数列与不等式练习4(大全五篇)

时间:2019-05-14 18:37:00下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《数列与不等式练习4》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《数列与不等式练习4》。

第一篇:数列与不等式练习4

高二数学中午练习10.17

1、设Sn为等差数列an的前n项和,若a11,公差d2,Sk2Sk24,则k=

2、已知数列an满足a11,an12an1(nN*).则数列an的 通项公式为

112123123n3、求和:

4、在等差数列an中,a3a737,则a2a4a6a8________

5、等差数列an前9项的和等于前4项的和.若a11,aka40,则k=____________.

6、设{an}是一个公差为d(d0)的等差数列,它的前10项和S10110,且a1,a2,a4成等比数列.

(Ⅰ)证明:a1d;(Ⅱ)求公差d的值和数列{an}的通项公式.

第二篇:数列与不等式证明专题

数列与不等式证明专题

复习建议:

1.“巧用性质、减少运算量”在等差、等比数列的计算中非常重要,但用“基本量法”并树立“目标意识”,“需要什么,就求什么”,既要充分合理地运用条件,又要时刻注意题的目标,往往能取得与“巧用性质”解题相同的效果2.归纳——猜想——证明体现由具体到抽象,由特殊到一般,由有限到无限的辩证思想.学习这部分知识,对培养学生的逻辑思维能力,计算能力,熟悉归纳、演绎的论证方法,提高分析、综合、抽象、概括等思维能力,都有重大意义.

3.解答数列与函数的综合问题要善于综合运用函数方程思想、化归转化思想等数学思想以及特例分析法,一般递推法,数列求和及求通项等方法来分析、解决问题.

4.数列与解析几何的综合问题解决的策略往往是把综合问题分解成几部分,先利用解析几何的知识以及数形结合得到数列的通项公式,然后再利用数列知识和方法求解. 证明方法:(1)先放缩后求和;(2)先求和后放缩(3)灵活运用 例1.数列a

2nn满足a11,a22,an2(1cos2)asin2n

n2,n1,2,3,.(Ⅰ)求a3,a4,并求数列an的通项公式;(Ⅱ)设ba2n

1n

a,Snb1b2bn.证明:当n6S21n2n

n.分析:本题给出数列相邻两项的递推关系,且要对n分奇偶性。

解:(Ⅰ)因为acos

2

11,a22,所以a3(12)a1sin2

a112,a4(1cos2)a2sin22a24.一般地,当n2k1(kN*)时,a2

k1)2k1[1cos

(22]asin22k1

2k12

 =a2k11,即a2k1a2k11.所以数列a2k1是首项为

1、公差为1的等差数列,因此a2k1k.当n2k(kN*)时,a2k2k2(1cos

22)a2k

2ksin2

22a2k.所以数列a2k是首项为

2、公比为2的等比数列,因此a2k2k.故数列an1n的通项公式为an

2,n2k1(kN*),n22,n2k(kN*).(Ⅱ)由(Ⅰ)知,ba2n1nan

123n2,Sn23n,①2n22222

12S1223n

n222242

n1② 1①-②得,1[1(1)2]2S1111nn222232n2n1n1n12n112n2n1.2所以S1nn2

n22n12n22

n.要证明当n6时,S1n(n2)

n2n成立,只需证明当n6时,2n

1成立.证法一

(1)当n = 6时,6(62)264864

341成立.(2)假设当nk(k6)时不等式成立,即k(k2)

k

1.则当n=k+1时,(k1)(k3)k(k2)(k1)(k2k12k3)2k(k2)(k1)(k3)

(k2)2k

1.由(1)、(2)所述,当n≥6时,n(n1)2

21.即当n≥6时,Sn2

1n

.证法二令cn(n2)n

22(n6),则c(n1)(n3)n(n2)3n2

n1cn2n1222

n10.所以当n6时,c68n1cn.因此当n6时,cnc664

341.于是当n6时,n(n2)221.综上所述,当n6时,Sn

21

n

.点评:本题奇偶分类要仔细,第(2)问证明时可采用分析法。

例题2.已知为锐角,且tan

21,函数f(x)x2tan2xsin(2

4),数列{an}的首项a1

2,an1f(an).(1)求函数f(x)的表达式;⑵ 求证:an1an;

⑶ 求证:

