第一篇:土木工程专业英语重要单词
Structural design;结构分析structural scheme;结构体系 Configuration;布置
project requirement;工程要求 Spacing;间距
Fiber-reinforced composite;纤维增强复合材料
Strength-to-weight ratio;强重比 underclearance;桥下净空structural scheme;结构体系 Configuration;布置 Allowable stress;允许应力 restraint;约束,buckle;压曲 Tension,compression,flexure(bending), shear,torsion(twist)
拉 压 弯 剪 扭 Headroom;净空
Cross-section;断面,断面图 Fiber-reinforced concrete;纤维增强混凝土 sag;挠度
fiberglass;玻璃纤维,dome;圆屋顶 Arched vault 穹隆
Sawtooth roof锯齿形屋顶
CAD, CADD;计算机辅助设计,计算机辅助制图与设计
schedule production;进度计划 Modify a design;修改设计 plotter;绘图仪
compatibility;相容性,适用性 Digitize, digitizer;数字化,数字化仪 Analysis capability;分析能力 heating;供热
ventilating;通风,ventilation Air conditioning;空气调节 Environment engineering;环境工程(学)
lighting;照明
humidity;湿度,moisture, 湿气含量
greenhouse;温室
Thermo syphon,热虹吸
Plenum system;压力通风系统,送气系统
fireclay;耐火粘土,fireclay brick, 耐火粘土砖
Central heating;集中供热
Refrigerating technique;制冷技术 Construction technology;施工技术 Spectacular achievement;显著的成就
Ultrahigh-rise building;超高层建筑 apartment;公寓住宅,单元住宅 facade;立面,外观 Shear wall;剪力墙 Framed tube;框架筒体 Bundled tube,束筒结构
stressed-skin tube system;簙壳筒体体系
Spectacular achievement;显著的成就
Tube in tube;筒中筒结构
sway;摇摆,摇动,Column-diagonal truss tube;柱对角桁架筒体
Water treatment and disposal;水处理
Wastewater solids treatment and disposal;废水固体物质处理 Refuse disposal;垃圾处理 Hazardous waste disposal;有害废物处理
Air-pollution control;大气污染控制 Potable management;饮用水管理 sedimentation;沉淀法
pesticide,杀虫剂,农药,herbicide, 除草剂
Fertilizer;化肥,肥料
Organic matter,有机物
Chemical disinfection;化学消毒 Dual water system;双供水系统 Dewater,脱水
Ecosystem, 生态系统 Perturbation, 干扰
Reclaim: 改造,回收再利用。Reclamation: 回收,再利用 Recovery: 恢复,回收。
Rigid beam;刚性梁结构 Cantilever;悬臂(结构)suspension;悬索,suspension bridge, 悬索桥
arch;拱
pedestrian;行人
Clapper bridge;板桥 Corbeled arch;突拱
Cablestayedbridge.斜拉桥 pier;桥墩,窗间墙,pile,pillar,post,pole,Column
Reclamation,开垦,围海造地;conservancy,保护,管理 Inlet;进口,入口。Breakwater;防浪堤
Natural and artificial harbor;天然港与人工港
Classical harbor works;典型海港工事
Hydraulic model;水力模型 estuary;入海口
Maritime engineering: 海事工程 Dam,大坝
Hydroelectric power, 水力发电。Spillway;溢水口,泄洪道(口)silt;淤泥,泥沙 reservoir;水库 buttress;扶臂 strata;地层
Permeability,渗透性 blend;掺和,混和。Rockfill;堆石,填石
Water-to-cement ratio;水灰比
Classical harbor works;典型海港工事
Masonry dam;石坝
Embankment dam;土坝 Three gorges dam: 三峡大坝
第二篇:化学工程与工艺专业英语重要单词
盐酸hydrochloric
停车时间down time
杂质impurity
反应器reactor
优化optimize 纯度purity 烷基alkyl 芳基aryl
乙基ethyl
丁基butyl
粒子ion
乙醇ethanol
甲醇methanol
醋酸acetic acid 均相的homogeneous 系数coefficient 磨檫friction 无排放的emission-free
电解electrolysis
分解decomposition
复分解metathesis
还原reduce
沉淀precipitate
结晶crystallization
过滤filtration 吸收absorption
溶解度solubility
溶度积solubility product 平衡equilibrium 放热的exothermic
官能团functional group 单体monomer 构架backbone 模数modulus 复合材料composite 非均相的heterogeneous 潜热latent heat 显热apparent heat 热固性的thermosetting 热塑性的thermoplastic 微观的microscopic 通量flux 湍流的turbulent 自发的spontaneous
可逆的reversible
传导 conduction 对流convection
无定形的amorphous 交联cross-link 随机的random
等温的isothermal 吸附absorption 离心centrifuge 含enthalpy 商entropy
宏观的macroscopic 扩散diffuse 绝热的adiabatically
横截面cross section 旋涡eddy 无因次的dimensionless 回流reflux 溶解dissolution 溶液solution 溶质solute 溶剂 solvent 平衡级equilibrium stage 不互溶的immiscible 浸取leaching 过滤 filtrate
提纯 purification 板框式压滤机plate and frame press 旋风分离器cyclone 逆流counter 板式塔plate town 填料塔packed tower 孔板orifice 液泛flooding 混合澄清槽mixed-setter 萃取相extract
萃余液raffinate活度系数activity coefficient
无水的anhydrous
湿度humidity
