第一篇:铁路信号系统新技术的发展趋势
铁路信号系统新技术的发展趋势
近20多年来,在运输市场激烈竞争的压力下,各国铁路,特别是发达国家铁路为实现提速、高速和重载运输,积极引进采用新技术,大幅度提高了现代化通信信号设备的装备水平,新型技术系统不断涌现。
一、故障-安全技术的发展随着计算机技术、微电子技术和新材料的发展,故障—安全技术得到了飞速发展。高可靠性、高安全性的故障—安全核心设备出现了“二取二”、“二乘二取二”和“三取二”等不同结构形式,其同步方式有软同步和硬同步。西门子公司、阿尔斯通公司、日本京山公司、日本日信公司等推出了不同类型的采用硬件同步方式的安全型计算机。
故障—安全技术的提高为高可靠和高安全的铁路信号系统的发展打下坚实的基础。
二、高水平的实时操作系统开发平台
实时操作系统(RTOS,Real Time Operation System)是当今流行的嵌入式系统的软件开发平台。RTOS最关键的部分是实时多任务内核,它的基本功能包括任务管理、定时器管理、存储器管理、资源管理、事件管理、系统管理、消息管理、队列管理、旗语管理等,这些管理功 能是通过内核服务函数形式交给用户调用的,也就是RTOS的应用程序接口(API,A lication Programming Interface)。在铁路、航空航天以及核反应堆等安全性要求很高的系统中引入RTOS,可以有效地解决系统的安全性和嵌入式软件开发标准化的难题。随着嵌入式系统中软件应用程序越来越大,对开发人员、应用程序接口、程序档案的组织管理成为一个大的课题。在这种情况下,如何保证系统的容错性和故障—安全性成为一个亟待解决的难题。基于RTOS开发出的程序,具有较高的可移植性,可实现90%以上设备独立,从而有利于系统故障—安全的实现。
另外一些成熟的通用程序可以作为专家库函数产品推向社会,嵌入式软件的函数化、产品化能够促进行业交流以及社会分工专业化,减少重复劳动,提高知识创新的效率。
在铁路这样恶劣工作环境下的计算机系统,对系统安全性、可靠性、可用性的要求更高,必须使用安全计算机,以保证系统能安全、可靠、不间断地工作。而安全计算机系统的软件核心就是RTOS。目前,英国的西屋公司(Westinghouse)已经在列车运行控制系统中采用了RTOS,瑞典也有很多铁路通信和控制系统采用OSE实时操作系统。
采用实时操作系统可以满足如下性能或特性:
提高系统的安全性。实时操作系统可以成为整个软件系统的中间件,即实时操作系统通过驱动程序与底层硬件相结合,而上层应用程序通过API和库函数与实时
操 作系统相结合。实时操作系统完成系统多任务的调度和中断的执行,这样系统的安全模块和非安全模块将会得到有效的隔离,RTOS可以很好地解决硬件冗余模块 的同步问题。
满足系统实时性的要求。列车运行控制系统要求的是硬实时响应,实时性要求非常高,如果在系统中选用实用操作系统开发该系统的软件,会对该系统的实时性指标的提高有很大帮助。
缩短了新产品的开发周期。由于RTOS提供了系统中的多任务调度、管理等功能,在此基础上用户只需开发与应用对象相关的应用程序,所以缩短了新产品的开发周期,降低了设备的成本。RTOS还具有开发手段可靠、检测手段完善等特点。
充分发挥实时操作系统可移植性、可维护性强等优势。
采用RTOS后,一旦系统需要升级,只需改动力量程序,而不像以前系统需要重新进行设计,体现出RTOS再开发周期短,升级能力强的优点。
三、数字信号处理新技术的应用随着铁路运输提速、重载的发展,基于分立元器件和模拟信号处理技术的传统铁路信号设备越来越满足不了铁路运输安全性和实时性的要求。
因此,全面引进计算机技术,利用计算机的高速分析计算功能,来提高信号设备的技术水平已非常紧迫。数字信号处理技术(D ,Digital Signal Proce ing)的出现为铁路信号信息处理提供了很好的解决方法。
与模拟信号处理技术相比较,数字信号处理技术具有更高的可靠性和实时性。数字信号处理的频域分析和时域分析的两种传统分析方法有着各自的优缺点。频域分析 的优点是运算精度高和抗干扰性能好,而缺点是在强干扰中提取信号时容易造成解码倍频现象,例如将移频的低频11Hz误解成22Hz;时域分析的优点是定型 准确,而缺点是定量精确地剔除带内干扰难度大。
随着数字信号处理技术的新发展,在铁路信号处理中引入了新的实用技术,如ZFFT(ZOOM-FFT)、小波信号处理技术、现代谱分析技术等。
目前,我国的轨道电路的信号发送、接收以及机车信号的接收普通采用了数字信号处理技术,日本的数字ATC和法国UM2000数字编码轨道电路也都采用了数字信号处理技术。
四、计算机网络技术的发展随着计算机网络技术的飞速发展,实施企业网络化管理已成为企业实现管理现代化的客观要求和必然趋势。
铁路信号系统网络化是铁路运输综合调度指挥的基础。在网络化的基础上实现信息化,从而实现集中、智能管理。
网络化。现代铁路信号系统不是各种信号设备的简单组合,而是功能完善、层次分明的控制系统。系统内部各功能单元之间独立工作,同时又互相联系,交换信息,构成复杂的网络化结构,使指挥者能够全面了解辖区内的各种情况,灵活配臵系统资源,保证铁路系统的安全、高效运行。
信息化。以信息化带动铁路产业现代化,是铁路发展的必然趋势。全面、准确获得线路上的信息是高速列车安全运行的保证。因而现代铁路信号系统采用了许多先进的通信技术,如光纤通信、无线通信、卫星通信与定位技术等。
智能化。智能化包括系统的智能化与控制设备的智能化。
系统智能化是指上层管理部门根据铁路系统的实际情况,借助先进的计算机技术来合理规划列车的运行,使整个铁路系统达到最优化;控制设备的智能化则是指采用智能化的执行机构,来准确、快速地获得指挥者所需的信息,并根据指令来指挥、控制列车的运行。
近年来,我国铁路行业已成功地推广应用了原TMIS和DMIS(现称TDCS)等系统,在利用信息技术方面取得了长足的进步。具有代表性的列车调度指挥系统TDCS,以现代信息技术为基础,综合运用通信、信号、计算机网络、多媒体技术,建立了新型现代化运输调度指挥系统(铁道部、铁路局、基层信息采集网)。
五、通信技术与控制技术相结合随着计算机技术(Computer)、通信技术(Communication)和控制技术(Control)的飞跃发展,向传统的以轨道电路作为信息传 输媒体的列车运行控制系统提出了新的挑战。综合利用3C(Computer、Communication、Control)技术代替轨道电路技术,构成新 型列车控制系统已成必然。用3C技术代替轨道电路的核心是通信技术的应用,目前计算机和控制技术已经渗透到列控系统中,称为“基于通信的列车运行控制系统 ”(CBTC,Communication Based Train Control)。
