由(Ⅱ)an1,知:an1an,n1bn2b122an2 所以 anaa3naa1a2n1 ,因为aa= a2aa1, n≥2, 0an1an1.1 1a2n12222 a2a2 所以 a1a2an1aan 1< n 2221<2 n12n = 2n ————②由①② 两式可知: bnann!.点评:本题是数列、超越函数、导数的学归纳法的知识交汇题,属于难题,复习时应引起注意。 例题5.已知函数f(x)=52x 168x,设正项数列an满足a1=l,an1fan. (1)试比较a 5n与 4的大小,并说明理由; (2)设数列b5n nn满足bn=4-an,记Sn=bi.证明:当n≥2时,Sn<(2-1). i 14分析:比较大小常用的办法是作差法,而求和式的不等式常用的办法是放缩法。 解:(1)a2ann1 5168a,因为a所以a7 311,2,a34 .(2)因为an0,an10,所以168an0,0an2.n8a552a48(a55 n5nn1)3an554168a432(2a,因为2an0,所以an1与a同号,nn)22an 4n 4因为a514140,a5555 240,a340,„,an40,即an4 .(3)当n2时,b531n4an22a(5a31 31n1)bn1bn12bn1,n1422an1225 所以bn 2bn122bn22n1b312n,13n (12n) 所以Snb1b2bn 4121 2 121 (2n1) 点评:本题是函数、不等式的综合题,是高考的难点热点。 例题6.已知数列a* n中,a11,nan12(a1a2...an)nN . (1)求a2,a3,a4;(2)求数列an的通项an;(3)设数列{b1n}满足b1 2,b12 n1abnbn,求证:bn1(nk)k 分析:条件中有类似于前n项和的形式出现,提示我们应该考虑an=Sn-Sn-1(n≥2) 解:(1)a22,a33,a44(2)nan12(a1a2...an)① (n1)an2(a1a2...an1)②①—②得nan1(n1)an2an 即:nan1 (n1)a1n1aa3ann,ana所以aa223n n1a...1...1 n(n2) nna12an112n所以a*n n(nN) (3)由(2)得:b1 12,b12 n1k bnbnbnbn1...b10,所以{bn}是单调递增数列,故要证:bn1(nk)只需证bk1 若k 1,则b121显然成立;若k2,则b1211 n1kbnbnk bnbn1bn 所以 1b11,因此:1(11)...(11)1k12 k1 n1bnkbkbkbk1b2b1b1kk所以bk k k1 1,所以bn1(nk)点评:与数列相关的不等式证明通常需要“放缩”,而放缩的“度”尤为关键,本题中 1b(11)...(11)1,这种拆分方法是数学中较高要求的变形.kbkbk1b2b1b1 例题7.已知不等式 12131n1 [log2n],其中n为不大于2的整数,[log2n]表示不超过log2n的最大整数。设数列a1 n的各项为正且满足a1b(b0),anann na(n2,3,4),证明: n1 an 2b 2b[log,n3,4,5 2n] 分析:由条件an111111n nana得: n1 a1 nan1n an(n2) nan1 11a 1n1 an2 n1 „„ a11以上各式两边分别相加得: 2a121a111111111 11[log2n](n3)na1nn12anbnn12 b2 = 2b[log2n]2b a2b n2b[logn] (n3) 2本题由题设条件直接进行放缩,然后求和,命题即得以证明。 例题8.已知数列{an}的前n项和Sn满足:Sn2an(1)n,n1(1)写出数列{an}的前三项a1,a2,a5;(2)求数列{an}的通项公式; (3)证明:对任意的整数m4,有1117 a 4a5am8 分析:⑴由递推公式易求:a1=1,a2=0,a3=2; ⑵由已知得:an SnSn12an(1)n2an1(1)n1(n>1) 化简得:an1anan1anan1n 2an12(1) (1)n2(1)n12,(1)n232[(1) n1 2 3] 故数列{ an2(1)n3}是以a123为首项, 公比为2的等比数列.故an21 (1) n 3(3)(2)n1∴a23[2n2(1)n]∴数列{a2 n n}的通项公式为:an3 [2n2(1)n].⑶观察要证的不等式,左边很复杂,先要设法对左边的项进行适当的放缩,使之能够求和。而左边= 1a1a13[111 2212312m2(1) m],如果我们把上式中的分母中的1去掉,就可利45am2用等比数列的前n项公式求和,由于-1与1交错出现,容易想到将式中两项两项地合并起来一起进行放缩,尝试知: 11111 22112311221 23,2312412324,因此,可将 1 保留,再将后面的项两两组合后放缩,即可求和。这里需要对m进行分类讨论,(1)当m为偶数(m4)时,1a11a1(11)(11)13(11134m2)4a5ma4a5a6am1am 22222 1311224(1137 m4)288(2)当m是奇数(m4)时,m1为偶数,1a1111a1117 4a5ama45a6amam18 所以对任意整数m4,有 aa 7。