凝胶gel 色谱 chromatography
流动相 mobile phase 固定相stationary phase 洗脱液eluent
载体carrier
微孔过滤microfiltration
超滤 ultrafiltration
反渗透reverse
电渗析electrodialysis吸热的 endothermic 放热的exothermic
绝热的adiabatic
连续的 consequential 间歇的batch
反混back-mixing
均相的homogeneous
管式反应器tubular reactor
连续搅拌釜式反应器continuously stirred tank reactor 列管式反应器shell and tubular reactor
湿发冶金的extractive metallurgical
流体动力学 hydrodynamic
多相反应的mixed-phase reactor
碳carbon
氯chiorine铜copper
氟fluorine 金gold 氢hydrogen 铁iron 氮nitrogen 氧oxygen 磷phosphorus 硅silicon 银 silver 钠sodium
硫sulphur汞mercury
铅lead
镁magnesium
孟manganese 量子quantum 菌株strain
霉菌mould苯酚phenol 硫酸盐sulphate碳化物 carbide 污物foul 气体洗涤scrub 半工业化的semi-technical
发酵罐 fermenter
含氟氯烃CFC致冷剂refrigerant
日用品commodity 醚 ether 特制品speciality最后产物 end-product准备行动的on one'toe水合 hydrate 合成橡胶 elastomer 增塑剂plasticizer 磺酸盐化sulphonate配方 formulate 冶金学 metallurgy 硅酸盐 silicate 色谱 chromatography汞mercury 强碱的alkaline 脱硫 desulphurization 隔板membrane 阳极 anode 阴极 cathode 污染 contaminate 惰性的inert 低聚物oligomer
高聚物macromer共聚物copolymer
增长 propagation 硬化uvlcanization刚性 stiffness 制造 fabricate
直线型的 linear 还原性reproducibility 停留时间 residence time
凝结coagulation
预见 foresight
配位coordination 立体化学的stereochemical活塞流plug flow 塑料成型 injection-moulding对...适用 good for
可靠authenticity 离心力centrifugal
势能
potential 传动轴shaft
冷凝器condenser 再沸器reboiler减少diminish 浮力 buoyancy 搅拌器 agitator 同时发生simultaneously 数量级 magnitude 热量单位Btu 传导率conductivity
至今heretofore 有效validity 溶滤 lixiviation 助滤剂filter aid 易燃性 flammability 同位素isotope 沉淀sedimentation 沉降 settling 相关性correlation 漏斗 funnel 挡板baffle 附聚agglomeration 构造configuration 成切线tangentiallu液滴 droplet 漩涡bortex阻力drag 滞留量holdup 脉冲塔pulsed column 重整产品reformate 无水的anhydrous 阻碍impede
不可渗透的impermeable 吸附剂absorbent
退化变质 deterioration 浸润 impregnate
固有的inherent
种类categoru洗涤elution 淡化desalination 热管式反应器thermal tubular reactor 滴流床反应器trickle bed reactor
热腾床反应器ebullating bed reactor 淤浆反应器slurry reactor
化学气相沉淀chemical vapor deposition 加氢脱硫过程hydrodesulfrization追求pursuit 臭氧化作用ozoonation螯合作用chelation 羧化反应作用carbonylation晶体取向生长epitaxy水煤气water gas 沸石zeolite
顺丁烯二酸酐maleic anhydride
第三篇:土木工程专业英语
水力学 hydraulics水泥 cement桁架 truss 沥青 bitumen混凝土 concrete强度 strength 非线性 nonlinear桩 pile刚性 rigid隧道 tunnel砾石 gravel柱子 column力 force
位移 displacement线性的 linear砂浆 mortar弹性 elastic塑性 plastic沉降 settlement 弯矩 moment扭矩 torque剪力 shear
正应力 normal stress路面 pavement
钢筋混凝土 reinforced concrete抗拉强度 tensile strength抗压强度 compressive strength 土木工程 civil engineering岩体力学 rock mass mechanics粒径 grain diameter 容许应力 allowable stress土力学 soil mechanics斜拉桥 cable stayed bridge 悬索桥 suspension bridge中性面 neutral plane水灰比 water-cement ratio 民用建筑 civil architecture地质成因 geologic origin临界截面 choking section
岩土工程 geotechnical engineering屈服点 yield point
横截面(transverse)cross section 安全系数 safety factor抗剪强度 shear strength反复试验 trial and error
预应力混凝土 priestessed concrete先张法 pretensioning concrete 后张法 post-tensioning concrete 土质勘测 soil investiagation
在这两种应力中,前者是压应力,后者是拉应力。These two kinds of stress, the former is a compressive stress, which is the tensile stress.许多情况下可能会指派土木工程师参与其他项目的工作。In many cases, civil
engineers may be assigned to engaged in the work of other projects.需要强调数学、力学、计算机技术在土木工程应用中的重要性。It should be stressed that mathematics, mechanics and computer applications in civil engineering is importance.钢材和混凝土是桥梁建筑的基本材料,混凝土的主要缺点是抗拉强度很低。Basic