111a112(n2,nN*)11a21an

分析:本题是借助函数给出递推关系,第(2)问的不等式利用了函数的性质,第(3)问是转化成可以裂项的形式,这是证明数列中的不等式的另一种出路。

解:⑴tan2

2tan2(1)2

又∵为锐角 ∴2 ∴sin(2)1∴f(x)xx1

441tan21(21)2

∴a2,a3,an都大于0∴an0∴an1an2

则S

1111121212111()(S)S a22a2a3ana2an13an13a22an1

an1anan∵a1

点评:数列中的不等式要用放缩来解决难度就较大了,而且不容易把握,对于这样的题要多探索,多角度的思考问题。

1an1

1111

2

ananan(1an)an1an111

1ananan1

例题4.已知函数f(x)xln1x,数列an满足0a11,∴

111111111111

2

an1fan;数列bn满足b1,bn1(n1)bn, nN*.求证:

1a11a21ana1a2a2a3anan1a1an1an1

∵a(12)21234, a(34)23

234

1 ,又∵n2an1an∴an1a31

∴1

2

1a2∴1

1n1a11

2

1

11a21an

点评:把复杂的问题转化成清晰的问题是数学中的重要思想,本题中的第(3)问不等式的证明更具有一般性。

例题3.已知数列aa

n满足a11,n12an1nN

(Ⅰ)求数列an的通项公式;(Ⅱ)若数列b1n满足4b114b24

b31

4bn1(an1)bn,证明:bn是等差数列;

(Ⅲ)证明:

11a12nNa 23an13

分析:本例(1)通过把递推关系式转化成等比型的数列;第(2)关键在于找出连续三项间的关系;第(3)问关键在如何放缩 解:(1)an12an1,an112(an1)

故数列{an1}是首项为2,公比为2的等比数列。ann12n,an21

(2)4

b114

b214

b31

4bn1(an1)bn,4

(b1b2bnn)

2nbn

2(b1b2bn)2nnbn①2(b1b2bnbn1)2(n1)(n1)bn1②

②—①得2bn1

2(n1)bn1nbn,即nbn2(n1)bn1③(n1)bn12nbn2④ ④—③得2nbn1

nbnnbn1,即2bn1bnbn1所以数列{bn}是等差数列

(3)

1a1111

2n112n12

设S

1n2ana11,2a3an1

(Ⅰ)0a(Ⅱ)aa2nn1an1;n12;

(Ⅲ)若a12

则当n≥2时,bnann!.分析:第(1)问是和自然数有关的命题,可考虑用数学归纳法证明;第(2)问可利用函数的单调性;第(3)问进行放缩。解:(Ⅰ)先用数学归纳法证明0an1,nN*.(1)当n=1时,由已知得结论成立;(2)假设当n=k时,结论成立,即0ak1.则当n=k+1时,因为0

1x1xx1

0,所以f(x)在(0,1)上是增函数.又f(x)在0,1上连续,所以f(0)

1, 得an1ananln1ananln(1an)0,从而an1an.综上可知0an1

an1.(Ⅱ)构造函数g(x)=

x2

x2x2

-f(x)=

ln(1x)x, 0g(0)=0.因为0aa2nn1,所以gan0,即2faa2

nn>0,从而an12

.(Ⅲ)因为

b12b1b

n11,n12(n1)bn,所以bn0,n1bn,所以bba2nbn1bnn

b2b1

1nn!————①由(Ⅱ)an1,知:an1an,n1bn2b122an2

所以

anaa3naa1a2n1 ,因为aa=

a2aa1, n≥2, 0an1an1.1

1a2n12222

a2a2

所以

a1a2an1aan

1<

n

2221<2

n12n

=

2n

————②由①② 两式可知:

bnann!.点评:本题是数列、超越函数、导数的学归纳法的知识交汇题,属于难题,复习时应引起注意。

例题5.已知函数f(x)=52x

168x,设正项数列an满足a1=l,an1fan.

