第一篇:浅析电网接地保护分析论文
摘要:针对配电网单相接地故障选线困难的问题,应用小波变换模极大值理论,对故障后的电气量进行分析,反应零序电流的突变情况,根据其在各条线路上的极性和大小的不同变化规律实现故障选线。判据采用做内积的方法,在对含有误差的信号进行处理时具有良好的容错性,因而能够获得更高的选线精度。该方法适用于小接地电流系统的各种中性点运行方式,并且现场安装简单、不需要定值整定。EMTP仿真结果表明,该方法是有效的、可靠的。
关键词:配电网故障选线小波变换奇异性检测
1引言
单相接地电弧能够自行熄灭的中性点非有效接地系统称为小接地电流系统[1],主要以中性点不接地、经高阻接地及经消弧线圈接地系统的形式出现。我国3~60kV的配电网通常都属于小接地电流系统。
小接地电流系统发生单相接地故障时,电源与故障点之间并不形成低阻抗回路,短路电流很小,同时线电压仍然保持对称,不影响对用户的连续供电,所以不必立即跳闸,规程规定可以继续运行1~2个小时。但是,为了防止故障进一步扩大,必须及时、准确地选出故障线路,并且予以切除。
为解决这一问题,国内外学者进行了深入而广泛的研究,提出了基于稳态分量、暂态分量及外施影响的多种选线方法(例如:比幅、比相法,谐波法,补偿法,零序导纳法,功率法;首半波法,能量法,谱功率法,小波法;拉路法,残余电流增量法,注入信号法)[2],并开发出了相应的保护装置,先后推出了几代产品。然而迄今为止,此类装置在实际运行当中的效果仍然不能令人满意。
本文提出应用小波变换模极大值理论,找出故障后电气量的变化特点,并把与之相对应的模极大值作为特征量来分析,建立出简单、可靠的选线判据。大量的EMTP仿真数据表明,该方法是正确的、可靠的。
2基本原理
通过对小接地电流系统单相接地故障时的零序电压、电流进行奇异性检测,可以确定出它们在故障后突变部分的极性和大小,比较其在各条出线上的不同变化情况,可以识别出故障线路。
我们将无限次可导的函数称为光滑的或没有奇异性,若函数在某处有间断或某阶导数不连续,则称其在此处有奇异点。奇异性检测就是要将信号的奇异点识别出来并判断其奇异程度。数学上,通常用Lipschitz指数来刻画信号的奇异性[3]。由于小波变换极大值在多尺度上的表现与Lipschitz指数之间存在对应关系[4],这为通过小波变换检测信号奇异点并区分奇异点提供了依据。即小波变换后的模极大值能够反应接地故障的某些特征,所以本方法利用此理论实现故障选线。
2.1小波函数的选取
小波函数在理论上有无限多种,由其引出的小波基所具有的性质也各不相同,可以满足各种问题的需要。但对同一个信号利用不同的小波基进行处理,取得的效果并不相同,甚至差异较大。所以为了得到令人满意的结果,就必须对小波函数进行适当的选取。虽然目前还没有一个成熟的方法来选择在解决具体问题时所需的最佳小波函数,但通常的做法是把各种小波函数分类,并总结出每类小波函数的性质和特点,结合要解决的问题来确定使用哪一类,并在该类中进行试验比较来确定使用哪一个小波函数[5]。
如上所述,针对小接地电流系统故障选线的具体问题:为了减小频谱的泄漏和混叠,要求小波函数具有好的频域特性。dbN小波系是工程上应用较多的小波函数,这一小波系的特点是随着序号N的增大,时域支集变长,时间局部性变差;同时,正则性增加,频域局部性变好。但是当N增大到10以后,dbN小波在频域内的分频表现与N为10时很接近。
综合考虑在时频两域内进行分析的需要,并结合故障选线问题的特点,通过采用几种小波进行多次仿真计算,证明使用db10小波可以得到较为理想的结果。所以本文选用db10小波,其尺度函数和小波函数的波形分别如图1(a)和(b)所示。
2.2选线判据
首先,对各出线上零序电流在故障前一个周波和故障后三个周波内的数据进行小波变换,得到相应的一组模极大值,其中n表示线路编号,i表示出现摸极大值的序号。然后,任意选定一条出线作为参考线路,将其上零序电流的小波变换模极大值组分别与其它线路上的零序电流的小波变换模极大值组做内积,并把这一内积结果作为一种测度,用S来表示。
式(1)中,j是被任意选定的那条参考线路的编号;k是剩余线路的编号,即k=1,2,…n,且k≠j;n是总的出线数目;m是模极大值的个数。
这样,就可以建立如下的选线判据:
(1)若Sjk不同时大于零或小于零,则使成立的线路是非故障线路;而使成立的线路是故障线路。
(2)若Sjk同时小于零,则线路j为故障线路。
(3)若Sjk同时大于零,则为母线故障。
2.3选线判据的说明
首先,由于小波变换自身算法上的原因,在变换过程中会把数据窗的右边界当成突变点,使得各尺度分量在右边界附近会出现较大值,这就是小波变换的边界效应。为了克服边界效应给选线带来的不利影响,只取前两个周波内的摸极大值做内积。
其次,做内积的实质是在进行极性比较。幅值大的模极大值在比较过程中有利,结果可靠;而幅值小的模极大值在比较过程中就会有容易受误差的影响,以至于得到错误结论。通过做内积的办法,就相当于使幅值大者的比较结果在测度中占有高权重,而幅值小者的比较结果在测度中占有低权重。这样就在很大程度上克服了误差的影响,从而提高了选线精度。
再次,小波奇异性检测反应的是信号的奇异性,不要求信号是跃变的[6]。所以,尽管本方法使用暂态过程中的数值来分析,但是在相电压过零附近发生单相接地,本方法仍然有效。
另外,因本方法是基于暂态分量的选线方法,所以在实际使用中,虽然可以瞬时选出接地线路,但是为了区分瞬时性故障和永久性故障,还需要判断一个延时后故障是否仍然存在,才决定是否执行跳闸操作。
3仿真分析
对某个35kV的辐射状小接地电流系统(如图2所示)在中性点运行方式为经消弧线圈接地时进行仿真分析。顺便指出,本方法对中性点不接地、经高阻接地系统同样适用。
假设距线路4始端24公里处于0.315秒时A相发生接地,以过渡电阻为1欧姆、采样率为10kHz为例,按照前边所述方法实现选线。限于篇幅,仅给出线路2(正常线路)和线路4(故障线路)的分析波形,如图3、4、5所示。
这里选定线路1为参考线路,线路2、3、4、5上零序电流的模极大值测度分别为351.1、540.7、-1200.5和216.8,根据上述判据可知线路4为故障线路。
为了便于比较,在过渡电阻、采样率以及参考线路都同前的情况下,采用此方法对图2所示系统分别做短线路近端、短线路远端、长线路近端、长线路远端及母线接地时的仿真分析,所得的小波变换模极大值测度列于表1。由于线路1是参考线路,其测度是与自身的小波变换模极大值做内积的结果(必然是正数),故该线路的小波变换模极大值测度不需要算出来,表中用“+”表示。这样,按照前述选线判据分析这些数据,都能够非常准确地选出故障线路。