materials are steel and concrete bridge construction, the main disadvantage is the low tensile strength of concrete.混凝土的抗压强度是水泥、骨料、水及混合料中所含的各种添加剂的用量所控制。它们主要用于大型水坝,在大坝中它们能减少水泥硬化时释放出的热量。They are mainly used for large dams;dams in the heat they can reduce cement hardening release.They are mainly used for large dams, the dam in which they can reduce hardening of the cement when the heat release.水力学 hydraulics水泥 cement桁架 truss 沥青 bitumen混凝土 concrete强度 strength 非线性 nonlinear桩 pile刚性 rigid隧道 tunnel砾石 gravel柱子 column力 force
位移 displacement线性的 linear砂浆 mortar弹性 elastic塑性 plastic沉降 settlement 弯矩 moment扭矩 torque剪力 shear
正应力 normal stress路面 pavement
钢筋混凝土 reinforced concrete抗拉强度 tensile strength抗压强度 compressive strength 土木工程 civil engineering岩体力学 rock mass mechanics粒径 grain diameter 容许应力 allowable stress土力学 soil mechanics斜拉桥 cable stayed bridge 悬索桥 suspension bridge中性面 neutral plane水灰比 water-cement ratio 民用建筑 civil architecture地质成因 geologic origin临界截面 choking section
岩土工程 geotechnical engineering屈服点 yield point
横截面(transverse)cross section 安全系数 safety factor抗剪强度 shear strength反复试验 trial and error
预应力混凝土 priestessed concrete先张法 pretensioning concrete 后张法 post-tensioning concrete 土质勘测 soil investiagation
在这两种应力中,前者是压应力,后者是拉应力。These two kinds of stress, the former is a compressive stress, which is the tensile stress.许多情况下可能会指派土木工程师参与其他项目的工作。In many cases, civil
engineers may be assigned to engaged in the work of other projects.需要强调数学、力学、计算机技术在土木工程应用中的重要性。It should be stressed that mathematics, mechanics and computer applications in civil engineering is importance.钢材和混凝土是桥梁建筑的基本材料,混凝土的主要缺点是抗拉强度很低。Basic
materials are steel and concrete bridge construction, the main disadvantage is the low tensile strength of concrete.混凝土的抗压强度是水泥、骨料、水及混合料中所含的各种添加剂的用量所控制。它们主要用于大型水坝,在大坝中它们能减少水泥硬化时释放出的热量。They are mainly used for large dams;dams in the heat they can reduce cement hardening release.They are mainly used for large dams, the dam in which they can reduce hardening of the cement when the heat release.水力学 hydraulics水泥 cement桁架 truss 沥青 bitumen混凝土 concrete强度 strength 非线性 nonlinear桩 pile刚性 rigid隧道 tunnel砾石 gravel柱子 column力 force
位移 displacement线性的 linear砂浆 mortar弹性 elastic塑性 plastic沉降 settlement 弯矩 moment扭矩 torque剪力 shear
正应力 normal stress路面 pavement
钢筋混凝土 reinforced concrete抗拉强度 tensile strength抗压强度 compressive strength 土木工程 civil engineering岩体力学 rock mass mechanics粒径 grain diameter 容许应力 allowable stress土力学 soil mechanics斜拉桥 cable stayed bridge 悬索桥 suspension bridge中性面 neutral plane水灰比 water-cement ratio 民用建筑 civil architecture地质成因 geologic origin临界截面 choking section
岩土工程 geotechnical engineering屈服点 yield point
横截面(transverse)cross section 安全系数 safety factor抗剪强度 shear strength反复试验 trial and error
预应力混凝土 priestessed concrete先张法 pretensioning concrete 后张法 post-tensioning concrete 土质勘测 soil investiagation
在这两种应力中,前者是压应力,后者是拉应力。These two kinds of stress, the former is a compressive stress, which is the tensile stress.许多情况下可能会指派土木工程师参与其他项目的工作。In many cases, civil
engineers may be assigned to engaged in the work of other projects.需要强调数学、力学、计算机技术在土木工程应用中的重要性。It should be stressed that mathematics, mechanics and computer applications in civil engineering is importance.钢材和混凝土是桥梁建筑的基本材料,混凝土的主要缺点是抗拉强度很低。Basic
materials are steel and concrete bridge construction, the main disadvantage is the low tensile strength of concrete.混凝土的抗压强度是水泥、骨料、水及混合料中所含的各种添加剂的用量所控制。它们主要用于大型水坝,在大坝中它们能减少水泥硬化时释放出的热量。They are mainly used for large dams;dams in the heat they can reduce cement hardening release.They are mainly used for large dams, the dam in which they can reduce hardening of the cement when the heat release.