(1)试比较a

5n与

4的大小,并说明理由;

(2)设数列b5n

nn满足bn=4-an,记Sn=bi.证明:当n≥2时,Sn<(2-1).

i

14分析:比较大小常用的办法是作差法,而求和式的不等式常用的办法是放缩法。

解:(1)a2ann1

5168a,因为a所以a7

311,2,a34

.(2)因为an0,an10,所以168an0,0an2.n8a552a48(a55

n5nn1)3an554168a432(2a,因为2an0,所以an1与a同号,nn)22an

4n

4因为a514140,a5555

240,a340,„,an40,即an4

.(3)当n2时,b531n4an22a(5a31

31n1)bn1bn12bn1,n1422an1225

所以bn

2bn122bn22n1b312n,13n

(12n)

所以Snb1b2bn

4121

2

121

(2n1)

点评:本题是函数、不等式的综合题,是高考的难点热点。

例题6.已知数列a*

n中,a11,nan12(a1a2...an)nN

(1)求a2,a3,a4;(2)求数列an的通项an;(3)设数列{b1n}满足b1

2,b12

n1abnbn,求证:bn1(nk)k

分析:条件中有类似于前n项和的形式出现,提示我们应该考虑an=Sn-Sn-1(n≥2)

解:(1)a22,a33,a44(2)nan12(a1a2...an)①

(n1)an2(a1a2...an1)②①—②得nan1(n1)an2an

即:nan1

(n1)a1n1aa3ann,ana所以aa223n

n1a...1...1

n(n2)

nna12an112n所以a*n

n(nN)

(3)由(2)得:b1

12,b12

n1k

bnbnbnbn1...b10,所以{bn}是单调递增数列,故要证:bn1(nk)只需证bk1

若k

1,则b121显然成立;若k2,则b1211

n1kbnbnk

bnbn1bn 所以

1b11,因此:1(11)...(11)1k12

k1

n1bnkbkbkbk1b2b1b1kk所以bk

k

k1

1,所以bn1(nk)点评:与数列相关的不等式证明通常需要“放缩”,而放缩的“度”尤为关键,本题中

1b(11)...(11)1,这种拆分方法是数学中较高要求的变形.kbkbk1b2b1b1

例题7.已知不等式

12131n1

[log2n],其中n为不大于2的整数,[log2n]表示不超过log2n的最大整数。设数列a1

n的各项为正且满足a1b(b0),anann

na(n2,3,4),证明:

n1

an

2b

2b[log,n3,4,5

2n]

分析:由条件an111111n

nana得:

n1

a1

nan1n

an(n2)

nan1

11a

1n1

an2

n1

„„

a11以上各式两边分别相加得: 2a121a111111111

11[log2n](n3)na1nn12anbnn12

b2

=

2b[log2n]2b a2b

n2b[logn]

(n3)

2本题由题设条件直接进行放缩,然后求和,命题即得以证明。

例题8.已知数列{an}的前n项和Sn满足:Sn2an(1)n,n1(1)写出数列{an}的前三项a1,a2,a5;(2)求数列{an}的通项公式;

(3)证明:对任意的整数m4,有1117

a

4a5am8

分析:⑴由递推公式易求:a1=1,a2=0,a3=2; ⑵由已知得:an

SnSn12an(1)n2an1(1)n1(n>1)

化简得:an1anan1anan1n

2an12(1)

(1)n2(1)n12,(1)n232[(1)

n1

2

3] 故数列{

an2(1)n3}是以a123为首项, 公比为2的等比数列.故an21

(1)

n

3(3)(2)n1∴a23[2n2(1)n]∴数列{a2

n

n}的通项公式为:an3

[2n2(1)n].⑶观察要证的不等式,左边很复杂,先要设法对左边的项进行适当的放缩,使之能够求和。而左边=

1a1a13[111

2212312m2(1)

m],如果我们把上式中的分母中的1去掉,就可利45am2用等比数列的前n项公式求和,由于-1与1交错出现,容易想到将式中两项两项地合并起来一起进行放缩,尝试知:

11111

22112311221

23,2312412324,因此,可将

1

保留,再将后面的项两两组合后放缩,即可求和。这里需要对m进行分类讨论,(1)当m为偶数(m4)时,1a11a1(11)(11)13(11134m2)4a5ma4a5a6am1am

22222

1311224(1137

m4)288(2)当m是奇数(m4)时,m1为偶数,1a1111a1117 4a5ama45a6amam18

所以对任意整数m4,有

aa

7。本题的关键是并项后进行适当的放缩。45am8

例题9.定义数列如下:a2

12,an1anan1,nN

证明:(1)对于nN

恒有a

n1an成立。(2)当n2且nN,有an1anan1a2a11成立。(3)1

112a12006

a1

1。12a2006

分析:(1)用数学归纳法易证。

(2)由a2

n1anan1得:an11an(an1)

an1an1(an11)„„a21a1(a11)

