第一篇:数据分析与建模,实验报告,实验一,,简单数据建模
学生学号
实验课成绩
学 学 生 实 验 报 告 书
实验课程名称 数据分析与建模 开 开 课 学 院 管理学院 指导教师姓名 鄢 丹 学 学 生 姓 名
学生专业班级 信管
班
2018 —2019 学年
第1
学期实验报告填写说明
1. 综合性、设计性实验必须填写实验报告,验证、演示性实验可不写实验报告。
2. 实验报告书 必须按统一格式制作(实验中心网站有下载)。
3. 老师在指导学生实验时,必须按实验大纲的要求,逐项完成各项实验;实验报告书中的实验课程名称和实验项目 必须 须与实验指导书一致。
4. 每项实验依据其实验内容的多少,可安排在一个或多个时间段内完成,但每项实验只须填写一份实验报告。
5. 每份实验报告教师都应该有签名、评分表及实验报告成绩。
6. 教师应及时评阅学生的实验报告并给出各实验项目成绩,完整保存实验报告。在完成所有实验项目后,教师应按学生姓名将批改好的各实验项目实验报告装订成册,构成该实验课程总报告,按班级交到实验中心,每个班级实验报告袋中附带一份实验指导书及班级实验课程成绩表。
7. 实验报告封面信息需填写完整,并给出实验环节的成绩,实验环节成绩按其类型采取百分制或优、良、中、及格和不及格五级评定(与课程总成绩一致),并记入课程总成绩中。
实验课程名称:_ 数据分析与建模__
实验项目名称 实验一
简单的数据建模 实验 成绩
实 实 验 者
专业班级
组 组
别 无 无 同 同 组 者 无 无 实验日期 2018 年 年 9 月 月 26 日 第一部分:实验预习报告(包括实验目的、意义,实验基本原理与方法,主要仪器设备及耗材,实验方案与技术路线等)
一、实验目的、意义 本实验旨在通过资料查阅和上机实验,使学生加深了解数据分析与建模的理论与方法,掌握典型的数据模型的建立与使用。
二、实验基本原理与方法 数据分析的理论,最优化模型的建模方法。
应用 Excel 的方法。
三、实验内容及要求 1、应用 Excel 建模分析 某学院有 3 个系,共有学生 200 人,A 系 103 人,B 系 63 人,C 系 34 人。现在成立一个由 21 名学生组成的学生会,该如何公平地分配席位? 实验任务:用 利用 Q 值法分配席位,并且在 Excel 中进行 Q 值计算。
(提示:参考讲义中的计算过程。)、单变量最优化 一个汽车制造商售出一辆某品牌的汽车可获利 1500 美元,估计每 100 美元的折扣可以使销售额提高 15%。
(1)多大的折扣可以使利润最高?利用五步方法及单变量最优化模型。
(2)对你所得的结果,求关于所做的 15%假设的灵敏性。分别考虑折扣量和相应收益。
(3)假设实际每 100 美元的折扣仅可以使销售额提高 10%,对结果会有什么影响?如果每 100 美元折扣的提高量为 10%~15%之间的某个值,结果又如何?(4)什么情况下折扣会导致利润降低?