第四篇:土木工程专业英语1
Plumbing
In general,plumbing refers to the system of pipes,fixtures,and other apparatus used inside a building for supplying water and removing liquid and waterborne wasters.In pratice,the term includes storm water or roof drainage and exterior system components connecting to a source such as a public water system or a point of disposal such as public sewer system or a domestic septic tank or cesspool.The purpose of plumbing systems is,basically,ti bring into,and distribute within,a building a suplly of safe water to be used for drinking purposes and to collect and dispose of polluted and contaminated wastewater from the various receptacles on the premises without hazard to the health of occupants.Codes, regulations,and trade pratices are designed to keep the water system separated from drainage systems;to prevent the introduction of harmful material such as chemicals, micro-organisms, and dirt;and to the keep the water system safe under all operating conditions.These protective codes also are designed to prevent flooding of drainage lines,provide venting of dangerous gases, and eliminate opportunities for backflow of dangerous waste water into the water system.It is essential that disease-producing organisms and harmful chemicals be confined to the drainage system.Since the time of Moses man has been cautioned to dispose of his wastes safely, and cleanliness has been related to the availability ot water and associated with social coustom.Early man often lived near a water source that served as his water supply and drainage system in one.It was also his bath.Latrine-like receptacles with crude drains have been found in excavations in the Orkney Islands of Neolithic stone huts at least 10,000 years old.Both a water system and piping used as drainage fashioned of terra-cotta pipe were part of the royal palace of Minos in Crete, about 2000BC.The palace also had a latrine with water-flushing reservoir and drainage.Nothing comparable to it was developed in Europe until the 18th century.Even the equipment of the modern bathroom, though much improved with hot and cold water under pressure and less crude provisions for drainage, is in concept little different from the Minoan version.It was out until the end of the 19th century that advance in plumbing practice were given serious attention as an integral part of housing.A building plumbing system includes two components, the piping that brings potable water into the building and distributes it to all fixtures and water outlets and the piping that collects the water after use and drains it to a point of safe disposal.Water systems.When a building is served by a public water system, the plumbing begins at the service connections required to make water available at outlets serving the fixtures or equipment within the building.Many premises in rural areas are not served by public water supply.These may include private dwellings, apartment houses, hotels, commercial centres, hospitals, institutions, factories, roadside stands, and restaurants.Public water supplies have surface water or groundwater as their sources.Large water system are almost entirely supplied with surface water.In smaller communities and in certain areas groundwater is obtained from wells or springs.Independent semipublic, industrial, and private-premise water systems frequently take water from wells on the premise but may, under certain condtions draw water from a spring, lake, or stream.Public water systems supply treated water meeting public water-supply drinking-water