如上所述,世界发达国家陆续试验的CBTC系统有ATCS、ARES、ASTREE、CARAT、FZB等。所有上述各类系统,均具有两个基本特点:列车与地面之间有各种类型的无线双向通信。可分为连续式和点式的。其中又可分为短距离传输(指1m以内)和较长距离传输(远至几公里至几十公里)的移动 通信。它们仍然保留闭塞分区,其中最简易方式CBTC仍采用固定的闭塞分区,但是闭塞分区的分隔点不是用轨道电路的机械绝缘节或电气绝缘节(如无绝缘轨道电 路),而是用应答器或计轴器,或其他能传送无线信号的装臵构成分隔点,这种简易形式仍然保留固定长度的闭塞分区(FAS,Fixed Aotoblock System),简称为 CBTC—MAS。
在CBTC中进一步发展的闭塞分区不是固定的,而是移动的(MAS,Moving
Autoblock System),简称CBTC-MAS。被欧洲联盟采用的ERTMS/ETCS的2级和3级是当前CBTC的代表。
ERTMS/ETCS经过多个试验项目的测试和认证后,进行了商业项目的建设,德国铁路计划到2021年在所有的高速铁路装备ETCS2级设备。表1-2给出了其他欧洲国家铁路正在建设或已投入商业运营的ERTMS/ETCS商业项目。通信技术与控制技术的结合重新规划了铁路信号系统的结构与组成,为列车运行控制的未来发展开辟了新开地。
六、通信信号
一体化随着当代铁路的发展,铁路通信信号技术发生了重大变化,车站、区间和列车控制的一体化,铁路通信信号技术的相互融合,以及行车调度指挥自动化等技术,冲破了功能单
一、控制分散、通信信号相对独立的传统技术理念,推动了铁路通信信号技术向数字化、智能化、网络化和一体化的方向发展。
从铁路信号系统纵向发展看,德国已经形成从LZB、FZB发展到ERTMS的发展趋势。LZB利用轨道电缆环线传输列车运行控制系统行车指令和速度指令机 车信号,取消地面闭塞信号机,保留闭塞分区,列车按固定闭塞方式(即FAS)运行。FZB是基于无线的列车运行控制系统,是新一代移动自动闭塞系统(即 MAS),其目的是实现低成本、高性能的列车运行控制系统,并已加入ETCS。ERTMS/ETCS(欧洲铁路运输管理系统/欧洲列车控制系统)是欧盟支 持的统一的行车控制系统,采用GSM—R作为传输系统,其成功应用将进一步推动铁路通信信号的技术进步,加快实现铁路通信信号一体化的进程。
从信号系统的横向发展来看,日本新干线在1995年成功开发和投入运行的COSMOS系统,则是通信信号一体化的又一个成功案例。该系统包含运输计划、运 行管理、维护工作管理、设备管理、集中信息管理、电力系统控制、车辆管理、站内工作管理等8个子系统,以通信信号一体化技术,实现中心到车站各子系统的信 息共享,并使系统达到很高的自动化水平。
另外成功地应用了安全光纤局域网,使之成为联锁系统、列车运行控制系统的安全传输通道,达到通信技术与信号安全技术的深度结合,实现了通信信号一体化。
通信信号一体化是现代铁路信号的重要发展趋势,铁路信号技术发展所依托的新技术,如网络技术,与通信技术的技术标准是一致的,属于技术发展前沿科学,为通信信号一体化提供了理论和技术基础。在借鉴世界各国经验的基础上,结合中国国情、路情,我国已制定了中国统一的CTCS技术标准(暂行)。
七、安全性与可靠性分析
保证铁路运输的安全,要求铁路信号系统具有高可靠性和高安全性。安全评估理论的建立与推广为定量评估铁路信号系统的可靠性和安全性提供了重要手段。
在故障—安全理论的发展上,20世纪90年代初,IEC(International
Electrician Committee,国际电工委员会)将故障—安全的概念进行了量化,制定了安全相关系统的设计和评估标准IEC61508。该标准提出了安全相关系统的 “安全完善度等级(SIL,Safety Integrity Level)”的概念,它是一个对系统安全的综合评估指标。
IEC61508对安全系统提出了如下要求:
功能性(Functionality),包括容量和响应时间;
可靠性和可维护性(Reliability and Maintainability);
安全(Safety),包括安全功能和它们相关的硬件/软件安全完善度等级(SIL);
效率性(Efficiency);
可用性(Usability);
轻便性(Portability)。
随后欧洲和日本相应地以IEC61508标准为基础,制定了相关的信号系统的设计评估标准以及安全认证体系。
欧洲电工标准委员会(CENELEC)基于IEC61508标准为基础,附加列车安全控制系统的技术条件制定了一些安全相关系统开发和评估的参考标准。这些标准包括:
EN50126铁路应用:可信性、可靠性、可用性、可维护性和安全性(RAMS)规范和说明;EN50129铁路应用:
信号领域的安全相关电子系统;
EN50128铁路应用:铁路控制和防护系统的软件;
EN50159-1铁路应用:在封闭传输系统中的安全通信;
EN50159-2铁路应用:在开放传输系统中的安全通信。
1996年3月,日本铁道综合技术研究所颁布了“列车安全控制系统的安全性技术指南”,该标准也是以IEC61508为基础,并吸收了日本计算机控制的铁道信号系统的经验而制订的。
八、信号系统的规范化和标准化
随着全球经济一体化的发展,铁路信号系统市场也出现了全球一体化,主要体现在技术规范和安全规范的全球化,如ERTMS/ETCS。
“统一规范、统一标准”是铁路信号系统的发展方向。信号系统的规范化和标准化的制定(如欧洲铁路运输管理系统ERTMS规范),体现了以下的优势:
新产品开发费用低;
由于规范化和标准化的制定考虑了系统的连续性,所以新产品能与老系统兼容;
规范明确定义所有接口(机械、电器、逻辑)标准,系统实现了模块结构,从而实现设备的互通互连;
公开规范和标准,开放市场,促进竞争,降低成本,从而获取最佳产品和最佳价格
第二篇:铁路信号系统新技术的发展趋势11
铁路信号系统新技术的发展趋势
近20多年来,在运输市场激烈竞争的压力下,各国铁路,特别是发达国家铁路为实现提速、高速和重载运输,积极引进采用新技术,大幅度提高了现代化通信信号设备的装备水平,新型技术系统不断涌现。
一、故障-安全技术的发展
随着计算机技术、微电子技术和新材料的发展,故障—安全技术得到了飞速发展。高可靠性、高安全性的故障—安全核心设备出现了“二取二”、“二乘二取二”和“三取二”等不同结构形式,其同步方式有软同步和硬同步。西门子公司、阿尔斯通公司、日本京山公司、日本日信公司等推出了不同类型的采用硬件同步方式的安全型计算机。
故障—安全技术的提高为高可靠和高安全的铁路信号系统的发展打下坚实的基础。
二、高水平的实时操作系统开发平台