实验任务:请将上述求解过程,除了用导数求解外,再用 用 Excel 建模求解之。
(提示:考虑 Excel 的数据,图形,公式三者的关系;Excel。的函数。参考教材第一章。))
四、实验方案或技术路线(只针对综合型和设计型实验)
按照实验任务要求,理论结合实际的实验方案,巩固课程内容,温故知新,查遗补漏,夯实理论基础,提升实验动手能力。
技术路线是,从整体规划,分步骤实施,实验全面总结。
第二部分:实验过程记录(可加页)(包括实验原始数据记录,实验现象记录,实验过程发现的问题等)、应用 Excel 建模分析 1.分配方案:
第一步:对每个单位各分配一席; 第二步:当分配下一席位时,计算在当前席位份额下各单位的 Q 值,并比较相应 Q 值的大小,将下一席位分配给当前 Q 值最大的一方; Q 值计算公式为:
(其中,Qi 表示单位 i 的 Q 值,Pi 表示单位 i 的人数,Ni 表示单位 i 的当前席位数)
第三步:重复执行第二步,直至席位分配完为止。
2.实验步骤:本实验的实验工具为 Excel(1)首先,打开 Excel 新建一个表格,并做好前期的基本数据输入工作,表格内容包括三部分:
a.已知的每个系的人数和所求的每个系最终分得席位数; b.在不同的已分配席位数的情况下,三个系 Q 值的取值; c.席位分配过程:给席位编号,标注出每个席位的分配结果; 完成后结果如下图所示:
(2)然后,对每个系均分一个席位后,开始对第 4 个席位进行分配。此时各系已分配席位数均为 1,计算此时各系的 Q 值并比较大小:
a.计算 A 系的 Q 值,公式如图所示:
b.计算 B 系的 Q 值,公式如图所示:
c.计算 C 系的 Q 值:
Q 值大者得席位,所以第 4 个席位分配给 A 系。
(3)然后对第 5 个席位进行分配,由于只有 A 系的已分配席位数变为 2,所以此时只需计算 A 系的 Q 值,再比较各系 Q 值大小即可。A 系 Q 值的计算公式只需将原来的 A6 都换成 A7即可,如下图所示:
Q 值大者得席位,所以第 5 个席位分配给 B 系。
(4)然后对第 6 个席位进行分配,由于只有 B 系的已分配席位数变为 2,所以此时只需计算 B 系的 Q 值,再比较各系 Q 值大小即可。B 系 Q 值的计算公式只需将原来的 A6 都换成 A7即可,如下图所示:
Q 值大者得席位,所以第 6 个席位分配给 A 系。
(5)采用类似上述的方法(当已分配席位数加 1 时,Q 值的计算公式中 A 后面的数字也加 1 即可)依次对后面的席位进行分配,直到第 21 个席位分配完毕。
最终 A 系分得席位 11 个,B 系分得席位 6 个,C 系分得席位 4 个。最终分配结果及分配具体分配过程如下图:
6、单变量最优化((1)多大的折扣可以使利润最高?利用五 步方法及单变量最优化模型。
1.提出问题 【全部的变量包括】
一辆某品牌汽车的成本 C(美元)
一辆某品牌的汽车的折扣金额 100x(美元)
没有折扣时一辆某品牌汽车的售价 P(美元)
有折扣时一辆某品牌汽车的售价 p(美元)
没有折扣时的销量 Q(辆)
有折扣时的销量 q(辆)
没有折扣时的销售额 R(美元)
有折扣时的销售额 r(美元)
有折扣后的利润 L(美元)
【关于上述变量所做的假设】
P – C = 1500 p = P – 100x q = Q *(1 + 0.15x)L = q *(p – C)x >= 0 【目标】求 L 的最大值 2.选择建模方法 本题为单变量优化问题,则建模方法为:设 y = f(x)在 x >= 0 的区间范围内是可微的,若 f(x)在 x 处达到极大或极小, 则 f ΄(x)= 0。
3.推导数学表达式 L = q *(p – C)= Q *(1 + 0.15x)*(p – C)= Q *(1 + 0.15x)*(1500-100x)
= Q *(-15 x^2 + 125x + 1500)记 y = L 作为求最大值的目标变量,x 作为自变量,原问题就化为在集合 S={ x : x ≥0}上求以下函数的最大值:
y = f(x)= Q *(-15 x^2 + 125x + 1500)(Q 为非负常量)
4.求解模型 在本题中,即对 y = f(x)= Q *(-15 x^2 + 125x + 1500)在区间 x >= 0 上求最大值,Q 为非负常量。当 f ΄(x)= Q *(-30x + 125)= 0 时,解得 x ≈ 4.17 故 y = f(x)= Q *(-15 x^2 + 125x + 1500)在 x = 4.17 时取得最大值。
5.回答问题 答:417 美元折扣可以使利润最高。
【 【Excel 建模求解】
1.打开 Excel 新建一个表格,分别列出 X 栏和 Y 栏。X 栏依次写入 0,1,2,3 „„ 等等,Y 栏第一项,根据公式,将 x 以 A2 替代,写入公式“=-15*A2*A2+125*A2+1500”(此处假设 Q = 1),其余的 Y 栏数据,采用拖曳复制的方式复制粘贴公式。当 X 栏有值时,Y 栏就有对应的值。
2.选中 X 栏和 Y 栏的数据,点击菜单栏的【插入】然后插入【散点图】,得到如下图表:
由表和图可知,当 x 在 4 附近时,y 取得最大值。将 x 的取值区间缩小到[3.5 , 4.5] , 再绘出一次散点图,如下:
由上述表和图可知,当 x = 4.2 时,y 取得最大值。
回答问题:大约 420 美元折扣可以使利润最高。
((2)对你所得的结果,求关于所做的 15% 假设的灵敏性。分别考虑折扣量和相应收益。
设销售额提高百分比为 r 1.折扣量 100x 关于销售额提高百分比 r 的灵敏性(故考虑 x 关于 r 的灵敏性即可)
a.粗分析 前面已假定 r =15%,现在假设 r 的实际值是不同的,对几个不同的 r 值,重复前面的求解过程,可以得到对问题的解 x 关于 r 的敏感程度的一些数据。
即给定 r,对 y = f(x)=(1 + r x)*(1500-100x)(此处假设 Q = 1)求导,得到 f“(x)=-200rx + 1500r-100,令 f”(x)= 0,可得相应 x =(15r-1)/2r , 故折扣量 100x = 50(15r-1)/r ,采用
类似第(1)问的 Excel 建模方法,绘出折扣量 100x 关于销售额提高百分比 r 的散点图。
由上述图表可看到折扣量 100x 对参数 r 是很敏感的。即如果给定不同的销售额提高百分比r,则折扣量 100x 将会有明显变化。因此,r 的取值要合适、合理,所做的分析才有意义。
b.折扣量 100x 对销售额提高百分比 r 灵敏性的系统分析 前面已计算出,使 f“(x)=0 的点为 x =(15r-1)/2r,若要 x≥0,只要 r >= 0.067 , 最佳折扣量100x可由x =(15r-1)/2r即100x = 50(15r-1)/r给出,对 r < 0.067 ,在[0,+∞)上都有f”(x)<0,最佳折扣量为 x=0。下图给出了 r =0.05 的情况(此处假设 Q = 1):
c.折扣量 100x 对 r 的灵敏性的相对改变量:
由 x =(15r-1)/2r 可得在点 r=0.15 处,dx/dr = 1/(2 r^2)
S(100x , r)= S(x , r)=(dx/dr)*(r/x)= 1/(2rx)= 0.8
即若销售额提高百分比 r 增加 1%,则导致折扣量 100x 增加 0.8%
2.收益(即利润)L 关于销售额提高百分比 r 的灵敏性 a.粗分析 L = q *(p – C)= Q *(1 + rx)*(p – C)= Q *(1 + rx)*(1500-100x)
不妨设 Q = 1,由前面分析可得,折扣量 100x 对销售额提高百分比 r 是很敏感的,且此处分析的利润应该是给定 r 的情况下的最大利润,故将 x =(15r-1)/2r 代入式子 L =(1 + rx)*(1500-100x)得 L = 25(15r+1)^2 / r= 25(225r + 1/r + 30)。
采用类似前面的 Excel 建模方法,绘出利润 L 关于销售额提高百分比 r 的散点图。