以上各式两边分别相乘得:an11anan1a2a1(a11),又a12

an1anan1a2a11

(3)要证不等式1

11122006

a11,可先设法求和:11,1a2a2006a1a2a2006

再进行适当的放缩。a111n11an(an1)

aaa11

a n11

n1nanan1n11

1111a(1)(11)(11)1a2a2006a11a21a21a31a20061a20071

1a1a1

1120071

aa 12a2006又aa2006

1a2a20061

220061

1a11

2006原不等式得证。

1a2a20062

点评:本题的关键是根据题设条件裂项求和。

第三篇:数列不等式推理与证明

2012年数学一轮复习精品试题第六、七模块 数列、不等式、推

理与证明

一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.

1.在等比数列{aa

2n}中,若a3a5a7a9a11=243,则a的值为()1

1A.9B.1

C.2D.

32.在等比数列{aaa

n}中,an>an7·a11=6,a4+a14=5,则+1,且a等于()16

A.23B.32

C16D.-563.在数列{aa-n}中,a1=1,当n≥2时,an=1+aa

n-1n=()

A.1

nB.n

C.1nD.n2

4.已知0

B.成等比数列

C.各项倒数成等差数列

D.各项倒数成等比数列

5.已知a1=1,an=n(an+1-an)(n∈N*),则数列{an}的通项公式是()

n-

1A.an=2n-1B.an1

nn

C.an=n2D.an=n)

n2-6n

6.已知正项数列{an}的前n项的乘积等于Tn=的前n项和Sn中的最大值是()

A.S6

B.S

51

4

(n∈N*),bn=log2an,则数列{bn}

7.已知a,b∈R,且a>b,则下列不等式中恒成立的是()

11

A.a>bB.<

22

ab

C.lg(a-b)>0

aD.b

8.设a>0,b>0,则以下不等式中不恒成立的是()11

A.(a+b)ab≥

4B.a3+b3≥2ab2 D.|a-b|ab

C.a2+b2+2≥2a+2b

9.当点M(x,y)在如图所示的三角形ABC内(含边界)运动时,目标函数z=kx+y取得最大值的一个最优解为(1,2),则实数k的取值范围是()

A.(-∞,-1]∪[1,+∞)B.[-1,1]

C.(-∞,-1)∪(1,+∞)D.(-1,1)

lg|x|(x<0)10.设函数f(x)=x,若f(x0)>0,则x0的取值范围是()

2-1(x≥0)

A.(-∞,-1)∪(1,+∞)B.(-∞,-1)∪(0,+∞)

C.(-1,0)∪(0,1)D.(-1,0)∪(0,+∞)

a2+b

211.已知a>b>0,ab=1,则的最小值是()

a-bA.2C.2D.1

12.下面四个结论中,正确的是()

A.式子1+k+k2+…+kn(n=1,2,…)当n=1时,恒为1 B.式子1+k+k2+…+kn1(n=1,2…)当n=1时,恒为1+k

1111111

C.式子++…+n=1,2,…)当n=1时,恒为

1231232n+1

111111

D.设f(n)=n∈N*),则f(k+1)=f(k)+n+1n+23n+13k+23k+33k+4

二、填空题:本大题共4小题,每小题5分,共20分,把答案填在题中的横线上. 13.已知Sn是等差数列{an}(n∈N*)的前n项和,且S6>S7>S5,有下列四个命题:(1)d<0;(2)S11>0;(3)S12<0;(4)数列{Sn}中的最大项为S11,其中正确命题的序号是________.