实时操作系统(RTOS,Real Time Operation System)是当今流行的嵌入式系统的软件开发平台。RTOS最关键的部分是实时多任务内核,它的基本功能包括任务管理、定时器管理、存储器管理、资源管理、事件管理、系统管理、消息管理、队列管理、旗语管理等,这些管理功能是通过内核服务函数形式交给用户调用的,也就是RTOS的应用程序接口(API,Application Programming Interface)。在铁路、航空航天以及核反应堆等安全性要求很高的系统中引入RTOS,可以有效地解决系统的安全性和嵌入式软件开发标准化的难题。随着嵌入式系统中软件应用程序越来越大,对开发人员、应用程序接口、程序档案的组织管理成为一个大的课题。在这种情况下,如何保证系统的容错性和故障—安全性成为一个亟待解决的难题。基于RTOS开发出的程序,具有较高的可移植性,可实现90%以上设备独立,从而有利于系统故障—安全的实现。另外一些成熟的通用程序可以作为专家库函数产品推向社会,嵌入式软件的函数化、产品化能够促进行业交流以及社会分工专业化,减少重复劳动,提高知识创新的效率。
在铁路这样恶劣工作环境下的计算机系统,对系统安全性、可靠性、可用性的要求更高,必须使用安全计算机,以保证系统能安全、可靠、不间断地工作。而安全计算机系统的软件核心就是RTOS。目前,英国的西屋公司(Westinghouse)已经在列车运行控制系统中采用了RTOS,瑞典也有很多铁路通信和控制系统采用OSE实时操作系统。
采用实时操作系统可以满足如下性能或特性:
提高系统的安全性。实时操作系统可以成为整个软件系统的中间件,即实时操作系统通过驱动程序与底层硬件相结合,而上层应用程序通过API和库函数与实时操作系统相结合。实时操作系统完成系统多任务的调度和中断的执行,这样系统的安全模块和非安全模块将会得到有效的隔离,RTOS可以很好地解决硬件冗余模块的同步问题。
满足系统实时性的要求。列车运行控制系统要求的是硬实时响应,实时性要求非常高,如果在系统中选用实用操作系统开发该系统的软件,会对该系统的实时性指标的提高有很大帮助。
缩短了新产品的开发周期。由于RTOS提供了系统中的多任务调度、管理等功能,在此基础上用户只需开发与应用对象相关的应用程序,所以缩短了新产品的开发周期,降低了设备的成本。RTOS还具有开发手段可靠、检测手段完善等特点。
充分发挥实时操作系统可移植性、可维护性强等优势。采用RTOS后,一旦系统需要升级,只需改动力量程序,而不像以前系统需要重新进行设计,体现出RTOS再开发周期短,升级能力强的优点。
三、数字信号处理新技术的应用
随着铁路运输提速、重载的发展,基于分立元器件和模拟信号处理技术的传统铁路信号设备越来越满足不了铁路运输安全性和实时性的要求。因此,全面引进计算机技术,利用计算机的高速分析计算功能,来提高信号设备的技术水平已非常紧迫。数字信号处理技术(DSP,Digital Signal Processing)的出现为铁路信号信息处理提供了很好的解决方法。
与模拟信号处理技术相比较,数字信号处理技术具有更高的可靠性和实时性。数字信号处理的频域分析和时域分析的两种传统分析方法有着各自的优缺点。频域分析的优点是运算精度高和抗干扰性能好,而缺点是在强干扰中提取信号时容易造成解码倍频现象,例如将移频的低频11Hz误解成22Hz;时域分析的优点是定型准确,而缺点是定量精确地剔除带内干扰难度大。
随着数字信号处理技术的新发展,在铁路信号处理中引入了新的实用技术,如ZFFT(ZOOM-FFT)、小波信号处理技术、现代谱分析技术等。
目前,我国的轨道电路的信号发送、接收以及机车信号的接收普通采用了数字信号处理技术,日本的数字ATC和法国UM2000数字编码轨道电路也都采用了数字信号处理技术。
四、计算机网络技术的发展
随着计算机网络技术的飞速发展,实施企业网络化管理已成为企业实现管理现代化的客观要求和必然趋势。
铁路信号系统网络化是铁路运输综合调度指挥的基础。在网络化的基础上实现信息化,从而实现集中、智能管理。
网络化。现代铁路信号系统不是各种信号设备的简单组合,而是功能完善、层次分明的控制系统。系统内部各功能单元之间独立工作,同时又互相联系,交换信息,构成复杂的网络化结构,使指挥者能够全面了解辖区内的各种情况,灵活配置系统资源,保证铁路系统的安全、高效运行。
信息化。以信息化带动铁路产业现代化,是铁路发展的必然趋势。全面、准确获得线路上的信息是高速列车安全运行的保证。因而现代铁路信号系统采用了许多先进的通信技术,如光纤通信、无线通信、卫星通信与定位技术等。
智能化。智能化包括系统的智能化与控制设备的智能化。系统智能化是指上层管理部门根据铁路系统的实际情况,借助先进的计算机技术来合理规划列车的运行,使整个铁路系统达到最优化;控制设备的智能化则是指采用智能化的执行机构,来准确、快速地获得指挥者所需的信息,并根据指令来指挥、控制列车的运行。
近年来,我国铁路行业已成功地推广应用了原TMIS和DMIS(现称TDCS)等系统,在利用信息技术方面取得了长足的进步。具有代表性的列车调度指挥系统TDCS,以现代信息技术为基础,综合运用通信、信号、计算机网络、多媒体技术,建立了新型现代化运输调度指挥系统(铁道部、铁路局、基层信息采集网)。
五、通信技术与控制技术相结合随着计算机技术(Computer)、通信技术(Communication)和控制技术(Control)的飞跃发展,向传统的以轨道电路作为信息传输媒体的列车运行控制系统提出了新的挑战。综合利用3C(Computer、Communication、Control)技术代替轨道电路技术,构成新型列车控制系统已成必然。
用3C技术代替轨道电路的核心是通信技术的应用,目前计算机和控制技术已经渗透到列控系统中,称为“基于通信的列车运行控制系统”(CBTC,Communication Based Train Control)。
如上所述,世界发达国家陆续试验的CBTC系统有ATCS、ARES、ASTREE、CARAT、FZB等。所有上述各类系统,均具有两个基本特点:
列车与地面之间有各种类型的无线双向通信。可分为连续式和点式的。其中又可分为短距离传输(指1m以内)和较长距离传输(远至几公里至几十公里)的移动通信。
它们仍然保留闭塞分区,其中最简易方式CBTC仍采用固定的闭塞分区,但是闭塞分区的分隔点不是用轨道电路的机械绝缘节或电气绝缘节(如无绝缘轨道电路),而是用应答器或计轴器,或其他能传送无线信号的装置构成分隔点,这种简易形式仍然保留固定长度的闭塞分区(FAS,Fixed Aotoblock System),简称为CBTC—MAS。
在CBTC中进一步发展的闭塞分区不是固定的,而是移动的(MAS,Moving Autoblock System),简称
CBTC-MAS。被欧洲联盟采用的ERTMS/ETCS的2级和3级是当前CBTC的代表。