还是以图2所示系统为例,在采样率仍为10kHz,而过渡电阻增大到2000欧姆、参考线路变为出线2的情况下,进一步检验该方法,所得仿真数据示于表2。其中的数值,一方面说明参考线路是可以任意选定的,同样都能够得到正确的选线结果;另一方面说明本方法抗过渡电阻的能力非常强。
4结论
由于本方法取用故障点附近几个周波的数据实现选线,此时电气量的变化通常很明显,特征量幅值较大,所以具有很高的选线精度。同时,小波奇异性检测反应的是信号的奇异性,不要求信号是跃变的。所以,即使在相电压过零附近发生单相接地,暂态过程不明显的情况下,本方法仍然有效。
选线判据中采用做内积的方法,实质是在进行优化的极性比较,对含有误差的信号具有良好的容错性,而且不需要设置阀值。不论是中性点不接地、经高阻接地还是经消弧线圈接地的系统,本方法都适用。在系统不同位置、经不同过渡电阻接地的情况下,所得到的选线结果也都很精确,可见,此方法具有很强的鲁棒性。
需要指出,本方法适用于母线上至少有三条出线的情况,而在只有两条出线的时候将会失效。
参考文献
1.要焕年,曹梅月(YaoHuannian,CaoMeiyue).电力系统谐振接地(Theresonantearthinpowersystem)[M].北京:中国电力出版社(Beijing:ChinaElectricalPowerPress),2000
2.肖白,束洪春,高峰(XiaoBai,ShuHongchun,GaoFeng).小接地电流系统单相接地故障选线方法综述(SurveyoftheMethodofFaultLineSelectionforSingle-Phase-to-EarthFaultinNetworksWithUngroundedNeutral)[J].继电器(Relay),2001,29(4):16~20
3.李威,王建赜,冉启文,等(LiWei,WangJianze,RanQiwen,etal).一种新的电力系统暂态波形检测方法(ANovelMeasurementMethodforPowerSystemTransientWaveforms)[J].电力系统自动化(AutomationofElectricPowerSystem),2002,26(5):45~48
4.杨福生(YangFusheng).小波变换的工程分析与应用(EngineeringAnalysisofWaveletsTransformandApplication)[M].北京:科学出版社(BeiJing:SciencePress),2000
5.束洪春,肖白(ShuHongchun,XiaoBai).配电网单相电弧接地故障选线暂态分析法(ATransient-BasedStudyofFaultLineSelectionforSingle-PhasetoGroundFaultsonDistributionSystem)[J].电力系统自动化(AutomationofElectricPowerSystem),2002,26(21):58~61
6.贾清泉,刘连光,杨以函,等(JiaQingquan,LiuLianguang,YangYihan,etal).应用小波检测故障突变特性实现配电网小电流故障选线保护(AbruptChangeDetectionwithWaveletforSmallCurrentFaultRelaying).中国电机工程学报(ProceedingsoftheCSEE),2001,21(10):78~82
第二篇:接地安全论文
《电气安全技术与接地》
课程论文
摘 要
雷电是十分常见的自然现象,地球上任何时候都有雷电活动。据统计,地球上每天发生800余万次的电闪雷鸣,几乎每秒有100次,每年因为雷击导致直接经济损失约10亿美元,3000以上的人员死亡。雷电以极大的破坏力给人类和社会带来了灾难。有效的防雷对建筑有了很大的必要性。防雷一直是世界各国关注的课题。建筑物防雷接地包括外部防雷和内部防雷两大部分。外部防雷保护通过外部防雷装置吸引雷电并尽快将雷电流引入地中安全泄放。外部防雷包括保护接闪器、引下线和接地装置。内部防雷主要包括等电位连接、安装SPD浪涌保护器及综合布线等,也就是通过这几部分防止雷电和其他形式的过电压侵入设备中造成的毁坏。对直击雷采取的避雷网的保护方式。
关键词:防雷;建筑物;接地 建筑物的防雷装置和防雷接地网
1.1 防雷装置
要防止雷击火灾比喻首先认清与火灾有关的雷电效应。雷电的特点主要是电压高,电流大瞬间可产生极大的能量造成火灾。
(1)外部防雷装置和内部防雷装置
外部防雷包括保护接闪器、引下线和接地装置三部分组成。接闪器有三种形式:避雷针、避雷带、避雷网,它位于建筑物的顶端,其作用是引雷或者是截获雷电。即把雷电流引下。引下线上与接闪器相连,下与接地装置相连,它的作用是把接闪器截获的电流引至接地装置,接地装置位于地下一定的深度之处。它的作用是使雷电流顺利地流入大地中。内部防雷装置的作用是减小建筑物内的雷电流和产生的电磁效应以及防止反击、接触电压、跨步电压二次雷害。内部防雷装置包括等电位连接设施、屏蔽设施、加装的避雷器以及合理的布线和内部良好的接地措施。就防火而言,只有外部防雷装置,没有内部防雷装置,建筑物的完全是没有保证的。因为接闪装置接闪后,其引下线周围的感应范围较大,导体与导体之间如果处理不当,极易产生火花放电,引燃附近的易燃物,造成火灾。
(2)雷电电磁脉冲
随着现代科技的进步,电子技术已经渗透到各行各业中。建筑物内的电子设备也越来越多。这些电子设备也越来越敏感,遭受雷电电磁脉冲的干扰已成为建筑物的电子设备内内电子设备的突出事故。1.2 防雷接地网
(1)防雷接地网分类
目前一般钢筋混凝土结构的建筑物,防雷接地网分为基础接地网和均压环接地网,一般来讲基础接地网是利用土建钢筋主筋(2根)通过焊接Φ14圆钢跨接钢筋保证主筋不间断并形成闭环,下与乘台基础桩筋焊接连接,30米以上建筑物每层做均压环,做法与基础接地网同并与纵向柱主钢筋焊接贯通,在没有设置专用避雷针时采用镀锌圆屋面墙贯通一道闭环,并与混凝土内预留接地引下线贯通形成整个建筑体系的防雷接地系统,至于引下线的数量根据图纸要求和建筑物防雷等级定,一般要求接地电阻值不大于1Ω的为二级以上建筑物,普通民用工程为4~10Ω,接地体(线)的焊接接地体(线)的焊接应采用搭接焊,其搭接长度必须符合下列规定:
一、扁钢为其宽度为2 倍(且至少3 个棱边焊接)。
二、圆钢为其直径的6 倍。
三、圆钢与扁钢连接时,其长度为圆钢直径的6 倍。