本题的关键是并项后进行适当的放缩。45am8 例题9.定义数列如下:a2 12,an1anan1,nN 证明:(1)对于nN 恒有a n1an成立。(2)当n2且nN,有an1anan1a2a11成立。(3)1 112a12006 a1 1。12a2006 分析:(1)用数学归纳法易证。 (2)由a2 n1anan1得:an11an(an1) an1an1(an11)„„a21a1(a11) 以上各式两边分别相乘得:an11anan1a2a1(a11),又a12 an1anan1a2a11 (3)要证不等式1 11122006 a11,可先设法求和:11,1a2a2006a1a2a2006 再进行适当的放缩。a111n11an(an1) aaa11 a n11 n1nanan1n11 1111a(1)(11)(11)1a2a2006a11a21a21a31a20061a20071 1a1a1 1120071 aa 12a2006又aa2006 1a2a20061 220061 1a11 2006原不等式得证。 1a2a20062 点评:本题的关键是根据题设条件裂项求和。 2012年数学一轮复习精品试题第六、七模块 数列、不等式、推 理与证明 一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.在等比数列{aa 2n}中,若a3a5a7a9a11=243,则a的值为()1 1A.9B.1 C.2D. 32.在等比数列{aaa n}中,an>an7·a11=6,a4+a14=5,则+1,且a等于()16 A.23B.32 C16D.-563.在数列{aa-n}中,a1=1,当n≥2时,an=1+aa n-1n=() A.1 nB.n C.1nD.n2 4.已知0 B.成等比数列 C.各项倒数成等差数列 D.各项倒数成等比数列 5.已知a1=1,an=n(an+1-an)(n∈N*),则数列{an}的通项公式是() n- 1A.an=2n-1B.an1 nn C.an=n2D.an=n) n2-6n 6.已知正项数列{an}的前n项的乘积等于Tn=的前n项和Sn中的最大值是() A.S6 B.S 51 4 (n∈N*),bn=log2an,则数列{bn} 7.已知a,b∈R,且a>b,则下列不等式中恒成立的是() 11 A.a>bB.< 22 ab C.lg(a-b)>0 aD.b 8.设a>0,b>0,则以下不等式中不恒成立的是()11 A.(a+b)ab≥ 4B.a3+b3≥2ab2 D.|a-b|ab C.a2+b2+2≥2a+2b 9.当点M(x,y)在如图所示的三角形ABC内(含边界)运动时,目标函数z=kx+y取得最大值的一个最优解为(1,2),则实数k的取值范围是() A.(-∞,-1]∪[1,+∞)B.[-1,1] C.(-∞,-1)∪(1,+∞)D.(-1,1) lg|x|(x<0)10.设函数f(x)=x,若f(x0)>0,则x0的取值范围是() 2-1(x≥0) A.(-∞,-1)∪(1,+∞)B.(-∞,-1)∪(0,+∞) C.(-1,0)∪(0,1)D.(-1,0)∪(0,+∞) a2+b 211.已知a>b>0,ab=1,则的最小值是() a-bA.2C.2D.1 12.下面四个结论中,正确的是() A.式子1+k+k2+…+kn(n=1,2,…)当n=1时,恒为1 B.式子1+k+k2+…+kn1(n=1,2…)当n=1时,恒为1+k - 1111111 C.式子++…+n=1,2,…)当n=1时,恒为 1231232n+1 111111 D.设f(n)=n∈N*),则f(k+1)=f(k)+n+1n+23n+13k+23k+33k+4 二、填空题:本大题共4小题,每小题5分,共20分,把答案填在题中的横线上. 13.已知Sn是等差数列{an}(n∈N*)的前n项和,且S6>S7>S5,有下列四个命题:(1)d<0;(2)S11>0;(3)S12<0;(4)数列{Sn}中的最大项为S11,其中正确命题的序号是________. 14.在数列{an}中,如果对任意n∈N*都有数列,k称为公差比.现给出下列命题: (1)等差比数列的公差比一定不为0;(2)等差数列一定是等差比数列; (3)若an=-3n+2,则数列{an}是等差比数列;(4)若等比数列是等差比数列,则其公比等于公差比. 其中正确的命题的序号为________. =q,(4)正确. 15.不等式 ax的解集为{x|x<1或x>2},那么a的值为________. x- 1an+2-an+1 k(k为常数),则称{an}为等差比 an+1-an x≥0 16.已知点P(x,y)满足条件y≤x 2x+y+k≤0k=________.(k为常数),若z=x+3y的最大值为8,则 三、解答题:本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤. 17.(10分)(2011·天津市质检)已知等差数列{an}的前三项为a-1,4,2a,记前n项和为Sn.(1)设Sk=2550,求a和k的值; S(2)设bn,求b3+b7+b11+…+b4n-1的值. n 18.