ERTMS/ETCS经过多个试验项目的测试和认证后,进行了商业项目的建设,德国铁路计划到2021年在所有的高速铁路装备ETCS2级设备。表1-2给出了其他欧洲国家铁路正在建设或已投入商业运营的ERTMS/ETCS商业项目。
通信技术与控制技术的结合重新规划了铁路信号系统的结构与组成,为列车运行控制的未来发展开辟了新开地。
六、通信信号一体化
随着当代铁路的发展,铁路通信信号技术发生了重大变化,车站、区间和列车控制的一体化,铁路通信信号技术的相互融合,以及行车调度指挥自动化等技术,冲破了功能单
一、控制分散、通信信号相对独立的传统技术理念,推动了铁路通信信号技术向数字化、智能化、网络化和一体化的方向发展。
从铁路信号系统纵向发展看,德国已经形成从LZB、FZB发展到ERTMS的发展趋势。LZB利用轨道电缆环线传输列车运行控制系统行车指令和速度指令机车信号,取消地面闭塞信号机,保留闭塞分区,列车按固定闭塞方式(即FAS)运行。FZB是基于无线的列车运行控制系统,是新一代移动自动闭塞系统(即MAS),其目的是实现低成本、高性能的列车运行控制系统,并已加入ETCS。ERTMS/ETCS(欧洲铁路运输管理系统/欧洲列车控制系统)是欧盟支持的统一的行车控制系统,采用GSM—R作为传输系统,其成功应用将进一步推动铁路通信信号的技术进步,加快实现铁路通信信号一体化的进程。从信号系统的横向发展来看,日本新干线在1995年成功开发和投入运行的COSMOS系统,则是通信信号一体化的又一个成功案例。该系统包含运输计划、运行管理、维护工作管理、设备管理、集中信息管理、电力系统控制、车辆管理、站内工作管理等8个子系统,以通信信号一体化技术,实现中心到车站各子系统的信息共享,并使系统达到很高的自动化水平。另外成功地应用了安全光纤局域网,使之成为联锁系统、列车运行控制系统的安全传输通道,达到通信技术与信号安全技术的深度结合,实现了通信信号一体化。
七、安全性与可靠性分析
保证铁路运输的安全,要求铁路信号系统具有高可靠性和高安全性。安全评估理论的建立与推广为定量评估铁路信号系统的可靠性和安全性提供了重要手段。铁路之家交流社区 qq.china1435.Com 火狐浏览器3.0版更加增强系统安全
在故障—安全理论的发展上,20世纪90年代初,IEC(International Electrician Committee,国际电工委员会)将故障—安全的概念进行了量化,制定了安全相关系统的设计和评估标准IEC61508。该标准提出了安全相关系统的“安全完善度等级(SIL,Safety Integrity Level)”的概念,它是一个对系统安全的综合评估指标。
IEC61508对安全系统提出了如下要求:
功能性(Functionality),包括容量和响应时间;
可靠性和可维护性(Reliability and Maintainability);
安全(Safety),包括安全功能和它们相关的硬件/软件安全完善度等级(SIL); 效率性(Efficiency);可用性(Usability);
轻便性(Portability)。
随后欧洲和日本相应地以IEC61508标准为基础,制定了相关的信号系统的设计评估标准以及安全认证体系。
欧洲电工标准委员会(CENELEC)基于IEC61508标准为基础,附加列车安全控制系统的技术条件制定了一些安全相关系统开发和评估的参考标准。这些标准包括:
EN50126铁路应用:可信性、可靠性、可用性、可维护性和安全性(RAMS)规范和说明;
EN50129铁路应用:信号领域的安全相关电子系统;
EN50128铁路应用:铁路控制和防护系统的软件;
EN50159-1铁路应用:在封闭传输系统中的安全通信;
EN50159-2铁路应用:在开放传输系统中的安全通信。
1996年3月,日本铁道综合技术研究所颁布了“列车安全控制系统的安全性技术指南”,该标准也是以IEC61508为基础,并吸收了日本计算机控制的铁道信号系统的经验而制订的。
八、信号系统的规范化和标准化
随着全球经济一体化的发展,铁路信号系统市场也出现了全球一体化,主要体现在技术规范和安全规范的全球化,如ERTMS/ETCS。
“统一规范、统一标准”是铁路信号系统的发展方向。信号系统的规范化和标准化的制定(如欧洲铁路运输管理系统ERTMS规范),体现了以下的优势:
新产品开发费用低;
由于规范化和标准化的制定考虑了系统的连续性,所以新产品能与老系统兼容;
规范明确定义所有接口(机械、电器、逻辑)标准,系统实现了模块结构,从而实现设备的互通互连;
公开规范和标准,开放市场,促进竞争,降低成本,从而获取最佳产品和最佳价格。
第三篇:铁路信号系统新技术的发展与应用(论文)
铁路信号系统新技术的发展与应用(论文)
[摘要]铁路为实现高速、高密度和重载运输的需要,积极引进采用新技术,大幅度提高了
现代化通信信号设备的装备水平,新型技术系统不断涌现。[关键词]故障-安全技术、实时操作系统开发平台、数字信号处理、计算机网络技术的应用、通信技术与控制技术的结
合、通信信号一体化近10多年来,运输市场竞争激烈,各国铁路,特别是我国
铁路为实现高速、高密度和重载运输的需要,积极引进采用新技术,大幅度提高了现代化通
信信号设备的装备水平,新型技术系统不断涌现。
一、故障-安全技术的发展随着计算机技术、微电子技术和新材料的发展,故障—安全技术得到了飞速发展。高可靠性、高安全性的故障—安全核心设备出现了“二取二”、“二乘二取二”和“三取二”等不同结构
形式,其同步方式有软同步和硬同步。西门子公司、阿尔斯通公司、日本日信公司等推出了
不同类型的采用硬件同步方式的安全型计算机。故障—安全技术的提高为高可靠和高安全的铁路信号系统的发展打下坚实的基础。
二、高水平的实时操作系统开发平台实时操作系统(RTOS,Real Time Operation System)是当今流行的嵌入式系统的软件开发平
台。RTOS最关键的部分是实时多任务内核,它的基本功能包括任务管理、定时器管理、存储
器管理、资源管理、事件管理、系统管理、消息管理、队列管理、旗语管理等,这些管理功
能是通过内核服务函数形式交给用户调用的。在铁路、航空航天以及核反应堆等安全性要求
很高的系统中引入RTOS,可以有效地解决系统的安全性和嵌入式软件开发标准化的难题。随
着嵌入式系统中软件应用程序越来越大,对开发人员、应用程序接口、程序档案的组织管理
成为一个大的课题。在这种情况下,如何保证系统的容错性和故障—安全性成为一个亟待解
决的难题。基于RTOS开发出的程序,具有较高的可移植性,可实现90%以上设备独立,从而
有利于系统故障—安全的实现。另外一些成熟的通用程序可以作为专家库函数产品推向社会,嵌入式软件的函数化、产品化能够促进行业交流以及社会分工专业化,减少重复劳动,提高
知识创新的效率。