standards.Private-premise systems are expected to provide water of equal quality, and to do so the private system requires a water-treatment plant including chlorination as a minimun and possibly sedimentation(settling out of solid particles)chemical treatment, primarily for softening, and filtration.Water is supplied to fixtures and outlets under pressure provided by pumps or elevated storage tanks or both.In some installations a pump controlled by a pressure-activated switch on a pressurized storage tank takes water from a well and pumps until the upper limit ot pressure for the system has been reached.If water is being used at the rate it is being pumped., the pump operates continuously.Elevated storage tanks are usually equipped with high-and low-level-float control switches to activate the pump.When the tank gets loe the pump starts and continues pumping until the tank is full.A storage tank may be constructed as illustrated in Fig.1, or it may be located on the roof of a high building.Water from the tank feeds the distribution system by gravity.Water flowing through pipes causes a loss of head due to friction.Since building piping systems are designed to deliver water at the required outlet pressure, pipe size is a critical variable.Plumbing codes have tables and graphs to show typical water demandsof fixtures and outlets in a building.If the required water demand is not met because of undersized piping or underpowered pumping, the pressure dops and some outlets may have little or no water flow.Pumping codes usually specify pressure and rates of flow for the fixtures in a building.The total amount of water that may be needed to supply the demand can be calculated from tables of fixture water demand.Minimum pipe sizes for different fixture in a building are specified in plumbing codes.Since it is uneconomical to design a water piping system that would provide flow with all outlets open simultaneously, judgment and experience are used to determine the probable maximum simultaneous demand.Average daily water requirements vary according to the type of premises being served.A single-family dwelling unit averages from 20 to 100 gallons(80 to 400 litres)per day.Apartment house occupants use less.Special users such as hospitals and industries usually require far greater allowances.Drainage Systems.Drainage of residential building includes the collection of sanitary wastes and roof drainage.The sanitary wastes are collected in soil pipes and stacks usually made of cast iron, although certain portions of connecting pipe may be galvanized iron.When corrosive liquids are collected, as in laboratories and industrial plants, the system may include plastic or glass pipes or coated piping.The joints, bends, tees, elbows, wyes, and many other special fittings are designed to carry away wastes without having obstructions in the pipe or creating condtions that will cause clogging if some large object is dropped into a fixture or a receptacle.Cleanouts and receptacle outlets are provided with screens or gratings to prevent the entry of clogging materials.The entire piping system is sized so that the smallest size is at the fixture outlet.Plumbing codes specify