(12分)已知各项均为正数的数列{an}的前n项和为Sn,首项为a1,且2,an,Sn成等差数列. (1)求数列{an}的通项公式; b(2)若bn=log2an,cn=,求数列{cn}的前n项和Tn.an 2bx 19.(12分)已知函数f(x)(x∈R)满足f(x),a≠0,f(1)=1,且使f(x)=2x成立的实 ax-1数x只有一个. (1)求函数f(x)的表达式; 21(2)若数列{an}满足a1=an+1=f(an),bn=1,n∈N*,证明数列{bn}是等比数列,3an 并求出{bn}的通项公式; (3)在(2)的条件下,证明:a1b1+a2b2+…+anbn<1(n∈N*). 2x 20.(12分)已知集合A=xx-21,集合B={x|x2-(2m+1)x+m2+m<0} (1)求集合A,B; (2)若B⊆A,求m的取值范围. 2a2 21.(12分)解关于x的不等式:x|x-a|≤(a>0). 922.(12分)某工厂生产甲、乙两种产品,每生产一吨产品所消耗的电能和煤、所需工人人数以及所得产值如表所示: 160千度,消耗煤不得超过150吨,怎样安排甲、乙这两种产品的生产数量,才能使每天所得的产值最大,最大产值是多少. 高考专题——放缩法 一、基本方法 1.“添舍”放缩 通过对不等式的一边进行添项或减项以达到解题目的,这是常规思路。例1.设a,b为不相等的两正数,且a3-b3=a2-b2,求证1<a+b<例2.已知a、b、c不全为零,求证:。aabb2bcc2c2aca2>3(abc) 2[变式训练]已知an2n1(nN*).求证:an1a1a2...n(nN*).23a2a3an 12.分式放缩 一个分式若分子变大则分式值变大,若分母变大则分式值变小,一个真分式,分子、分母同时加上同一个正数则分式值变大,利用这些性质,可达到证题目的。例3.已知a、b、c为三角形的三边,求证:1< 3.裂项放缩 若欲证不等式含有与自然数n有关的n项和,可采用数列中裂项求和等方法来解题。例4.已知n∈N*,求1a+b+c<2。acab 121 „1 n<2n。 n(n1)(n1) 2例5.已知nN且an223n(n1),求证:an22对所有正整数n都成立。* 4.公式放缩 利用已知的公式或恒不等式,把欲证不等式变形后再放缩,可获简解。 n2x1*例6.已知函数f(x)x,证明:对于nN且n3都有f(n)。n121 例7.已知f(x)x2,求证:当ab时f(a)f(b)ab。 5.换元放缩 对于不等式的某个部分进行换元,可显露问题的本质,然后随机进行放缩,可达解题目的。 例8.已知abc,求证 0。abbcca 例9.已知a,b,c为△ABC的三条边,且有a2b2c2,当nN*且n3时,求证: anbncn。 6.单调函数放缩 根据题目特征,通过构造特殊的单调函数,利用其单调性质进行放缩求解。 例10.已知a,b∈R,求证7.放大或缩小“因式”; ab1ab a1a b1b。 n 例 4、已知数列{an}满足an1a,0a1,求证:(akak1)ak2.232k 1n 8.固定一部分项,放缩另外的项; 例 6、求证: 11117 122232n2 49.利用基本不等式放缩 例 7、已知an5n 41对任何正整数m,n都成立.10.先适当组合, 排序, 再逐项比较或放缩 例 8、.已知i,m、n是正整数,且1<i≤m<n.(1)证明:nAim<mAin;(2)证明:(1+m) i i n >(1+n) m 二、放缩法综合问题 (一)、先求和后放缩 例1.正数数列an的前n项的和Sn,满足2Snan1,试求:(1)数列an的通项公式;(2)设bn 1,数列bn的前n项的和为Bn,求证:Bn。 2anan1 (二)、先放缩再求和(或先求和再放缩)例、函数f(x)= 4x14x,求证:f(1)+f(2)+„+f(n)>n+ 12n 1(nN*).21.放缩后成等差数列,再求和 例2.已知各项均为正数的数列{an}的前n项和为Sn,且anan2Sn.an2an12(1)求证:Sn; (2) 2.放缩后成等比数列,再求和 例3.(1)设a,n∈N*,a≥2,证明:a2n(a)n(a1)an; (2)等比数列{an}中,a1,前n项的和为An,且A7,A9,A8成等差数列.设 a1bnn,数列{bn}前n项的和为Bn,证明:Bn<. 31an 3.放缩后为差比数列,再求和 例4.已知数列{an}满足:a11,an1(1 n)an(n1,2,3).求证: n2 an1an3 n1 2n1 n 4.放缩后为裂项相消,再求和 例 5、已知an=n,求证:∑ k=1ak k <3. 数列不等式综合题示例 例1 设等比数列an的公比为q,前n项和Sn0(n1,2,)(Ⅰ)求q的取值范围;(Ⅱ)设bn3an2an1,记bn的前n项和为Tn,试比较Sn与Tn2 41n12例2设数列an的前n项的和Snan22•,•3•,•,n1,•333 (Ⅰ)求首项a1与通项an; 2n (Ⅱ)设TnSn,n1•,•2•,•3•,•,证明:Tii1n3 2例3数列{an}满足a1=1,且an1(Ⅰ)用数学归纳法证明:an(Ⅱ)已知不等式ln(1e =2.71828 ….(111)a(n1).n2nnn22(n2); x)x对x0成立.证明:ane2(n1).其中无理数第三篇:数列不等式推理与证明
第四篇:2012高考专题----数列与不等式放缩法
第五篇:数列不等式题