四、扁钢与钢管、扁钢与角钢焊接时,为了连接可靠,除应在其接部位两侧进行焊接外,并应焊以由钢带弯成的弧形(或直角形)卡子或直接由钢带本身弯成弧形(或直角形)与钢管(或角钢)焊接。“避雷网柱主筋与圈梁钢筋焊接”,意思是:连接了屋面避雷网的柱子的主筋应与该建筑基础的地圈梁钢筋连接,作用是保证屋面防雷接地的良好。“利用圈梁钢筋均压环敷设”,意思是:把建筑每层的圈梁钢筋焊接形成电气通路,再与柱子的主筋相连,作用是防止侧击雷的发生。建筑电气规范规定,高于30米的建筑,7层开始,每三层应做均压环敷设。(2)接地跨接线
接地跨接线是指接地母线遇有障碍(如建筑物伸缩缝,沉降缝等)需跨越时相连接的连接线,或利用金属构件,金属管道作为接地线时需要焊接的连接线;常见的接地跨线有伸(沉降)缝、管道法兰、吊车钢轨接地跨接线等,计算工程量按“处”为单位。接地跨接线适用于:霹 雷 网(针)和 引下 线连接;易燃气体管法兰之间的连接;接地线和金属体的连接;焊接接地螺栓等。防雷接地应该形成一个闭和回路后接地,在断线处应采用接地跨接线,凡用螺栓或铆钉连接的接地网中的地方,都应焊接接地跨接线,跨接线一般采用扁钢和圆钢。等电位箱和局部等电位箱的箱内连接套接地跨接*0.5系数,箱体再单独套定额,局部等电位箱应套接线盒安装子目,总等电位箱套接线箱安装子目。接地跨接线是指接地母线遇有障碍(如建筑物伸缩缝,沉降缝等)需跨越时相连接的连接线,或利用金属构件,金属管道作为接地线时需要焊接的连接线;常见的接地跨线有伸缩(沉降)缝、管道法兰、吊车钢轨接地跨接线等,计算工程量按“处”为单位。标准的楼房接地一般采用综合接地(防雷接地与设备接地共用接地装置),要求接地电阻值小于1欧姆。
2.建筑防雷接地存在问题
2.1 土壤电阻率
在设计建筑物防雷接地系统没有测试土壤电阻率,Ϊ的大小对设计接系统有不同的要求,特别对高土壤电阻率场地,不能按常规设计要求。住楼建在山坡上,土壤电阻率较大,平均值652m按设计要求接地电阻≤1.0Ω,接地电阻经多次要求整改都达不到设计要求,结果延缓施工进度。
2.2 基础接地体
利用建筑物本身的金属体作为防雷接地的基础接地体如建筑物所在的土壤电阻率4008#m以下地区,其防雷接地装置按常规电器装置标准设计和施工是比较理想。但有的建筑物在山区或半山区,其地质构造多为砂石或风化岩,土壤电阻率高达10004~0008#m。此时按常规设计,已很难达到规范要求,有的地区甚至无法施工。监督检测发现:延长接地体外引法,施工中只做水平接地体,引线(规范规定截面积不小于100平方毫米)成了建筑物防雷的生命线,一旦引线被腐蚀损坏或机械损坏,未被及时发现和修复,建筑物防雷接地系统就无保障。2.3 环形水平接地体
设计普通建筑物,不管地梁深度是否达到自然接地体要求,或者不管建筑物所在地区土壤电阻率大小,都在基础外围敷设环形水平接地体。这种设计水平接地体方法有时起不到防雷接地效果,有时多设成浪费。建筑防雷接地合理设计
3.1 实地勘测
在设计前要对所建建筑物环境、地貌进行实地勘测,明确建筑物所处的地理位置,测量土壤电阻率。按勘测实际地理位置审核防雷类别设计,对于空旷孤立建筑物应提高防雷类别。3.2 根据土壤电阻率设
防雷接地有不同接地统设计要求特别对5008#m以上要有特殊要求,光靠基础接地极和增设人工接地极是达不到要求的,必须采取降低接地电阻的常用措施:换土;采用降阻剂;深埋接地级;深井接地; 3.3 基础接地体的分析与应用
基础接地体就是利用各种形状的钢筋砼基础中的钢筋网作防雷接地装置当建筑物遭受雷击时该装置起散流电阻作用。这一设计思想在20世纪60年代提出以来,已在国内外的一些高层建筑中得到应用并写入有关规范中。到目前为止该理论也逐渐在工业和民用建筑物中被广泛应用。有人做过实测,埋在干燥土壤中的钢筋砼电阻率为5001~300Ωm,但在潮湿土壤中此值还不到200Ωm。所以地梁在地表面就起不到低电阻率标准。另外在高土壤电阻率地区,基础接地体也达不到接地电阻标准,就必须采用环形等电位接地体。3.4 钢筋混凝土机理与合理布置
环形接地体当地梁深度达到自然接地体深度(h>50cm)要求,且Ϊ较小,无需设
计环形水平接地如需要设计环形水平接地体,则埋入混凝土中,但混凝土浇注不好钢接地体也会腐蚀,尤其接地体外引部位。总结
利用避雷网已经能够满足内外防雷装置的需求,应该继续发展避雷网接地技术。微机设备进入建筑物中,很容易受到雷电电磁脉冲的影响。在防雷技术方面也应该侧重于内部防雷。同时收集雷电事故信息,研究雷击规律也是非常重要的工作。须有较精确的统计数字和较详细的描述并进行及时的总结,以便为研究提供真实可靠的数据。
参考文献
[1]孔庆友,徐志全.浅谈高层建筑防雷接地设计[J].科技致富向导,2011,14:239 [2]崔恒飞.建筑防雷接地施工探讨[J].门窗,2012,07:111-112
[3]刘众喜.民用建筑的防雷与接地问题探析[J].企业技术开发,2013,14:26-28 [4]普有云.浅谈等电位接地的问题[J].中国广电技术文萃,2014,03:101-108 [5]《建筑物防雷设计规范》GB50057-1995 [6]董国民.智能建筑的一体化系统集成[C].第九届全国电气自动化电控系统学术年会论文集.北京:机械工业出版社,1998:418~423 [7]苏邦扎,崔秉球等.雷电与避雷工程[M].中山大学出版社,1996 [8]曾永林接地技术[M].水利电力出版社,1979 [9]潘忠林,现代防电技术.电子工业出版社,1997 [10]防雷接地技术标准规范汇编.2001版
第三篇:低压电网中的接地类型与供电系统
低压电网中的接地类型与供电系统
在低压配电网络中,由于接地种类的不同,其保护接地方式、供电系统也有所不同。正确理解和推广使用几种低压保护接地方式及供电系统,对提高低压电网安全、可靠运行水平有着十分重要的意义。
1 低压配电系统中的接地类型
(1)工作接地:为保证电力设备达到正常工作要求的接地,称为工作接地。中性点直接接地的电力系统中,变压器中性点接地,或发电机中性点接地。
(2)保护接地:为保障人身安全、防止间接触电,将设备的外露可导电部分进行接地,称为保护接地。保护接地的形式有两种:一种是设备的外露可导电部分经各自的接地保护线分别直接接地;另一种是设备的外露可导电部分经公共的保护线接地。
(3)重复接地:在中性线直接接地系统中,为确保保护安全可靠,除在变压器或发电机中性点处进行工作接地外,还在保护线其他地方进行必要的接地,称为重复接地。
(4)保护接中性线:在380/220V低压系统中,由于中性点是直接接地的,通常又将电气设备的外壳与中性线相连,称为低压保护接中性线。