由上述图表可看到利润 L 对参数 r 是很敏感的。即如果给定不同的销售额提高百分比 r,则利润 L 将会有明显变化。因此,r 的取值要合适、合理,所做的分析才有意义。
b.利润 L 对销售额提高百分比 r 灵敏性的系统分析 对 L 求导可得 L“(r)= 25(225 – 1/r^2),使 L”(r)=0 的点为 r = 1/15≈0.067,当 r < 0.067 时,L 随着 r 的增大而减小;当 r >= 0.067 时,L 随着 r 的增大而增大,r=0.067 是极小值点。
c.利润 L 对 r 的灵敏性的相对改变量:
由 L = 25(225r + 1/r + 30)可得在点 r=0.15 处,dL/dr = 25(225 – 1/r^2)≈ 4513.89 S(L , r)=(dL/dr)*(r/L)=(225r – 1/r)/(225r + 1/r + 30)≈ 0.385 即若销售额提高百分比 r 增加 1%,则导致利润 L 增加 0.385%
((3)假设实际每 100 美元的折扣仅可以使销售额提高 10%,对结果会有什么影响?如果每 100为 美元折扣的提高量为 10%~15% 之间的某个值,结果又如何? 假设实际每 100 美元的折扣仅可以使销售额提高 10%,当 r = 0.1 时,折扣量 100x = 50(15r-1)/r = 250,利润 L= Q *(1 + 0.1x)*(1500-100x)= 1562.5Q(Q 为常量)答:会使折扣量变为 250 美元,利润变为 1562.5Q(Q 为没有折扣时的销量)如果每 100 美元折扣的提高量为 10%~15%之间的某个值,折扣量 100x 的变化曲线如下图所示:
100x = 50(15r-1)/r
利润 L(假设 Q = 1,仅考虑变化趋势)的变化曲线如下图所示:L = 25(225r + 1/r + 30)
((4)什么情况下折扣 会导致利润降低? 利润 L = y = f(x)= Q *(-15 x^2 + 125x + 1500)利润 L(假设 Q = 1)随 x 变化的变化曲线如下图所示:
由第(1)问所求可得,极大值点为 x = 4.17(折扣量 100x = 417 美元),当折扣量 100x <= 417 美元时,随着折扣量的增加,利润增加; 当折扣量 100x > 417 美元时,随着折扣量的增加,利润降低。
由上图还可知,当 x 取[8 , 8.5]区间上的某个值时,利润恰好等于 1500 美元。所以对 x 的取值再进行细分,绘出散点图如下:
由图可知,当 x > 8.33 时,即当折扣量> 833 美元时,此时利润小于没有折扣时的利润。
第三部分
结果与讨论(可加页)
一、
实验结果分析(包括数据处理、实验现象分析、影响因素讨论、综合分析和结论等)、应用 Excel 建模分析(1)问题 1:已分配席位数和席位号服从等差数列,重复输入浪费时间。
解决方法:使用 Excel 的自动填充功能 以已分配席位数的输入为例,具体操作如下:
a.在准备填充的第一个单元格输入原本应输入的值,此处输入 1,然后保持鼠标停留在该单元格; b.然后在菜单栏找到【开始】,点开后找到【填充】并点击;
c.点击【填充】后选择【序列】,然后进行参数设置。此处应选择【列】和【等差数列】,【步长值】输入等差数列公差值,【终止值】为等差数列最后一个数的值。操作如下图:
d.使用自动填充之后可以得到结果如下:
(2)问题 2:本实验的实验任务是利用 Q 值法分配席位,并且在 Excel 中进行 Q 值计算。
我认为如果在 Excel 中仅仅只进行 Q 值计算,是无法准确地确定 Q 值计算次数的终止点,容易产生一些不必要的计算。
解决方法:
我将表格的内容分为三部分:
a.已知的每个系的人数和所求的每个系最终分得席位数;(有助于更直观地了解已知条件和最终结论;同时 Q 值计算公式中我使用了 B2、C2、D2 单元格,如果三个系的人数发生变化,则只需要修改此处的数据即可,不必修改公式)
b.在不同的已分配席位数的情况下,三个系 Q 值的取值; c.席位分配过程:给席位编号,标注出每个席位的分配结果;(有助于更直观地了解 Q 值法分配的原理;便于最后计算各系的最终分得席位数)