三、数字信号处理新技术的应用随着铁路运输发
展,基于分立元器件和模拟信号处理技术的传统铁路信号设备越来越满足不了铁路运输的安
全性和实时性。因此,引进计算机技术,利用计算机的高速分析计算功能,来提高信号设备的技术水平已非常紧迫。数字信号处理技术(DSP,Digital Signal Pr ocessing)的出现为
铁路信号信息处理提供了很好的解决方法。与模拟信号处理技术相比较,数字信号处理技术
具有更高的可靠性和实时性。数字信号处理的频域分析和时域分析的两种传统分析方法有着
各自的优缺点。频域分析的优点是运算精度高和抗干扰性能好,而缺点是在强干扰中提取信
号时容易造成解码倍频现象,例如将移频的低频11Hz误解成22Hz;时域分析的优点是定型
准确,而缺点是定量精确地剔除带内干扰难度大。随着数字信号处理技术的新发展,在铁路
信号处理中引入了新的实用技术,如ZFFT(ZOOM-FFT)、小波信号处理技术、现代谱分析技
术等。目前,我国区间采用的ZPW2000-A信号发送、接收以及机车信号的接收都采用了数字
信号处理技术,日本的数字ATC和法国UM2000数字编码轨道电路也都采用了数字信号处理技
术。
四、计算机网络技术的发展 随着计算机网络技术的飞速发展,实施企业网
络化管理已成为企业实现管理现代化的客观要求和必然趋势。铁路信号系
统网络化是铁路运输综合调度指挥的基础。在网络化的基础上实现信息化,从而实现集中、智能管理。
(一)网络化,现代铁路信号系统不是各种信号设备的简单组合,而是功
能完善、层次分明的控制系统。系统内部各功能单元之间独立工作,同时又互相联系,交换
信息,构成复杂的网络化结构,使指挥者能够全面了解辖区内的各种情况,灵活配置系统资
源,保证铁路系统的安全、高效运行。
(二)信息化,以信息化带动铁路产业现代化,是铁路发展的必然趋势。全面、准确获得线路上的信息是高速列车安全运行的保证。因而现
代铁路信号系统采用了许多先进的通信技术,如光纤通信、无线通信、卫星通信与定位技术
等。
(三)智能化,智能化包括系统的智能化与控制设备的智能化。系统智能化是指
上层管理部门根据铁路系统的实际情况,借助先进的计算机技术来合理规划列车的运行,使
整个铁路系统达到最优化;控制设备的智能化则是指采用智能化的执行机构,来准确、快速
地获得指挥者所需的信息,并根据指令来指挥、控制列车的运行。近年来,我国铁路行业已
成功地推广应用了原TMIS和DMIS(现称TDCS)等系统,在利用信息技术方面取得了长足的进步。具有代表性的列车调度指挥系统TDCS,以现代信息技术为基础,综合运用通信、信号、计算机网络、多媒体技术,建立了新型现代化运输调度指挥系统(铁道部、铁路局、基层信
息采集网)。
五、通信技术与控制技术相结合随着计算机技术
(Computer)、通信技术(Communication)和控制技术(Control)的飞跃发展,向传统的以
轨道电路作为信息传输媒体的列车运行控制系统提出了新的挑战。综合利用3C(Computer、Communication、Control)技术代替轨道电路技术,构成新型列车控制系统已成必然。用3C
技术代替轨道电路的核心是通信技术的应用,目前计算机和控制技术已经渗透到列控系统中,称为“基于通信的列车运行控制系统”(CBTC,Communication Based Train Control)。其具
有以下特点:列车与地面之间有各种类型的无线双向通信。可分为连续式和点式的。其中又
可分为短距离传输(指1m以内)和较长距离传输(远至几公里至几十公里)的移动通信。它
们仍然保留闭塞分区,其中最简易方式CBTC仍采用固定的闭塞分区,但是闭塞分区的分隔点
不是用轨道电路的机械绝缘节或电气绝缘节(如无绝缘轨道电路),而是用应答器或计轴器,或其他能传送无线信号的装置构成分隔点,这种简易形式仍然保留固定长度的闭塞分区(FAS,Fixed Autoblock System),简称为CBTC—MAS。在CBTC中进一步发展的闭塞分区不是固定的,而是移动的(MAS,Moving Autoblock System),简称CBTC-MAS。
六、通信信号
一体化随着当代铁路的发展,铁路通信信号技术发生了重大变化,车站、区间和
列车控制的一体化,铁路通信信号技术的相互融合,以及行车调度指挥自动化等技术,冲破
了功能单
一、控制分散、通信信号相对独立的传统技术理念,推动了铁路通信信号技术向数
字化、智能化、网络化和一体化的方向发展。从铁路信号系统纵向发展看,德国已经
形成从LZB、FZB发展到ERTMS的发展趋势。LZB利用轨道电缆环线传输列车运行控制系统行
车指令和速度指令机车信号,取消地面闭塞信号机,保留闭塞分区,列车按固定闭塞方式(即
FAS)运行。FZB是基于无线的列车运行控制系统,是新一代移动自动闭塞系统(即MAS),其
目的是实现低成本、高性能的列车运行控制系统,并已加入ETCS。ERTMS/ETCS(欧洲铁路运
输管理系统/欧洲列车控制系统)是欧盟支持的统一的行车控制系统,采用GSM—R作为传输
系统,其成功应用将进一步推动铁路通信信号的技术进步,加快实现铁路通信信号一体化的进程。从信号系统的横向发展来看,日本新干线在1995年成功开发和投入运行的COSMOS系
统,则是通信信号一体化的又一个成功案例。该系统包含运输计划、运行管理、维护工作管
理、设备管理、集中信息管理、电力系统控制、车辆管理、站内工作管理等8个子系统,以
通信信号一体化技术,实现中心到车站各子系统的信息共享,并使系统达到很高的自动化水
平。另外成功地应用了安全光纤局域网,使之成为联锁系统、列车运行控制系统的安全传输
通道,达到通信技术与信号安全技术的深度结合,实现了通信信号一体化。
七、信号系统的规范化和标准化随着全球经济一体化的发展,铁路信号系统市场也出
现了全球一体化,主要体现在技术规范和安全规范的全球化,如ERTMS/ETCS。“统一规范、统一标准”是铁路信号系统的发展方向。信号系统的规范化和标准化的制定(如欧洲铁路运
输管理系统ERTMS规范),体现了以下的优势:
(一)新产品开发费用低;由于规范化和标
准化的制定考虑了系统的连续性,所以新产品能与老系统兼容;
(二)规范明确定义所有接
口(机械、电器、逻辑)标准,系统实现了模块结构,从而实现设备的互通互连;公开规范
和标准,开放市场,促进竞争,降低成本,从而获取最佳产品和最佳价格。参考
文献马桂贞 微机联锁系统 西南交通大学出版社 2001陈红霞 以微机为基础的铁
路信号设备的可靠性设计与分析西南交通大学图书馆,2005,第5期吴汶麒 城市轨道
交通信号与通信系统 北京 中国铁道出版社,1998.阮春欣 铁路信号容错技术 北京:中
国铁道出版社,1997:50~65[摘要]铁路为实现高速、高密度和重载运输的需要,积极引进采用新技术,大幅度提高了现代化通信信号设备的装备水平,新型技术系统不断涌