2 低压配电系统的供电方式
低压配电系统按保护接地的形式不同可分为:IT系统、TT系统和TN系统。其中IT系统和TT系统的设备外露可导电部分经各自的保护线直接接地(过去称为保护接地);TN系统的设备外露可导电部分经公共的保护线与电源中性点直接电气连接(过去称为接零保护)。
国际电工委员会(IEC)对系统接地的文字符号的意义规定如下:
第一个字母表示电力系统的对地关系:
T--一点直接接地;
I--所有带电部分与地绝缘,或一点经阻抗接地。
第二个字母表示装置的外露可导电部分的对地关系:
T--外露可导电部分对地直接电气连接,与电力系统的任何接地点无关;
N--外露可导电部分与电力系统的接地点直接电气连接(在交流系统中,接地点通常就是中性点)。
后面还有字母时,这些字母表示中性线与保护线的组合:
S--中性线和保护线是分开的;
O--中性线和保护线是合一的。
(1)IT系统:
IT系统的电源中性点是对地绝缘的或经高阻抗接地,而用电设备的金属外壳直接接地。即:过去称三相三线制供电系统的保护接地。
其工作原理是:若设备外壳没有接地,在发生单相碰壳故障时,设备外壳带上了相电压,若此时人触摸外壳,就会有相当危险的电流流经人身与电网和大地之间的分布电容所构成的回路。而设备的金属外壳有了保护接地后,由于人体电阻远比接地装置的接地电阻大,在发生单相碰壳时,大部分的接地电流被接地装置分流,流经人体的电流很小,从而对人身安全起了保护作用。
IT系统适用于环境条件不良,易发生单相接地故障的场所,以及易燃、易爆的场所。
(2)TT系统:
TT系统的电源中性点直接接地;用电设备的金属外壳亦直接接地,且与电源中性点的接地无关。即:过去称三相四线制供电系统中的保护接地。
其工作原理是:当发生单相碰壳故障时,接地电流经保护接地装置和电源的工作接地装置所构成的回路流过。此时如有人触带电的外壳,则由于保护接地装置的电阻小于人体的电阻,大部分的接地电流被接地装置分流,从而对人身起保护作用。
TT系统在确保安全用电方面还存在有不足之处,主要表现在:
①当设备发生单相碰壳故障时,接地电流并不很大,往往不能使保护装置动作,这将导致线路长期带故障运行。
②当TT系统中的用电设备只是由于绝缘不良引起漏电时,因漏电电流往往不大(仅为毫安级),不可能使线路的保护装置动作,这也导致漏电设备的外壳长期带电,增加了人身触电的危险。
因此,TT系统必须加装剩余电流动作保护器,方能成为较完善的保护系统。目前,TT系统广泛应用于城镇、农村居民区、工业企业和由公用变压器供电的民用建筑中。
第四篇:智能电网论文
关于智能电网发展的研究论文
摘要:在全球电网逐渐不能满足用户需要的大背景下,智能电网应运而生;简要概括了智能电网相对于传统电网的特点;介绍了智能电网在世界几个典型的国家和地区的发展;最后简述了智能电网在未来的发展前景。
关键词:智能电网;发展
0 引言
在这种全球经济不断发展、用户对于电能质量的要求日益提高以及人们对环境保护愈来愈重视的背景下,人们希望建立一个更加可靠、具有较高自愈能力、与用户之间实现密切互动的现代化电网,于是智能电网应运而生。在智能电网中,可以将能源开发、发电、输电、配电、供电、售电、服务以及蓄能与能源终端用户的各种电气设备和其用能设施,通过数字化信息网络连接起来,并通过智能化的控制实现整个系统的优化;充分利用各种能源资源,注重低碳环保,依靠分布式能源系统、能源梯级利用系统、蓄能系统和蓄电交通系统等组合优化配置,实现精确供能对应供能、互助功能和互补功能,将能源利用效率提高到一个全新的水平,使用户投资效益和成本达到一种合理有利的状态。本文主要以几个典型的国家和地区为例简要介绍一下智能电网的由来,特征,发展历程、现状及广阔前景。
智能电网的产生背景及由来
首先,自从进入信息时代,互联网的飞速发展给我们的生活带来了翻天覆地的变化,与之相比,一些国家和地区的电力网络系统并没有跟上时代发展的潮流,电能供应不够稳定,特别是几次震惊世界的大停电事件带来了巨大的经济损失,现行的电力系统压力不断加大。2003年8月14日下午,美国东北部和加拿大部分地区发生大面积停电,停电影响了地铁、电梯以及机场的正常运营,在一些地方造成了交通拥堵,给成千上万市民的工作和生活造成了极大不便;2005年8月25日,美国加利福尼亚州南部地区供电的一条主要输电线路出现故障,加州电力主管部门紧急启动限电措施,造成大约50万居民断电半个小时。
其次,随着经济水平的迅速提升,用户对于电能质量的要求愈来愈高。人们希望获得更可靠、更优质的电能,在目前电网中,电压跌落是最多的电能质量问题。因为电压跌落大部分不可预见和不可控的事件引起的。电压跌落发生的次数在电力系统中每年都不一样。电能质量对于工业和制造厂是一个大问题,对于日益复杂的计算机控制的生产线加工厂,极小的电能扰动都可能带来极大的破坏力。
并且,人们对于环境问题越来越关注,而现在电网中输送的电能大部分都是火电,1度火电产生的二氧化碳约为0.96kg,那么可想而知,全球每年因为发电而产生的二氧化碳的数量是非常巨大的。另一方面,风能、太阳能等清洁能源又得不到充分的利用,面对这种矛盾,人们希望建立一个相对能够可持续发展的电网系统。
在这些大的背景下,2001年,美国EPRI(电力研究院)最早提出“IntelliGrid”(智能电网)概念,并且开始进行相关研究。欧洲2005年成立“智能电网(Smart Grids)欧洲技术论坛”,也将“Smart Grids”上升到战略地位开展研究。2006年IBM提出的“智能电网主要是解决电网安全运行、提高可靠性,从其在中国发布的《建设智能电网创新运营管理-中国电力发展的新思路》白皮书可以看出,该方案提供了一个大的框架,通过对电力生产、输送、零售的各个环节的优化管理,为相关企业提高运行效率及可靠性、降低成本描绘了一个蓝图。所谓智能电网是IBM一个市场推广策略。
奥巴马上任后提出的能源计划,除了以公布的计划,美国还将着重集中对每年要耗费1200亿美元的电路损耗和故障维修的电网系统进行升级换代,建立美国横跨四个时区的统一电网;发展智能电网产业,最大限度发挥美国国家电网的价值和效率,将逐步实现美国太阳能、风能、地热能的统一入网管理;全面推进分布式能源管理,创造世界上最高的能源使用效率。
2009年5月,国家电网公司提出在我国全面建设“坚强智能电网”,以应对资源环境问题带来的挑战,全面提高电网的资源优化配置能力和电力系统的运行效率,引领引导并支持能源及相关产业技术和装备升级,构筑起稳定、经济、清洁、安全的能源供应体系,以能源的可持续发展支持经济社会的可自进入信息时代,全球压力不断增大,能源需求不断增加,电力市场化的不断加深,用户对电能可靠性和质量的要求也不断提升。2 智能电网主要的特点