此种分法便于确定 Q 值计算次数的终止点。具体方法是:
每进行一次 Q 值计算,则分配一次席位,分配结果直接写在表格中相应位置,更加直观。当所有席位分配完毕,则是 Q 值计算的终止点,此时在表格中回顾席位分配过程并计数即可得到各系最终分得的席位数。
13、单变量最优化(1)问题 1:绘制散点图之前,要先在表格中输入自变量的值,该数据服从等差数列。
解决方法:使用 Excel 的自动填充功能 具体操作:类似【用 应用 Excel 建模分析】中的问题 1 的操作步骤。
(2)问题 2:绘制散点图之前因变量的计算公式处理方法 解决方法:使用拖曳复制再粘贴的方法。
以第(1)问的第一个散点图为例,具体操作如下:
a.打开 Excel 新建一个表格,分别列出 X 栏和 Y 栏。
b.X 栏采用 Excel 的自动填充功能,依次写入 0,1,2,3 „„ 等等,Y 栏第一项,根据公式,将 x 以 A2 替代,手写输入公式“=-15*A2*A2+125*A2+1500”(此处假设 Q = 1),c.其余的 Y 栏数据,采用拖曳复制的方式复制粘贴公式。首先选中 Y 栏第一项,点击鼠标右键,点击【复制】;然后选中待填入数据的所有 Y 栏单元格,点击鼠标右键,点击【粘贴选项】中的【公式】;则当 X 栏有值时,Y 栏就有对应的值。
d.绘散点图:全部选中 X 栏和 Y 栏的数据,点击菜单栏的【插入】然后插入【散点图】,得到如下图表:
(3)问题 3:使用 Excel 求函数极值点的方法
解决方法:除了用公式法和导数求解之外,使用 Excel 采用多次绘散点图的方法也可求出函数极值点。
以第(1)问为例,具体操作如下:
采用前面的问题(2)中的方法,得到第一个散点图如下:
由表和图可知,当 x 在 4 附近时,y 取得最大值。
故将 x 的取值区间缩小到[3.5 , 4.5] , 再绘出一次散点图,如下:
由上述表和图可知,当 x ≈ 4.2 时,y 取得最大值。而导数计算结果为 x≈4.17,可知绘散点图求函数极值点是可行的。
如果想得到更精确的结果,可以将 x 的取值区间继续缩小,每个值之间的差也不断缩小,直至更加接近于真正的极值点。
二、
小结、建议及体会 此次实验涉及到的知识点包括数据分析的理论、最优化模型的建模方法、应用 Excel 的方法等,我按照实验任务的要求,查阅相关资料,制定出理论结合实际的实验方案,采用“从整体规划,分步骤实施,实验全面总结”的技术路线完成了实验。
此次试验,巩固了我在课堂所学的内容,加深了我对数据分析与建模的理论与方法的了解,帮助我基本掌握了典型的数据模型的建立与使用,提升了我的实验动手能力。
此次实验我主要面临的问题是如何使用 Excel 建模。由于先前对 Excel 的了解甚少,所以此次实验的困难可能会稍大一点,不过,我也因此学到了 Excel 的许多使用技巧,包括自动填充、拖曳复制粘贴公式等,使我受益匪浅。
同时,我还学习了利用表格中的数据绘制散点图,以此类推,也掌握了其他图形的绘制方法。这使得我对于以后其他情况下的数据分析处理多了一种分析方法。我感觉数据分析与建模真的是一门很有用的课,建模帮助我们将现实问题转化为数学问题,再进而求解,更加方便。而模型的求解过程帮助我们掌握了一些建模分析的软件,这将会成为我们人生的一笔财富,成为我们日后需要进行数据分析时的助力。
建议:我觉得关于 Excel 建模方面的知识还是有点少,课件里的内容不是很便于学习。如果可以的话,希望老师可以提供一份较为系统的利用 Excel 建模的过程的资料(步骤叙述明确,带有截图和提示)。不过,该课程后期并不会继续使用 Excel 建模,所以此建议请老师斟酌时间和精力再考虑,或者选择熟悉 Excel 建模过程的同学帮助老师制作此资料,供其他不擅长的同学学习。
第四部分
评分标准(教师可自行设计)及成绩
观测点 考核目标 权重 得分 实验预习1. 预习报告 2. 提问 3. 对于设计型实验,着重考查设计方案的科学性、可行性和创新性 对实验目的和基本原理的认识程度,对实验方案的设计能力 20%