现。[关键词]故障-安全技术、实时操作系统开发平台、数字信号处理、计算机网络
技术的应用、通信技术与控制技术的结合、通信信号一体化近10多年来,运输
市场竞争激烈,各国铁路,特别是我国铁路为实现高速、高密度和重载运输的需要,积极引
进采用新技术,大幅度提高了现代化通信信号设备的装备水平,新型技术系统不断涌现。
一、故障-安全技术的发展随着计算机技术、微电子技术和新材料的发展,故障
—安全技术得到了飞速发展。高可靠性、高安全性的故障—安全核心设备出现了“二取二”、“二乘二取二”和“三取二”等不同结构形式,其同步方式有软同步和硬同步。西门子公司、阿尔斯通公司、日本日信公司等推出了不同类型的采用硬件同步方式的安全型计算机。故障
—安全技术的提高为高可靠和高安全的铁路信号系统的发展打下坚实的基础。
二、高水平的实时操作系统开发平台实时操作系统(RTOS,Real Time Operation System)是当今流行的嵌入式系统的软件开发平台。RTOS最关键的部分是实时多任务内核,它的基本功能包括任务管理、定时器管理、存储器管理、资源管理、事件管理、系统管理、消息管理、队列管理、旗语管理等,这些管理功能是通过内核服务函数形式交给用户调用的。在铁路、航空航天以及核反应堆等安全性要求很高的系统中引入RTOS,可以有效地解决系统的安全性和嵌入式软件开发标准化的难题。随着嵌入式系统中软件应用程序越来越大,对开
发人员、应用程序接口、程序档案的组织管理成为一个大的课题。在这种情况下,如何保证
系统的容错性和故障—安全性成为一个亟待解决的难题。基于RTOS开发出的程序,具有较高的可移植性,可实现90%以上设备独立,从而有利于系统故障—安全的实现。另外一些成熟的通用程序可以作为专家库函数产品推向社会,嵌入式软件的函数化、产品化能够促进行业
交流以及社会分工专业化,减少重复劳动,提高知识创新的效率。
三、数字信号
处理新技术的应用随着铁路运输发展,基于分立元器件和模拟信号处理技术的传
统铁路信号设备越来越满足不了铁路运输的安全性和实时性。因此,引进计算机技术,利用
计算机的高速分析计算功能,来提高信号设备的技术水平已非常紧迫。数字信号处理技术
(DSP,Digital Signal Pr ocessing)的出现为铁路信号信息处理提供了很好的解决方法。
与模拟信号处理技术相比较,数字信号处理技术具有更高的可靠性和实时性。数字信号处理的频域分析和时域分析的两种传统分析方法有着各自的优缺点。频域分析的优点是运算精度
高和抗干扰性能好,而缺点是在强干扰中提取信号时容易造成解码倍频现象,例如将移频的低频11Hz误解成22Hz;时域分析的优点是定型准确,而缺点是定量精确地剔除带内干扰难
度大。随着数字信号处理技术的新发展,在铁路信号处理中引入了新的实用技术,如ZFFT
(ZOOM-FFT)、小波信号处理技术、现代谱分析技术等。目前,我国区间采用的ZPW2000-A
信号发送、接收以及机车信号的接收都采用了数字信号处理技术,日本的数字ATC和法国
UM2000数字编码轨道电路也都采用了数字信号处理技术。
四、计算机网络技术的发展 随着计算机网络技术的飞速发展,实施企业网络化管理已成为企业实现管理现
代化的客观要求和必然趋势。铁路信号系统网络化是铁路运输综合调度指挥的基
础。在网络化的基础上实现信息化,从而实现集中、智能管理。
(一)网络化,现代
铁路信号系统不是各种信号设备的简单组合,而是功能完善、层次分明的控制系统。系统内
部各功能单元之间独立工作,同时又互相联系,交换信息,构成复杂的网络化结构,使指挥
者能够全面了解辖区内的各种情况,灵活配置系统资源,保证铁路系统的安全、高效运行。
(二)信息化,以信息化带动铁路产业现代化,是铁路发展的必然趋势。全面、准确获得线
路上的信息是高速列车安全运行的保证。因而现代铁路信号系统采用了许多先进的通信技术,如光纤通信、无线通信、卫星通信与定位技术等。
(三)智能化,智能化包括系统的智能化与控制设备的智能化。系统智能化是指上层管理部门根据铁路系统的实际情况,借助先进的计算机技术来合理规划列车的运行,使整个铁路系统达到最优化;控制设备的智能化则是指采用智能化的执行机构,来准确、快速地获得指挥者所需的信息,并根据指令来指挥、控制列车的运行。近年来,我国铁路行业已成功地推广应用了原TMIS和DMIS(现称TDCS)等系统,在利用信息技术方面取得了长足的进步。具有代表性的列车调度指挥系统TDCS,以现代信息技术为基础,综合运用通信、信号、计算机网络、多媒体技术,建立了新型现代化运输调度指挥系统(铁道部、铁路局、基层信息采集网)。
五、通信技术与控制技术相结合随着计算机技术(Computer)、通信技术(Communication)和控制技术(Control)的飞跃发展,向传统的以轨道电路作为信息传输媒体的列车运行控制系统提出了新的挑战。综合利用3C(Computer、Communication、Control)技术代替轨道电路技术,构成新型列车控制系统已成必然。用3C技术代替轨道电路的核心是通信技术的应用,目前计算机和控制技术已经渗透到列控系统中,称为“基于通信的列车运行控制系统”(CBTC,Communication Based Train Control)。其具有以下特点:列车与地面之间有各种类型的无线双向通信。可分为连续式和点式的。其中又可分为短距离传输(指1m以内)和较长距离传输(远至几公里至几十公里)的移动通信。它们仍然保留闭塞分区,其中最简易方式CBTC仍采用固定的闭塞分区,但是闭塞分区的分隔点不是用轨道电路的机械绝缘节或电气绝缘节(如无绝缘轨道电路),而是用应答器或计轴器,或其他能传送无线信号的装置构成分隔点,这种简易形式仍然保留固定长度的闭塞分区(FAS,Fixed Autoblock System),简称为CBTC—MAS。在CBTC中进一步发展的闭塞分区不是固定的,而是移动的(MAS,Moving Autoblock System),简称CBTC-MAS。
六、通信信号一体化随着当代铁路的发展,铁路通信信号技术发生了重大变化,车站、区间和列车控制的一体化,铁路通信信号技术的相互融合,以及行车调度指挥自动化等技术,冲破了功能单