2.1智能电网的自愈性
这是智能电网最主要的特征,也是智能电网的核心功能,这就需要对电网的运行状态进行连续的的在线评估,并采取预防性的控制手段,对可能出现的问题迅速做出预测、检测和相应,故障发生时,在没有或少量人工干预下能够快速隔离故障、自我恢复,避免大面积停电的发生。
2.2智能电网的互动性
在电网中,电网与环境、设备、用户互相之间的互动是智能电网的另一重要特征。系统运行与批发、零售电力市场实现无缝衔接,支持交易的有效开展,实现资源的优化配置;同时通过市场交易更好地激励电力市场的主体参与电网安全管理,提升电力系统的安全运行水平。这样,一方面为用户节省了开支,同时也会大量减少输电线路不必要的损耗。在这种互动机制下,能够实现风能、太阳能等清洁能源的充分利用,还可以利用电价这一驱动力,削峰填谷,这对于整个电网的运行都有极大的好处。
2.3智能电网对多种能源的兼容性
智能电网的本质是能源替代和兼容利用,它可以实现清洁的可再生资源的转化整合,并输送到国家电网中来,有利于绿色电网的建设。当然这一点是与智能电网的互动性分不开的。另外,各种各样的分布式电源的接入,一方面减少了对外来能源的依赖,另一方面提高了供电的可靠性与电能的质量。
2.4智能电网的坚强可靠性
智能电网的每一个元素都应该有安全需求的考虑,在整个系统中应确保一定的集成和平衡。对其基础设施的攻击主要分为物理攻击和信息攻击,在智能电网中应该在抵御这些攻击的同时,尽量降低成本,获得实际的效益。
2.5智能电网的优质性
智能电网中运用的先进技术将同时减少电力输送系统中的带能质量问题和保护用户的敏感电子设备,总之其终端目的都是将清洁、可靠、优质的电能送到用户。
智能电网在世界上的发展
3.1美国的智能电网 总体来说,美国的智能电网主要是为了建立一个发电和配电更有效更安全的现代化电网来满足当前用户的需求。2001年,美国电力科学研究院创立了智能电网联盟,推动“Intelli Grid”研究。这个项目主要有两个目标:①分析出电力系统的商业需求,包括现在、未来的各种需求,如自愈电网概念等;②以基于这些分析得出的电力系统的需求作为基础,提出支撑未来电力系统的信息需求系统使用战术性的方法来建立一个战略视图,以战略的高度建立一个不依赖具体技术的视图框架。
为了使美国电网实现现在化,保证经济安全和国家安全,美国能源部(DOE)于2003年发布了“Grid2030”,对美国未来电网远景做了阐述。DOE于2004年有进一步发布了“国家输电技术路线图”,为实现“Grid2030”进行了战略部署。在这两份文件以及工业界的指导下,2004年在DOE的支持下,电网智能化项目(Grid Wise)启动。
2005—2006年,DOE与美国国家能源技术实验室(NETL)合作,发起了“现代电网”倡议,任务是进一步细化电网现代化远景和计划,并在全国范围内达成共识。国家电工委员会IEC于2008年筹建了SG3智能电网战略工作组,以制定智能电网的相关标准,推进智能电网的进程,促进智能电网发展过程中的一致性。2009年4月16日,美国副总统拜登公布了能源部发展智能电网的详细规划。能源部将设立两个专项计划,分别为“智能电网投资拨款项目”(Smart Grid Investment Grant Program)和智能电网示范项目(Smart Grid Demonstration Projects),投资额分别为33.75亿美元和6.15亿美元。2009年4月,美国National Grid向马萨诸塞州公共事业部提交了一份持续两年、总投资达5700万元的电网示范项目。
2007年初Xcel能源公司推出了智能电网概念,选择美国科罗拉多州的博尔德是推进智能电网城市项目,并付诸实施。在资金方面,Xcel能源公司预计与其合伙人资助一亿美元,并计划调动其他来源,包括政府补助金,做到让消费者无成本投入。2008年美国博尔德市已经成为了全美第一个智能电网城市。3.2欧洲智能电网
2004年,欧盟委员会启动了相关的研究与建设工作提出了欧洲要建设智能电网。2006年,欧盟理事会能源绿皮书《欧洲可持续的、竞争的和安全的电能策略》明确指出,欧洲已经进入新能源时代,智能电网技术是保证电能质量的关键技术和发展方向。保证供电的持续性、竞争性和安全性是欧洲能源政策最重要的目标,也是欧洲电力市场和电网必须面对的新挑战。未来整个欧洲的电网必须向用户提供高度可靠、经济有效的电能,并充分开发利用大型集中发电机和小型分布式电源。
2008年7月1日,意大利国家电力公司(ENEL)负责启动了欧盟11个国家25个合作伙伴联合承担的ADRESS项目。该项目总预算为1600万欧元,目的是开发互动式配电能源网络,让电力用户主动参与到电力市场及电力服务中。2001~2008年,意大利国家电力公司累计安装了3180万块智能电表,覆盖率已达到95%,剩余部分将于2011年前完成。
2009年4月,西班牙电力公司ENDESA牵头,与当地政府合作在西班牙南部城市Puerto Real开展智能城市项目试点,包括智能发电(分布式发电)、智能化电力交易、智能化电网、智能化计量、智能化家庭,共计投资3150万欧元。当地政府出资25%,计划用4年完成智能城市建设。该项目涉及9000个用户、1个变电站以及5条中压线路和65个传输线中心。
2009年6月,荷兰阿姆斯特丹选择埃森哲(Accenture)公司帮助自己完成“智能城市(Smart City)”计划。该计划包括可再生能源利用、下一代节能设备、CO2减排等内容。法国的规划是从2012年1月开始,将所有新装电表更换为智能电表。英国能源和气候变化部2011年3月30日宣布,将于2019年前完成为英国3000万户住宅及商业建筑物安装5300万台智能电表的计划。目前英国的人口约为6000万,约有2300万户家庭,该计划几乎涉及英国所有住宅和商业建筑。作为欧洲2020年及后续的电力发展目标,未来欧洲电网应满足以下需求:①;灵活性,在适应未来电网变化与挑战的同时,满足用户多样化的电力需求;②可接入性,使所有用户都可接入电网,尤其是推广用户的对可再生、高效、清洁能源的利用;③可靠性,提高电力供应的可靠性与安全性以满足数字化时代的电力需求;④经济性,通过技术创新、能源有效管理、有序市场竞争及相关政策提高电网的经济效益。3.3日本的智能电网