14.在数列{an}中,如果对任意n∈N*都有数列,k称为公差比.现给出下列命题:

(1)等差比数列的公差比一定不为0;(2)等差数列一定是等差比数列;

(3)若an=-3n+2,则数列{an}是等差比数列;(4)若等比数列是等差比数列,则其公比等于公差比. 其中正确的命题的序号为________. =q,(4)正确. 15.不等式

ax的解集为{x|x<1或x>2},那么a的值为________. x-

1an+2-an+1

k(k为常数),则称{an}为等差比

an+1-an

x≥0

16.已知点P(x,y)满足条件y≤x

2x+y+k≤0k=________.(k为常数),若z=x+3y的最大值为8,则

三、解答题:本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤. 17.(10分)(2011·天津市质检)已知等差数列{an}的前三项为a-1,4,2a,记前n项和为Sn.(1)设Sk=2550,求a和k的值;

S(2)设bn,求b3+b7+b11+…+b4n-1的值.

n

18.(12分)已知各项均为正数的数列{an}的前n项和为Sn,首项为a1,且2,an,Sn成等差数列.

(1)求数列{an}的通项公式;

b(2)若bn=log2an,cn=,求数列{cn}的前n项和Tn.an

2bx

19.(12分)已知函数f(x)(x∈R)满足f(x),a≠0,f(1)=1,且使f(x)=2x成立的实

ax-1数x只有一个.

(1)求函数f(x)的表达式;

21(2)若数列{an}满足a1=an+1=f(an),bn=1,n∈N*,证明数列{bn}是等比数列,3an

并求出{bn}的通项公式;

(3)在(2)的条件下,证明:a1b1+a2b2+…+anbn<1(n∈N*).

2x

20.(12分)已知集合A=xx-21,集合B={x|x2-(2m+1)x+m2+m<0}

(1)求集合A,B;

(2)若B⊆A,求m的取值范围.

2a2

21.(12分)解关于x的不等式:x|x-a|≤(a>0).

922.(12分)某工厂生产甲、乙两种产品,每生产一吨产品所消耗的电能和煤、所需工人人数以及所得产值如表所示:

160千度,消耗煤不得超过150吨,怎样安排甲、乙这两种产品的生产数量,才能使每天所得的产值最大,最大产值是多少.

第四篇:2012高考专题----数列与不等式放缩法

高考专题——放缩法

一、基本方法

1.“添舍”放缩

通过对不等式的一边进行添项或减项以达到解题目的,这是常规思路。例1.设a,b为不相等的两正数,且a3-b3=a2-b2,求证1<a+b<例2.已知a、b、c不全为零,求证:。aabb2bcc2c2aca2>3(abc)

2[变式训练]已知an2n1(nN*).求证:an1a1a2...n(nN*).23a2a3an

12.分式放缩

一个分式若分子变大则分式值变大,若分母变大则分式值变小,一个真分式,分子、分母同时加上同一个正数则分式值变大,利用这些性质,可达到证题目的。例3.已知a、b、c为三角形的三边,求证:1<

3.裂项放缩

若欲证不等式含有与自然数n有关的n项和,可采用数列中裂项求和等方法来解题。例4.已知n∈N*,求1a+b+c<2。acab

121

„1

n<2n。

n(n1)(n1)

2例5.已知nN且an223n(n1),求证:an22对所有正整数n都成立。*

4.公式放缩

利用已知的公式或恒不等式,把欲证不等式变形后再放缩,可获简解。

n2x1*例6.已知函数f(x)x,证明:对于nN且n3都有f(n)。n121

例7.已知f(x)x2,求证:当ab时f(a)f(b)ab。

5.换元放缩

对于不等式的某个部分进行换元,可显露问题的本质,然后随机进行放缩,可达解题目的。

例8.已知abc,求证

0。abbcca

例9.已知a,b,c为△ABC的三条边,且有a2b2c2,当nN*且n3时,求证:

anbncn。

6.单调函数放缩

根据题目特征,通过构造特殊的单调函数,利用其单调性质进行放缩求解。

例10.已知a,b∈R,求证7.放大或缩小“因式”;

ab1ab

a1a

b1b。

n

4、已知数列{an}满足an1a,0a1,求证:(akak1)ak2.232k

1n

8.固定一部分项,放缩另外的项; 例

6、求证:

11117 122232n2

49.利用基本不等式放缩

7、已知an5n

41对任何正整数m,n都成立.10.先适当组合, 排序, 再逐项比较或放缩

8、.已知i,m、n是正整数,且1<i≤m<n.(1)证明:nAim<mAin;(2)证明:(1+m)

i

i

n

>(1+n)

m

二、放缩法综合问题

(一)、先求和后放缩

例1.正数数列an的前n项的和Sn,满足2Snan1,试求:(1)数列an的通项公式;(2)设bn

1,数列bn的前n项的和为Bn,求证:Bn。

2anan1

(二)、先放缩再求和(或先求和再放缩)例、函数f(x)=

4x14x,求证:f(1)+f(2)+„+f(n)>n+

12n

1(nN*).21.放缩后成等差数列,再求和

例2.已知各项均为正数的数列{an}的前n项和为Sn,且anan2Sn.an2an12(1)求证:Sn;

(2)

2.放缩后成等比数列,再求和

例3.(1)设a,n∈N*,a≥2,证明:a2n(a)n(a1)an;

(2)等比数列{an}中,a1,前n项的和为An,且A7,A9,A8成等差数列.设

a1bnn,数列{bn}前n项的和为Bn,证明:Bn<.

31an

3.放缩后为差比数列,再求和

例4.已知数列{an}满足:a11,an1(1

n)an(n1,2,3).求证: n2

an1an3

n1

2n1

n

4.放缩后为裂项相消,再求和

5、已知an=n,求证:∑

k=1ak

k

<3.

第五篇:数列不等式题

数列不等式综合题示例

例1 设等比数列an的公比为q,前n项和Sn0(n1,2,)(Ⅰ)求q的取值范围;(Ⅱ)设bn3an2an1,记bn的前n项和为Tn,试比较Sn与Tn2

41n12例2设数列an的前n项的和Snan22•,•3•,•,n1,•333

(Ⅰ)求首项a1与通项an; 2n

(Ⅱ)设TnSn,n1•,•2•,•3•,•,证明:Tii1n3 2例3数列{an}满足a1=1,且an1(Ⅰ)用数学归纳法证明:an(Ⅱ)已知不等式ln(1e =2.71828 ….(111)a(n1).n2nnn22(n2); x)x对x0成立.证明:ane2(n1).其中无理数

下载数列与不等式练习4(大全五篇)word格式文档
下载数列与不等式练习4(大全五篇).doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    数列不等式的证明

    数列和式不等式的证明策略 罗红波洪湖二中高三(九)班周二第三节(11月13日) 数列和式不等式的证明经常在试卷压轴题中出现,在思维能力和方法上要求很高,难度很大,往往让人束手无策,其......

    不等式专题练习与解答(本站推荐)

    京翰教育中心 http://不等式专题练习与解答专题一:利用不等式性质,判断其它不等式是否成立 1、a、b∈R,则下列命题中的真命题是( C )A、若a>b,则|a|>|b|B、若a>b,则1/ab,则a3>b3D、......

    不等式与一次函数专题练习

    不等式与一次函数专题练习题型一:方程、不等式的直接应用典型例题:李晖到“宁泉牌”服装专卖店做社会调查.了解到商店为了激励营业员的工作积极性,实行“月总收入=基本工资+计件奖......

    数列与不等式的交汇应用(精选5篇)

    数列与不等式的交汇应用 数列与不等式的交汇问题,既有函数的思想方法,也有数列特定的思想方法,更有不等式求解、证明的方法和技巧,由于知识覆盖面广、综合性强而成为高考命题的......

    放缩法与数列不等式的证明

    2017高三复习灵中黄老师的专题 放缩法证明数列不等式编号:001 引子:放缩法证明数列不等式历来是高中数学的难点,在高考数列试题中经常扮演压轴的角色。由于放缩法灵活多变,技巧......

    数列经典例题4

    例1错误!未指定书签。.设{an}是公比为q的等比数列. (Ⅰ)推 导{an}的前n项和公式;(Ⅱ) 设q≠1, 证明数列{an1}不是等比数列.例2 已知数列an的首项为a11,其前n项和为sn,且对任意正......

    整理与练习4

    整理与练习3 教学内容:开展“探索与实践”和“评价反思”,完成书本第35页第8、9题。 教学目标: 1、在实际操作中再次感受长方体和正方体顶点和棱的特征。 2、使学生进一步体会......

    数列练习3

    数列练习3(等比数列) 1.等比数列an的前n项和为Sn,若 S6S3 3,则 S9S6 ; 2.若等比数列an的前n项和为Sn,且S32,S618,则 S10S5  ; 3.设数列an,bn都是正项等比数列, Sn,Tn分别是......