一、控制分散、通信信号相对独立的传统技术理念,推动了铁路通信信号技术向数字化、智能化、网络化和一体化的方向发展。从铁路信号系统纵向发展看,德国已经形成从LZB、FZB发展到ERTMS的发展趋势。LZB利用轨道电缆环线传输列车运行控制系统行车指令和速度指令机车信号,取消地面闭塞信号机,保留闭塞分区,列车按固定闭塞方式(即FAS)运行。FZB是基于无线的列车运行控制系统,是新一代移动自动闭塞系统(即MAS),其目的是实现低成本、高性能的列车运行控制系统,并已加入ETCS。ERTMS/ETCS(欧洲铁路运输管理系统/欧洲列车控制系统)是欧盟支持的统一的行车控制系统,采用GSM—R作为传输系统,其成功应用将进一步推动铁路通信信号的技术进步,加快实现铁路通信信号一体化的进程。从信号系统的横向发展来看,日本新干线在1995年成功开发和投入运行的COSMOS系统,则是通信信号一体化的又一个成功案例。该系统包含运输计划、运行管理、维护工作管理、设备管理、集中信息管理、电力系统控制、车辆管理、站内工作管理等8个子系统,以通信信号一体化技术,实现中心到车站各子系统的信息共享,并使系统达到很高的自动化水平。另外成功地应用了安全光纤局域网,使之成为联锁系统、列车运行控制系统的安全传输通道,达到通信技术与信号安全技术的深度结合,实现了通信信号一体化。
七、信号系统的规范化和标准化随着全球经济一体化的发展,铁路信号系统市场也出现了全球一体化,主要体现在技术规范和安全规范的全球化,如ERTMS/ETCS。“统一规范、统一标准”是铁路信号系统的发展方向。信号系统的规范化和标准化的制定(如欧洲铁路运输管理系统ERTMS规范),体现了以下的优势:
(一)新产品开发费用低;由于规范化和标准化的制定考虑了系统的连续性,所以新产品能与老系统兼容;
(二)规范明确定义所有接口(机械、电器、逻辑)标准,系统实现了模块结构,从而实现设备的互通互连;公开规范和标准,开放市场,促进竞争,降低成本,从而获取最佳产品和最佳价格。参考文献马桂贞 微机联锁系统 西南交通大学出版社 2001陈红霞 以微机为基础的铁路信号设备的可靠性设计与分析西南交通大
学图书馆,2005,第5期吴汶麒 城市轨道交通信号与通信系统 北京 中国铁道出版社,1998.阮春欣 铁路信号容错技术 北京:中国铁道出版社,1997:50~65铁路信号系统新技术的发展与应用 夏之俊
第四篇:铁路信号系统拆解
CTCS-3级列控系统是基于GSM-R无线通信实现车一地信息双向传输、无线闭塞中心(RBC)生成行车许可的列控系统,系统采用先进的技术手段对高速运行下的列车进行运行速度、运行间隔等实时监控和超速防护,以目标距离连续速度控制模式、设备制动优先的方式监控列车安全运行,并可满足列车跨线运营的要求。
CTCS-3级列控系统主要有以下特点:
1、CTCS-3级列控系统是符合中国国情路情的、具有自主知识产权的、达到世界一流水平的先进列控运行控制系统;
2、CTCS-3级列控系统是按照中国铁路一张网原则规划的列控系统技术平台,能够满足最高运营速度380km/h,列车正向运行最小追踪间隔时间3分钟的要求,能够与200-250km/h新建铁路和既有提速线路的互联互通;
3、CTCS-3级列控系统成功采用目标距离连续速度控制模式、设备制动优先、GSM-R无线网络传输、信号安全数据网等先进技术,标志我国铁路列车运行安全控制技术达到世界先进水平;
4、CTCS-3级列控系统基于CTCS-2级列控系统构建,大量采用成熟技术,整合适配大量既有系统设备,系统技术先进成熟、经济实用、安全可靠;
5、CTCS-3级列控系统实现了我国列车运行控制的系统设计技术、生产制造技术、系统集成技术、工程应用技术、仿真测试技术、维护管理技术再创新和整体升级;
6、CTCS-3级列控系统采用国际先进的系统设计实现手段,构建完善的系统标准系统、以运营场景作为导入、按照欧洲安全设计流程实现、采用
系统评估作为系统确认手段,为我国铁路列车控制系统的可持续发展构建了完善的技术平台;
7、CTCS-3级列控系统的创新实现,形成了铁道部CTCS技术管理人才队伍平台、以实验室为中心形成测试分析和理论研究平台、供应商和运用单位结合的运用管理平台、企业系统产品的设计、开发、制造、施工、测试等生产和施工人才队伍平台;
8、CTCS-3级列控系统的技术攻关,构建了铁道部统一组织领导下,以项目为依托、以核心企业为主体,联合国外技术支持方、国内高校、科研单位和设计院,产、学、研一体的技术创新体系。
中国通号是中国轨道交通领域信息和自动控制产业基地之一,是国内系统集成及配套能力最强的专业化企业集团,产品主要分为信号、通信、基础、线缆四大类。
信号系统产品主要包括:移频自动闭塞、车站电码化、地面查询应答器、主体化机车信号、列控中心及车载设备,列车调度指挥系统设备(TDCS),分散自律调度集中系统设备(CTC),微机监测设备,列车超速防护设备(ATP),列车自动监督设备(ATS),计算机联锁设备,微机计轴设备,道口防护设备,编组站综合集成自动化设备(CIPS),驼峰溜放控制设备,信号产品测试设备等。
通信系统产品主要包括:无线列调系统设备、无线车次号校核系统设备、无线接入设备,GSM-R终端设备,综合视频监控系统设备,铁路电务管理信息化系统设备,铁路应急救援指挥系统设备,列车服务信息系统设备,客运信息服务系统设备,会议电话及会议电视系统设备,数字式电话集中机,列车广播机,光缆线路自动监测设备,光电数字引入柜,客票售检系统设备(AFC)等。
信号基础设备主要包括:25Hz信号电源屏、区间信号电源屏、驼峰信号电源屏、继电联锁信号电源屏、计算机联锁信号电源屏、三相交流转辙机电源屏,电动/电液转辙机、密贴检查器、驼峰车辆减速器、道岔外锁闭、道岔安装装置,RD1型道岔融雪设备,继电器、变压器,单元控制台,色灯信号机,防雷单元、防雷保安器,标准机柜机箱等。
线缆产品主要包括:数字信号电缆、通信电缆、光缆、光电综合缆、控制电缆、电力电缆等。
机车车辆电控设备、制动电阻装置、机车仪表。
电力工程高频开关直流组合电源柜、电动操作机构、真空断路器、隔离开关、电力铁塔等。
中国通号拥有的信号系统技术主要有自动闭塞系统、计算机联锁系统、列车调度指挥系统(TDCS)、调度集中系统(CTC)、国产化列车自动防护ATP系统、车站列控中心和应答器系统、驼峰自动控制系统、道岔转换安全保障系统等。
自动闭塞系统主要有ZPW-2000A无绝缘移频自动闭塞、WG-21A无绝缘轨道电路及25HZ相敏轨道电路、ZPW-2000(UM)系列闭环电码化。
车站计算机联锁系统主要有DS6-11型双机热备系统、DS6-20型三取二冗错系统、DS6-K5B型二乘二取二计算机联锁系统、区域计算机联锁系统、DS6-50型联锁和列控一体化集中控制的计算机联锁系统。
调度集中系统主要有FZt-CTC型、FZk-CTC型分散自律调度集中系统。车站列控中心和应答器系统作为CTCS2级列控系统地面主要组成部分,适用于装备计算机联锁或6502电气集中、CTC或TDCS车站。
国产化列车自动防护ATP系统:包括区域控制中心、车载设备、数字轨道电路三个子系统。
驼峰自动控制系统主要有TW-2型驼峰自动化系统、FTK-3型驼峰自动控制系统、TYWK型驼峰信号计算机一体化控制系统及编组站综合集成自动化系统(CIPS)。