日本政府通过深入比较与美国电力工业的不同特征,结合自身国情,决定本国的智能电网的发展。日本政府大规模发展新能源,确保电力系统的稳定,构建智能电网。据2009年3月17日日本《电气新闻》报道,针对美国提出的智能电网,日本经济产业副部长望月晴文指出,美国的脆弱电力系统与日本的坚强电力系统无法单纯比较,日本将根据本身国情,主要围绕大规模开发太阳能等新能源,确保电力系统稳定,构建智能电网。经产省根据日本企业在智能电网的技术先进性,选出了7领域26项重要技术项目作为发展重点。如输电领域的输电系统广域监视控制系统(WASA)、配电领域的配电自动化、储能领域的系统用蓄电池的最优控制、电动汽车领域的快速充电和信息管理和智能电表领域的广域通讯等列入其中。2010年4月,日本经产省在横滨市、丰田市、京都府和北九州市开展了智能电网实证项目。京都府京阪奈节能城市项目,利用智能电表开展节能技术实证;横滨市开展智能家居技术实证;北九州市开展新能源接入技术实证;丰田市开展电动汽车技术实证。3.4中国的坚强智能电网
我国关于智能电网的研究进展缓慢,甚至是刚刚起步。2007年10月,华东电网公司启动了智能电网可行性的研究,密切跟踪国际先进电力企业和研究机构对智能电网的研究,并结合华东电网的现状和今后的发展要求,提出了三个阶段的发展思路和行动规划——2010年初步建成电网高级调度中心,2020年全面建成具有初步智能特性的数字化电网,2030年真正建成具有自愈能力的智能电网。2009至2020年国家电网总投资3.45万亿元,其中智能化投资3841亿元,占电网总投资的11.1%,未来10年将建成坚强智能电网2009至2010年为规划试点阶段,重点开展坚强智能电网发展规划工作,制定技术和管理标准,开展关键技术研发、设备研制及各环节的试点工作;2011至2015年为全面建设阶段,加快建设华北、华东、华中“三华”特高压同步电网,初步形成智能电网运行控制和互动服务体系,关键技术和装备实现重大突破和广泛应用;2016至2020年为引领提升阶段,全面建成统一的坚强智能电网,技术和装备全面达到国际先进水平。中国国家电网公司目前正在推进“一特四大”的电网发展战略以特高压电网为基础,促进大煤电、大水电、大核电、大型可再生能源基地的集约化开发,在全国范围内实现资源优化配置。以大型能源基地为依托,建设由1000千伏交流和±800千伏直流构成的特高压电网,形成电力“高速公路”。同时,将以特高压电网为骨干网架、各级电网协调发展的坚强电网为基础,发展以信息化、数字化、自动化、互动化为特征的自主创新、国际领先的坚强智能电网。
智能电网的广阔的发展前景
作为世界各国都在着重研究发展的新一代电网,应该说,智能电网的发展前景还是很广阔的。通过以上的分析我们可以看出,与当前的传统型电网相比,智能电网有其独特的优势,它可以解决很多当前电网所不能解决的问题。它的自愈性理论上可以使当前电网中出现的大停电事件变为零可能;并且其互动性是极具现实意义的,通过供电公司与用户的双重反馈可以极大的促进当前风电等不可控电能的利用和电能传输的效率;智能电网还可以加快绿色电网的建设,使电网更加安全洁净。同时,智能电网可促成和激励新产业的发展扩大,加快电力市场和国民经济的发展与繁荣。电网的创新将使销售市场更加自由,更具有创造力,以智能电网为载体,以提高能源利用效率、减少对环境的影响为主要驱动力的一系列新技术所组成的产业群将随智能电网的建设而获得更大的发展。并且,最具前景的产业是电动汽车及储能技术,最具难度的是如何实现电网的最有控制。智能电网还会促进电力市场的蓬勃发展,在智能电网中,先进的设备和广泛的通信系统等基础设施及其技术支持系统为市场参与者提供了充分的信息和数据。总之,在未来一段时期内,智能电网必将成为世界电网发展一个重要方向。
结论
本文主要通过综合智能电网在几个典型的国家和地区的发展历程,简要地介绍了一下对于智能电网的浅层认识。1)智能电网作为新一代电网是在目前电网所暴露出的问题的推动下出现的;2)智能电网具有传统电网所不具有的特征;3)世界上许多国家和地区都在努力开发适合于本国国情的智能电网;4)智能电网具有广阔的发展前景。
参考文献:
[1] 《智能电网导论》——许晓慧 [2] 《中国电力与能源》——刘振亚 [3] 《复杂大电网安全性分析¬——智能电网的概念与实现》——丁道齐
[4] 《智能电网 ——新能源、新技术、新材料的应用平台》——2009年6月1日 [5] 《欧洲智能电网产业发展形势与需求分析》——北极星电力网 [6] 《日本智能电网发展模式与方向》——2011-08-19 [7] 《我国智能电网的发展前景分析》——行业研究
第五篇:接地故障分析
(1)复归音响。
(2)检查6KV系统接地微机选线装置,查明故障线路号,接地起始时间、接地累计时间。(3)按下重判按键进行重判。如两次判断结果一致,则可确定故障线路。(4)根据故障线路号确定故障设备。
(5)汇报值长,调节运行方式,将故障设备停下。
(6)若为母线接地时,应先倒换高厂变看是否为高厂变低压侧接地。(7)到6KV配电时检查接地情况,看是否有明显接地点,是否消除。
(8)若接地点在PT小车、避雷器或小车开关上部,严禁直接拉出小车消除接地,应采用人工接地点法消除接地。
(9)若确定母线接地,无法消除,应立即申请停电处理。(10)接地运行时间不得超过2个小时。
(11)寻找接地时应严格遵守“电业安全工作规程”有关规定,穿绝缘靴,戴绝缘手套。(12)若设备发生瞬间接地,装置可将故障线路号记录下来,按“追忆”键可查出哪条线路曾发生接地,对此设备应重点检查。
6KV母线发生接地故障如何检查处理 共享文档 2018-07-01 1页 5.0分 用App免费查看
6KV母线发生接地故障如何检查处理? 如接地信号同时有设备跳闸,应禁止跳闸设备再次强送。停止不重要的设备。
有备用设备的可切换至备用设备运行。按负荷由次要到主要的顺序瞬停选择。
经上述选择未找到故障点,应对厂用母线、开关等部位进行检查,但应遵守全归程有关规定。切换至备用变运行,判定是否工作电源接地。
如系PT接地,可利用备用小车开关人工接地将PT停电,小车拉出,通知检修处理。经选择未查出接地点,则证明母线接地,汇报值长班长,停电处理。厂用单相接地运行时间不得超过两小时。故障点消除后,恢复故障前运行。
现象:接地信号,接地报警;某相电压为零,另外两相电压升高;三项电压不平衡
处理:若三相电压不平衡,查看PT一二次保险是否熔断;若某相电压为零,另外两项电压升高,即发生单相接地,查看机炉是否启动设备,停止接地时候启动的设备或者切换为备用;对发配电系统进行外部检查,查看是否有设备冒烟,有异味,有无接地现象或者异常现象;注意事项:进行外部检查要穿绝缘鞋,带绝缘手套,不得触及接地金属物;进行倒闸操作,要熟悉运行方式,严格遵守刀闸操作的原则,防止厂用电失电和非同其并列;接地运行时间不得超过俩个小时;格力故障设备,禁止用隔离卡开关