the minimum sizes for drainage connections and the standards applicable to all pipe and fitting materials.Normally all building drainage is constructed so that waste water flows by gravity to the main house drain.The house drain is usually connected outside the building to a gravity-flow house sewer that leads to a public sewer on a point of treatment.In large buildings such as apartment house, commercial buildings, hospitals, and industrial plants, the house drain may be lower than the point of discharge.Wastes are then discharged to a sump, or storage pit, and all of
the building drainage is lifted by pumps or pneumatic ejectors to a point of discharge to the exterior sewer system.These lifting devices empty water from the storage sump on a cycling basis activated by float controls that prevent flooding of the storage area.Such units are usually installed in duplicate and often have alternate sources of power such as a diesel-or gasoline-power generator for emergency pumping.Roof drainage is collected in gutters and leaders and taken by appropriate piping to a point of discharge permitted by law.Isolated dwellings may drain to surrounding ground, while larger buildings have a drainage system similar to the sanitary system that connects into a public storm-water sewer system.Home disposal systems are used in rural areas.The house drain is connected to a septic tank with a tile drainage field or to a cesspool.The septic tank removes heavy solid materials from the waste, and the effluent or treated water is allowed to percolate into the soil through buried, specially constructed, rock-filled trenches over which tiles with open joints are laid.Enough trench must be constructed to allow percolation without flooding the surface of the ground.The effluent from septic tanks contains disease-causing bacteria and cannot be allowed to flow directly into streams or underground waters.Health codes and regulations specify the sizes of home disposal units and control the discharge of effluent.Premises often have other water uses including swimming pools(both outdoor and indoor), ornamental pools, fish pools, and fountains, These require water and are part of the plumbing system.Since swimming-pool water is easily contaminated by bathers, it must either be replaced frequently or filtered, chlorinated, and recirculated.
第五篇:土木工程专业英语学习心得
土木工程专业英语学习心得
专业英语是在大学基础英语之后结合专业知识进一步提高学生英语水平而设置的一门主干课程,是大学英语和研究生英语教学中一个重要的环节。当前,科学技术发展迅速,科技信息发达,能够直接及时地获取专业信息、掌握专业发展动态是工程技术人员和科研人员需要具备的基本能力,进行各种涉外合作和学术交流都要求专业人员熟练掌握专业英语。因此,培养阅读理解和翻译英文专业文献的能力,培养专业英语的写作能力和一定的语言交际能力都是非常重要的。1 专业词汇的学习
1.1 通过构词法学习专业词汇
从构词法的角度来解析土木工程专业词汇的来龙去脉,便于记忆单词,扩大词汇量。1.2 通过具体语言环境学习专业词汇
简单重复记忆某个专业词汇是一种方法,但显得枯燥,记忆效果往往不佳,容易忘记。如果把专业词汇融入具体的语言环境中,词汇的记忆一般长久牢固,不容易忘记。实现这种方法的途径就是大量阅读专业英语材料。1.3 通过写作学习词汇
在拥有一定的词汇量以后,写作表达或口语表达都能促进词汇的学习。2 翻译技能的学习
翻译是运用一种语言把另一种语言所表达的思维内容准确而完整地重新表达出来的语言活动。
2.1 掌握翻译的基本理论知识
翻译是一门学科,经过千百年来翻译家的共同努力,已经在语言学、文学、文化、心理学、人类学、哲学和教育学等学科的基础上初步建立了一套理论体系,并在具体实践中总结出了一套行之有效的跨文化和语言转换模式。2.2 掌握专业英语的常用句式结构
科技文章的特点是严谨周密,概念准确,逻辑性强,行文简练,重点突出,它有常用的句式结构。
2.3 进行翻译实践练习
翻译是一项创造性的语言活动,具有很强的实践性。2.4 通过阅读提高翻译能力
阅读和翻译能力的提高是互相促进的,读得越多掌握的专业词汇与专业知识就越多,有助于翻译能力的提高。口语表达能力的提高
专业英语口语表达与日常英语口语表达不同的地方就是其具有专业性,可以通过以下方法循序渐进练习。
3.1 大声朗读专业英语材料
大声反复地朗读专业英语材料,锻炼英语的发音,语调与节奏,培养语感,使口腔各发音部位灵活,提高口语表达能力,并增加对专业词汇的熟悉程度。3.2 设立场景进行实际训练
3~5 人组成一组,设立实际场景扮演不同的角色进行练习。3.3 多参加以英语为媒介的专题讲座
在学校或涉外工作中,经常有以英语为媒介的幻灯片讲座,多参加并积极询问,增加和外国人面对面交流的机会,也就是多增加应用专业英语的机会,这样可以促进专业英语的口语表达能力的提高。