实验过程 1. 是否按时参加实验 2. 对实验过程的熟悉程度 3. 对基本操作的规范程度 4. 对突发事件的应急处理能力 5. 实验原始记录的完整程度 6. 同学之间的团结协作精神 着重考查学生的实验态度、基本操作技能;严谨的治学态度、团结协作精神 30%
结果分析 1. 所分析结果是否用原始记录数据 2. 计算结果是否正确 3. 实验结果分析是否合理 4. 对于综合实验,各项内容之间是否有分析、比较与判断等 考查学生对实验数据处理和现象分析的能力;对专业知识的综合应用能力;事实求实的精神 50%
该项实验报告最终得分
教师签名:。
第二篇:大数据建模与数据挖掘培训心得体会
大数据建模与数据挖掘培训心得体会
公司在2017年08月24日 — 08月27日组织参加了在北京举办的“大数据建模与分析挖掘”培训班,首先感谢公司给予的这次难得的机会,虽然只有短短的3天时间,但是我觉得在这3天我得到了一个充分的学习。下面我就谈谈这次培训的一些体会。
1、对数据建模和挖掘体系有了更深入的了解
培训中讲了大数据底层架构hadoop、spark的组成、了解了HDFS、mapreduce、hive、Hbase等组建的应用场景,并且也涉及了大数据架构与数据挖掘技术的结合,对整个大数据体系架构及数据挖掘流程更进了一步。
2、了解了挖掘模型的底层的原理
虽然实际工作中对数据挖掘模型更多的是侧重应用,但是了解了模型原理有利于对模型进行改造升级。培训中学习了一些模型求最优解的方法和策略,了解了最小二乘法、贪心算法、熵值法在求解模型系数时的应用原理,通过培训对模型底层算法有了一定了解。
3、学习了一些最新的建模方法
在以往的建模中往往采用单一模型或者多个模型权重结合的方式进行模型建立,此次培训中老师讲到了级联模型的应用,通过多个模型的等级级联,使预测模型的损失函数值最小且避免过拟合,并引入了xgboost高拟合模型,通过此次培训,对最新的建模方法和模型包有了一些了解。
4、确定了下一步学习的方向和目标 通过此次培训了解到自己在数据挖掘的道路还很长,对整个体系的全面掌控、建模的高准确性、深度学习等方面都是自己未来发展的方向,后续工作和学习中,根据公司需要确定优先深入学习的方向。
5、规划将学习的知识应用到实际工作中
在当前工作中也会涉及到预测模型,后期当不注重模型的可解释性时,可考虑使用黑盒方式进行数据挖掘,采用级联模型完成高拟合度的模型。在数据挖掘框架方面,虽然当前项目中没有涉及到的大数据体系架构的知识,但后期随着数据挖掘工作的深入,在模型部署阶段,可考虑将关系型数据库升级为大数据生态框架体系。
第三篇:数据建模的心得体会
应用VISO以及ERWIN进行数据建模的心得体会信管0802王莫凡200811244
5经过反复的实验,每个实体的中文说明和英文表名终于可以全部对应上了,总算可以说对建模工具Erwin有了全面的掌握.反思问题解决过程,需要一点点自责。还有在Erwin的ER图导入数据库是发生错误,原来是在选择默认的数据库类型时默不是Access的,而是SQL server的,经过武老师的指点,应在物理模式下的数据类型中调节。以后碰到难题,还是多分析,多尝试!还有一开始没弄明白实体间实线与虚线的关系,还有有两头的虚线,再看课件和询问同学的情况下搞明白了哈。
原来以为设计一个数据库要很麻烦,但这次自己通过Erwin找到了方法,Erwin就是一个很好的简化数据库设计的工具,ERwin 模型以一种可以帮助我们更有效地组织和管理的方式来使数据结构可视化,并减少数据、数据库技术和部署环境的复杂性。ERwin 既能帮助我们快速开发数据库,又能大大提高质量和可维护性。
之后用Visio也生成了一个ER图,发现它虽然没有Erwin强大,但是视觉效果好,因为是微软出品,所以还与多种Office软件兼容,所以我决定以后设计数据库用Erwin,设计好后用Visio再生成一个ER图,用来系统的展示,效果会很好。而且Visio还可以用来绘制组织结构图等多种图表,很好用。
第四篇:数学建模报告电子商务平台销售数据分析与预测
数模论文
题号 A
论文题目: 电子商务平台销售数据分析与预测
作者