6kV配电线路单相接地故障的处理 共享文档 2018-07-01 7页 4.9分 用App免费查看
6kV系统单相接地故障分析及查找 电力系统可分为大电流接地系统(包括直接接地、经电抗接地和低阻接地)、小电流接地系统(包括高阻接地,消弧线圈接地和不接地)。我国3~66kV电力系统大多数采用中性点不接地或经消弧线圈接地的运行方式,即为小电流接地系统。在小电流接地系统中,单相接地是一种常见故障。6kV配电线路在实际运行中,经常发生单相接地故障,特别是在雨季、大风和雪等恶劣天气条件下,单相接地故障更是频繁发生。发生单相接地后,故障相对地电压降低,非故障两相的相电压升高,但线电压却依然对称,因而不影响对用户的连续供电,系统可运行1~2 h,这也是小电流接地系统的最大优点;但是,若发生单相接地故障后电网长时间运行,会严重影响变电设备和配电网的安全经济运行。1 单相接地故障的特征及检测装置 1.1 单相接地故障的特征
中央信号后台报警,绝缘监察电压表指示:故障相电压降低(不完全接地)或为零(完全接地),另两相电压升高,大于相电压(不完全接地)或等于线电压(完全接地),稳定性接地时电压表指针无摆动,若电压表不停地摆动,则为间歇性接地;中性点经消弧线圈接地系统,装有中性点位移电压表时,可看到有一定指示(不完全接地)或指示为相电压值(完全接地时)消弧线圈的接地报警灯亮;发生弧光接地时,产生过电压,非故障相电压很高,电压互感器高压保险可能熔断,甚至可能烧坏电压互感器。1.2 真假接地的判断
电压互感器一相高压熔断器熔断,发出接地信号。发生接地故障时,故障相对地电压降低,另两相升高,线电压不变。而高压熔断器一相熔断时,对地电压一相降低(不为零),另两相不会升高,线电压则会降低。用变压器对空载母线充电时,断路器三相合闸不同期,三相对地电容不平衡,使中性点位移,三相电压不对称,发出接地信号。这种情况只在操作时发生,只要检查母线及连接设备无异常,即可以判定,投入一条线路或投入一台所用变压器,即可消失。系统中三相参数不对称,消弧线圈的补偿度调整不当,倒运行方式时,会发出接地信号。此情况多发生在系统中倒运行方式操作时,经汇报调度,在相互联系时,了解到可先恢复原运行方式,消弧线圈停电,调整分接开关,然后重新投入,倒运行方式;在合空载母线时,可能激发铁磁谐振过电压,发出接地信号。此情况也发生在倒闸操作时,可立即送上一条线路,破坏谐振条件,消除谐振。1.3 检测装置
对于绝缘监察装置,通常采用三相五柱式电压互感器加上电压继电器、信号继电器及监视仪表构成。它由五个铁芯柱组成,有一组原绕组和二组副绕组,均绕在三个中间柱上,其接线方式为Ynynd。这种接线的优点是:第一副绕组不仅能测量线电压,而且还能测相电压;第二副绕组接成开口三角形,能反映零序电压。当网络在正常情况下,第一副绕组的三相电压是对称的,开口三角形开口端理论上无电压,当网络中发生单相金属性接地时(假设A相),网络中就出现了零序电压。网络中发生非金属性单相接地时,开口两端点间同样感应出电压,因此,当开口端达到电压继电器的动作电压时,电压继电器和信号继电器均动作,发出音响及灯光信号。值班人员根据信号和电压表指示,便可以知道发生了接地故障,并判定接地相别,然后向调度值班员汇报。但必须指出,绝缘监察装置是与母线共用的。2 发生单相接地故障的原因
导线断线落地或搭在横担上;导线在绝缘子中绑扎或固定不牢,脱落到横担或地上;导线因风力过大,与建筑物距离过近;配电变压器高压引下线断线;配电变压器台上的6kV避雷器或6 kV熔断器绝缘击穿;配电变压器高压绕组单相绝缘击穿或接地;绝缘子击穿;线路上的分支熔断器绝缘击穿;同杆架设导线上层横担的拉线一端脱落,搭在下排导线上;线路落雷;树木短接;鸟害;飘浮物(如塑料布、树枝等);电缆及其接头受损;其它偶然或不明原因。3 对单相接地故障的危害和影响分析 3.1 对变电设备的危害 kV配电线路发生单相接地故障后,变电站6 kV母线上的电压互感器检测到零序电流,在开口三角形上产生零序电压,电压互感器铁芯饱和,励磁电流增加,如果长时间运行,将烧毁电压互感器。在实际运行中,近几年来,已发生变电站电压互感器烧毁情况,造成设备损坏、大面积停电事故。单相接地故障发生后,也可能产生谐振过电压。几倍于正常电压的谐振过电压,危及变电设备的绝缘,严重时使变电设备绝缘击穿,造成更大事故。3.2 对配电设备的危害
单相接地故障发生后,可能发生间歇性弧光接地,造成谐振过电压,产生几倍于正常电压的过电压,将进一步使线路上的绝缘子击穿,造成严重的短路事故,同时可能烧毁部分配电变压器,使线路上的避雷器、熔断器绝缘击穿、烧毁,也可能发生电气火灾事故。3.3 对区域电网的危害
严重的单相接地故障,可能破坏区域电网的稳定,造成更大事故。3.4 对人畜危害
对于导线落地这一类单相接地故障,如果配电线路未停运,对于行人和线路巡视人员(特别是夜间),可能发生跨步电压引起的人身电击事故,也可能发生牲畜电击伤亡事故。3.5 对供电可靠性的影响 发生单相接地故障后,一方面要进行人工选线,对未发生单相接地故障的配电线路要进行停电,中断正常供电,影响供电可靠性;另一方面发生单相接地的配电线路将停运,在查找故障点和消除故障中,不能保障用户正常用电,特别是在庄稼生长期、大风、雨、雪等恶劣气候条件,和在山区、林区等复杂地区,以及夜间、不利于查找和消除故障,将造成长时间、大面积停电,对供电可靠性产生较大影响。3.6 对供电量的影响
发生单相接地故障后,由于要查找和消除故障,必然要停运故障线路,从而将造成长时间、大面积停电,减少供电量。影响供电量指标和经济效益。4 对单相接地故障的预防和处理办法 4.1 预防办法
对于配电线路单相接地故障,可以采取以下几种方法进行预防,以减少单相接地故障发生。对配电线路定期进行巡视,主要检查导线与树木、建筑物的距离,电杆顶端是否有鸟窝,导线在绝缘子中的绑扎或固定是否牢固,绝缘子固定螺栓是否松脱,横担、拉线螺栓是否松脱,拉线是否断裂或破股,导线弧垂是否过大或过小等。对配电线路上的绝缘子、分支熔断器、避雷器等设备应定期进行绝缘测试,不合格的应及时更换。对配电变压器定期进行试验,对不合格的配电变压器进行维修或更换。在农村配电线路上加装分支熔断器,缩小故障范围,减少停电面积和停电时间,有利于快速查找故障点。在配电线路上使用高一电压等级的绝缘子,提高配电网绝缘强度。