中国通号拥有的通信系统技术主要有无线通信、视频监控、专用通信、智能交通、专用信息管理等。
无线通信系统技术主要有列车无线调度系统、DMIS无线车次号、800M列尾装置和列车安全预警综合系统、DMIS调度命令无线传送系统等。
视频监控系统技术主要有铁路线路视频监控系统及高速铁路综合视频监控系统。
专用通信系统技术主要有IP智能通信系统、铁路资源监控系统及应急救援指挥系统。
智能交通系统技术主要有自动售检票系统(AFC)、列车移动补票系统、铁路GSM-R SIM卡管理系统。
专用信息管理系统主要有铁路电务管理信息系统、铁路资金结算信息系统、地铁集中告警系统、OA系统、铁路财务会计管理信息系统及项目管理系统等。
第五篇:铁路信号系统影响因素
龙源期刊网 http://.cn
铁路信号系统影响因素
作者:魏毅
来源:《现代装饰·理论》2011年第07期
摘 要 铁路对我国的发展起着重要作用。由于铁路运输的安全、经济、效率高、成本低等优势,世界各国都在加快铁路运输的发展。铁路信号系统不仅能够保障列车安全运行,而且也能够使铁路效率得以提高。
关键词 铁路;信号系统;影响因素
2011年7月23日温州的重大铁路交通事故让我们更清醒的认识到铁路信号系统的重要性以及它的破坏性。我国铁路在开始初期由不同的外国资本所控制,导致信号不同意。虽然在经过几十年的发展,我国铁路信号系统已经有了较快的发展。事实上,影响铁路信号系统的因素有很多,正是由于这些因素的影响使铁路信号系统会出现问题。本文主要就铁路信号系统影响因素进行了分析。
1.铁路信号系统构成1.1 行车调度指挥系统
随着信息技术和电子技术的快速发展,在计算机技术、信息、通信、决策、控制技术的支持下,现代行车调度系统实现了列车远程实时监视、控制、追踪和管理的自动化处理。行车调度指挥自动化系统技术随着列车调度指挥系统(TDCS)的改进以及新型分散自律调度集中系统研发成功而获得了长足发展。TDCS的主要内容是列车运行计划编制和调整及列车运行监视和管理,调度集中的核心是列车运行控制,TDCS和调度集中系统构成了行车调度指挥系统。TDCS由不同站段的分机和站段或路局总机衔接起来,形成路网调度的主要组成部分。
1.2 闭塞系统
区间或闭塞分区在同一时间内只能运行一个列车,这就是所谓的闭塞。铁路信号闭塞系统就是由于闭塞相关的设备和技术组成。我国铁路的基本闭塞设备主要包括自动闭塞、半自动闭塞、自动站间闭塞。同列车自动完成闭塞作用的一种闭塞就是自动闭塞;通过装在两个相邻车站的闭塞机、专用轨道电路以及出站信号机所构成的一种闭塞就是半自动闭塞。正线是车站信号系统重要的组成部分,但是除此之外,还配有到发线、牵出线等其他线路,因此,有配线的分界点就是各种车站的另一种称呼。而无配线的分界点,为非自动闭塞区段在两个车站间设置的线路所,以及自动闭塞区段为在两车站间划分成若干个闭塞分区而设置的色灯信号机。其中线路所和色灯信号机就是无配线分界点,闭塞分区就是指在自动闭塞区段上通过色灯信号机之间的段落。
1.3 车站联锁系统
1)信号机。信号机是铁路视觉信号的重要组成部分,用以指导铁路行车,与线路的闭塞系统密切相关。信号机的设置位置在进站和出站。进站信号机要设置距离最外方进站道岔尖轨尖端大于50m小于400m处。其作用主要是为了防护车站,指示列车的运行条件,保证接车进路的正确和安全可靠,凡车站的列车入口处必须装设进站信号机。出站信号机设置在警冲标外方3.5~4m处,防止侧面冲突。其作用是为了防护区间,作为列车占用区间的凭证,指示列车能否进入区间。发车线端必须设置出站信号机。2)站内联锁。车站联锁是进路、道岔和信号机之间相互具有制约关系。联锁主要包括道岔、进路间的联锁;道岔与信号机之间的联锁,进路和进路间的联锁;进路与信号机之间的联锁;信号机与信号机间的联锁。
2.铁路信号系统影响因素
2.1 设备系统
近年来,铁路方面已经开始重视信号产品的研发、生产、使用、维护的可靠性管理。由于在设备规范上标准较少、过于简单、可靠性指标不够全面、可靠性模型的选择比较少等因素,使设备系统的可靠性受到影响。可靠性是一门系统工程,与产品全寿命周期的各个阶段密切相连,从产品的研发、设计、生产、使用、维护、报废等一系列环节都始终与可靠性相连。建立第三方可靠性评估机构,再制定相应的标准,对单位的可靠性设计方案进行审核。“7•23”动车事故的发生揭示了信号设备在设计上存在严重缺陷,再遭雷击发生故障后,导致本应显示为红灯的区间信号机错误显示为绿灯。总的来说,我国铁路信号系统中可靠性应用还不够成熟,还需继续深入研究。
2.2 电气化条件对信号系统的影响
作为弱电系统,信号设备在电气化铁路中处于从属被动的地位。电气化铁路属于强电系统,它具有额定电压高、牵引电流可达到数百安培甚至上千安培、电力机车为非线性负载,在整流换相和运行过程中会产生大量谐波成分等特点。这些特点构成了电气化铁路对信号设备干扰的基本原因。从干扰的种类来说,可分为传导、感应、辐射三种形式。不同的信号设备对不同类电气化干扰的反应不同,因此,具体的信号设备所采取的措施各不相同。
2.3 电缆电源对信号系统的影响
信号电源是铁路行车信号指示灯的供电电源,属于一级负荷。信号电源一般由自动闭塞电力线路和贯通电力线路两路电源供电。两路电源互为冗余,故障时相互切换,以提高供电可靠性。信号电源、电缆等受到自然环境、运行管理方式等因素的极大影响。
2.4 外部因素对信号系统的影响
每一个系统都有其固有的结构和组织形式,各组成部分不仅受设备本身技术水平和实现方式的影响,同时也受外部环境的影响。铁路信号设备的信号采集除来自列车和轨道系统外,车站和区段调度所还通过强风、雨、雪检测器及立交处防落物检测器采集的信号发出限速或停车
指令;人的因素是铁路信号系统的主导因素,不论在列车正常运营的管理、信号的采集分析和判断以及指导铁路运输作业方面,还是在非正常运营条件下对设备的维护保养,特别是局部区段发生故障后的信号处理和指挥,这些都直接影响着列车的运输等。
3.结语
随着我国对铁路上的投资逐渐扩大,铁路的相关技术也得到了较快的发展,尤其是有个别的技术已经独领风骚。铁路信号系统是一个庞大的工程,影响铁路信号系统的因素很多,既包括内部设备和技术水平,而且还包括外部条件,由此可见,铁路信号系统必须选择最优组合方案,才能在经济上和技术上取得双赢。
参考文献:
[1] 黄银霞,孙超,呼爱蝉,崔勇.信号系统评估体系构架[J].铁道通信信号,2008(11).[2] 刘晓敏,李智,吕福健.铁路信号系统安全完整性需求的确定及分配方法[J].铁道通信信号,2011(04).[3] 孙思南,朱宏.基于通信的列车控制无线网络构架与安全性研究[J].城市轨道交通研究,2006(12).[4] 吴江.信号设备有缺陷不能贸然恢复通车[N].中国消费者报,2011,8(01).