电子商务平台销售数据分析与预测
摘要:
对电子商务平台销售数据分析与预测要建立在数据的基础上,但世界工厂分析认为,现在不是缺数据,而是数据太多。据统计,在今天的互联网上,每秒会产生几百万次的搜索、网络上会有几十万次的内容。稍大的电子商务公司,都会采集一些行为数据,这些数据中包含了大量对市场分析,预测有用的潜在信息,对这些信息进行深度分析,企业可以改进电子商务网站的质量并且可以提高电子商务的经营效率。论文以购买历史数据为预测客户行为的基础数据,采用神经网络,马尔可夫链方法为建模工具,对电子商务的客户访问行为、商品销售预测等问题进行了研究。本论文的主要工作如下: 1.分析每个店铺的销售特点(包括价格,服务态度,售后服务,产品质量,优惠,日常管理等店铺政策)和其销售量的关系,可用雷达图法进行分析,建立最大利润函数模型。2.利用效用函数对所搜集到商品信息进行数学模型,但仅仅按照两种商品进行建立,需要进一步的扩展。3.利用MATLAB统计中的命令regress求解。将回归系数的估计值带入模型中,即可预测未来两年的销售总额。
正文:
问题一:搜集同一款手机(三星note3)销量前20位的店铺相关信息,把这些信息与销售量进行相关性分析,并据此对店铺如何提高销售量提出建议。分别到京东商城,国美,苏宁,亚马逊,淘宝等相关网站了解相关的店铺的信息得到销售量前20位的店铺。
分析每个店铺的销售特点(包括价格,服务态度,售后服务,产品质量,优惠,日常管理等店铺政策)和其销售量的关系。
分析用户的购买情况同等重要。(此雷达图摘自百度文库)
利用条形图进行不同的店铺之间的对比,饼状图同店铺不同要素之间的影响进行对比分析。
对每一个影响因素建立最大利润函数模型f(x)=ax2+bx+c,每一种因素分别对应x1,x2........。得到图形,利用图形对店铺进行销售建议。
问题二:针对某一种类的商品(比如女式凉鞋),搜集50组店铺对应的商品信息(至少涵盖销量、价格、用户评价、品牌、样式、材质等信息),并据此建立数学模型分析用户的消费习惯。
为简答起见,假定只有甲乙两种商品供消费者购买,下面建立的模型可以推广到任意多种商品的情况。
效用函数:
当消费者购得数量分别为x1,x2的甲乙两种商品,给消费者带来的效用可以用一个数值来度量,它是x1,x2的函数,记作u(x1,x2)利用等高线的概念在x1,x2平面上画出效用函数u(x1,x2)的等效用线。等效用线u(x1,x2)=c是一族单调减、下凸、互不相交的曲线,随着效用值c的增加曲线向右上方移动,曲线的具体形状由甲乙两种商品对消费者带来的效用,或消费者对甲乙两种商品的偏爱程度决定。
效用最大化模型: 设甲乙两种商品的单价分别为p1,p2,消费者准备付出的钱为y,则他购得的甲乙两种商品的数量x1,x2,满足 P1x1+p2x2=y 效用函数的构造:
u(x1,x2)=(a/x1+b/x2)-1,a,b>0 即按照效用最大化购买两种商品所用钱的比例,与商品价格比的平方根成正比,比例系数是参数a与b之比的平方根,其中a与b分别度量甲乙两种商品对消费者的效用或者消费者对甲乙两种商品的偏爱。
问题三:搜集一个电商交易平台年销售总额的历史数据,并预测未来两年的销售总额。
搜集京东手机销售的历史数据,利用近两年的数据和销售的影响因素,记销售量为y,价格等其他因素为x1,x2.......。利用数据做出y对x1,x2....的散点图。直线用y=ax+b,曲线用二次函数模型y=ax2+bx=c.利用MATLAB统计中的命令regress求解。格式为: 【b,bint,r,rint,stats】=regress(y,x,alpha)得到模型的回归系数估计值及其置信区间,检验统计量。将回归系数的估计值带入模型中,即可预测未来两年的销售总额。
第五篇:数学建模与数学实验
通过多年来的教学改革与教学实践,教学效果显著,模块化分层次教学、换位式教学和启发式教学的方法得到了学生们的认可。这种方式大大提高了学生们的动手能力,并贯穿于平时的教学实践中,同时也反映出学生撰写科技论文的写作水平,为学生进一步参加数学建模竞赛奠定了良好的基础。该课程的成功经验在我校、市内以及西部地区起到很好的示范辐射作用,得到专家和学生的好评。