4.2 发生单相接地故障后的处理办法 当配电线路发生单相接地后,变电所值班人员应马上作好记录,迅速报告当值调度和有关负责人员,并按当值调度员的命令寻找接地故障,当拉开某条线路的断路器,接地现象消失,便可判断它为故障线路。5 新技术新设备的应用
5.1 小电流接地自动选线装置
在变电所加装小电流接地自动选线装置,此装置能够自动选择出发生单相接地故障线路,时间短,准确率高,改变传统人工选线方法,对非故障线路减少不必要的停电,提高供电可靠性,防止故障扩大。目前,已有部分变电站加装了这套装置,取得了良好效果。在实际应用中,应注意此装置与各配出线间隔上的零序电流互感器配合使用,否则不能发挥任何作用。5.2 单相接地故障检测系统
在变电所的配出线出口处加装信号源,在配电线路始端、中部和各分支处,三相导线上加装单相接地故障指示器,指示故障区段。配电线路发生单相接地故障后,根据指示器的颜色变化,可快速确定故障范围,快速查到故障点。小电流接地微机选线装置的工作原理
小电流接地选线装置首先通过测量母线的零序电压判断哪段母线接地,然后通过各条线路的零序电流与零序电压比较,零序电流落后零序电压90°,确定接地线路.还有一种方式是判断母线接地后,通过探索跳闸,经重合闸延时后重合闸动作,自动合上开关,当零序电压仍然存在,并表明“本线路未接地”;当零序电压不存在,并表明“本线路接地”。只有在中性点不接或经消弧线圈接地欠补偿时故障线路与非故障线路的零序电流才不一致。当经消弧圈过补偿时无法判别。其次接地时利用停电后再重合是不允许的,因为造成短时停电。对中心点不接地电网中的单相接地故障又以下结论:
1、单相接地时,全系统都将出现零压;
2、在非故障的元件上有零序流,其数值等于本身的对地电容电流,电容性无功功率的实际方向为:母线->线路;
3、故障线路上,零序电流为全系统非故障元件对地电容电流之和,数值一般较大,电容性无功功率的实际方向为:线路->母线;随着小电流接地自动选线不断研究和改进,微机技术和数字技术的应用,其性能在逐步提高,在不接地及消弧线圈接地系统已广泛应用。其选线的正确率有了很大的提高。目前了解到的选线方法压有:
1、零序电压、零序电流突变量和功率方向法;
2、残流增量及有功功率法;
3、并联电组法
4、五次谐波窄带选频,同时提取基波成分、利用相位关系判断故障线路;所有线路同时采样。
5、利用暂态小波分析、稳态过程谐波分析及能量分析等综合判断故障线路。从上述选线方法可以看出,目前的选线装置多个判量综合分析的方法,所以使其选线正确明显提高。
小电流接地自动选线装置存在的问题:
1、作为判据的信号量小,相对测量误差偏大;
2、零序PT、CT的误差及长距离二次电缆引起测量误差;、干扰大、信噪比小;一是电磁干扰,二是系统负荷不平衡造成的零序电流和谐波电流较大;
4、随机因素影响的不确定,运行方式改变、电压水平、负荷电流的变化、接地故障 形式和接地点过度电组的千变万化 ;
5、小电流接地自动选线装置本身的性能不够完善。
利用电网稳态电气量特征提供的故障信息构成的选线方法:
1、基于基波的选线方法:零序电流比幅法,零序功率方向法,群体比幅比相法,零序导纳法,有功电流法,零序电容电流补偿法,相间工频电流变化量法,有功分量法。
2、基于谐波的选线方法——五次谐波电流法。
3、其他方法:最大投影差值,残流增量法。
利用电网暂态电气量特征提供的故障信息构成的选线方法:
1、零序暂态电流法,能量法。
2、能量法。
3、小波分析法。
利用其他方法:
1、注入法。
2、注入变频信号法。
3、负序电流法。
4、利用不对称因素的综合选线法。东滩煤矿6kV系统单相接地故障的处理 中性点不接地系统发生单相接地时,值班员应将接地开始时间、电压指示、接地相别向工区、矿调汇报,并对所内设备进行检查,监视接地情况,如有变化及时联系。6kV系统带一点接地的允许运行时间,不宜超过2小时。
一、接地时的现象:
1、高压接地微机选线装置报警,后台上位机系统报警。
2、发生完全接地故障时,绝缘监察电压表,三相指示不同,接地相电压为零或接近零,非故障相电压升高倍,且持久不变。
3、发生间歇接地故障时,接地相电压时减时增,非故障相电压时增时减,或有时正常。
4、发生弧光接地故障时,非故障相的相电压有可能升高到额定电压的2.5~3倍。
5、6kV系统,电压指示情况。
相电压:故障相降为0V;非故障相电压升高到6kV。线电压:正常6kV。
二、接地故障寻找方法:
1、依据高压接地微机选线装置,试拉显示线路。
2、分割电网
1)将电网分割成电气上互不联接的两部分。2)将线路向另一母线系统切换。3)对线路进行解并环操作。
3、试拉线路
1)试拉故障可能性大,绝缘程度较弱的线路。2)试拉对用户影响较小,分支线路较多的线路。3)试拉对用户影响较小,分支线路较少的线路。4)试拉母线系统及变压器。
三、故障查找步骤
1、区分接地现象在1#(2#)还是3#变压器;
2、区分接地现象在变压器Ⅰ臂还是Ⅱ臂;
3、查看高压微机接地选线装置报警路好、编号及打印线路号,并进行试拉;
4、若无明显接地点,通知井下中央变电所进行倒闸操作。1)6kVⅠ臂接地时
(1)、合上井下中央变电所Ⅱ段、Ⅲ段联络柜19#、20#柜,(2)、拉开21#、29#进线柜;(3)、观察接地现象是否转移
①若接地现象转移到Ⅱ臂,则故障线路在井下Ⅲ段母线上,试拉Ⅲ段母线上馈出柜。②若接地现象仍在Ⅰ臂则
(4)、合上21#、29#开关,拉开20#开关;
(5)、合上井下中央变电所Ⅰ段、Ⅳ段联络柜39#、1#柜;(6)、拉开33#、35#进线开关;(7)观察接地现象是否转移
①若接地现象转移到Ⅱ臂,则故障线路在井下Ⅳ段母线上,试拉Ⅳ段母线上馈出柜。②若接地现象仍在Ⅰ臂,则故障线路在6kVⅠ臂地面馈出线路,分别进行试拉。2)6kVⅡ臂接地时,处理方法与上类似。
四、处理接地故障的注意事项
1、系统发生单相接地应及时处理,尽快对故障线路停电,防止事故扩大,以免造成更大损失。
2、倒闸操作时要注意观察负荷情况,防止变压器过负荷。
3、双回路变电所应进行到回路操作进行判断。
4、在进行系统接地点的倒闸操作中或巡视配电装置时,值班人员应穿上绝缘靴戴上绝缘手套,不得触及接地金属物。
5、在进行寻找接地点的每一操作项目后,必须注意观察绝缘监视信号及表计的变化和转移情况,并做好记录。
6、在某些情况下,如电压互感器高压侧或低压侧熔丝烧断时,或相对地电容显著地不相等,监视绝缘绝缘地仪表指示可能不正确,此时,事故处理人员应认真分析,正确判断。
7、倒闸操作时,各变电所值班人员必须听从35kV变电所值班人员地指挥,及时迅速地进行配合,并及时汇报所内情况