校外专家
(一)评价:
刘琼荪(全国数学建模竞赛重庆赛区组委会秘书长,重庆大学教授)
重庆邮电大学是我国最早开设数学建模系列课程的学校之一, 经过十多年的努力,该课程已经建设成为培养学生的创新和竞争能力的优秀课程。该课程在教学环节上充分体现出了教学研究型大学的特色,坚持培养学生“以竞赛为契机,以能力提升为宗旨”的指导思想,在教学内容和教学方式方面进行了大胆、慎重的改革, 把课堂教学、课后实践、在数学建模基地做数学实验、参加讨论班研讨、参加国内外数学建模竞赛结合起来,既激发了学生进一步学习数学的兴趣,又提高了学生的科学素质和能力,收到了很好的效果。该类课程自开设以来,已有逾万名学生学习本课程。全校每年有1000余名学生参加全国或校内竞赛,近三年参加全国大学生数模竞赛中, 获全国奖27项(规定每年一个学校最多10项), 成绩在重庆赛区参赛学校中名列前茅。另外,陈理荣教授等编著的教材《数学建模导论》(北京邮电大学出版社出版)也已为全国20余所大学用作数学建模课程的教材被广泛使用,杨春德教授等编著的《数学建模的认识与实践》也为本门课程的建设提供了素材。且《数学建模》已成为重庆市精品课程,“数学建模与数学实验”教学团队已获重庆市市级教学团队称号。
有鉴于此,我认为《数学建模与数学实验》已完全达到了重庆邮电大学重点课程的要求。
校外专家
(二)评价:
朱宁(全国大学生数学建模优秀指导教师,桂林电子科技大学教授)
全国大学生数学建模竞赛自90年代在我国开展以来,一直受到全国各高校的重视,把竞赛作为培养数学知识应用的一个平台。重庆邮电大学是较早参加这活动的高校,近几年,在竞赛中屡获佳绩,走在同类高校的前列,引起了广泛的重视。本人认为重庆邮电大学在数学建模赛成功的主要经验有如下几方面: 首先是有一支实力雄厚、敬业的师资队伍。《数学建模与数学实验》课程建设成员11名,其中有教授4人,副教授6人,4人具有博士学位,1人获全国大学生数学建模竞赛优秀指导教师称号。教学成果多,教学团队整体实力强,“数学建模与数学实验”教学团队已获重庆市市级教学团队称号。
其次《数学建模与数学实验》类课程形成了“三层次—两阶段”的教学和竞赛的课程改革方案,设计并探索了数学应用型人才培养理念,在教学模式和教学方法和评价方式等方面均有创新,形成了“教学-实践-竞赛” 的数学建模教学模式,形成了一套具有特色的加强数学模型思想的教学模式。
第三是注重校际间交流,吸取好的经验,完善教学过程。教师曾多次在国内外关于数学建模教学与应用会议上介绍经验,并先后在国内外核心期刊上发表论文数篇。每年参加赛区举办的数学实验课程和数学建模竞赛的教学经验交流会议。该课程建设已在西部地区起到了示范作用。
鉴于以上内容,个人认为《数学建模与数学实验》已达到了重庆邮电大学重点课程的要求。
校内同行评价
胡学刚(全国数学建模竞赛优秀指导教师,重庆邮电大学教务处副处长、教授)
《数学建模与数学实验》类课程先后为不同层次的学生开设了任选课、限选课和必修课。近年来,课程建设小组以《数学建模与数学实验》类课程为平台,以数学建模竞赛为契机,在工科数学类课程的教育教学改革中取得了突出成绩,主要表现在以下几个方面:
1.坚持数学建模类课程建设与工科数学教学改革相结合,数学建模类课程建设与数学建模竞赛相结合,理论教学与实验实践、课外活动相结合,将数学建模的思想融入到其它数学类课程的教学中,进一步深化工科数学类课程的教学改革。该课程建设特色鲜明,成效显著。
2.课题组老师热情指导学生开展数学建模活动,积极组织学生参加校内、国内及美国大学生数学建模竞赛。从最初的鼓励学生参赛,到现在同学们积极主动参赛;从最初的几个队参赛到现在的近百个队参赛,数学建模竞赛经历了一次次飞跃。经过多年的探索,课题组总结了一套成功的指导培训经验,使我校学生参加全国竞赛取得了优异成绩,近3年来,我校共有27个队获得国家级奖励,在重庆赛区位居前列,特别是2011年名列全国第二(公示中)。
3.师资队伍建设成效显著。近年来,课题组新增2位教师获得博士学位,1位教师博士即将毕业,教授由申报时的0人变为4人。队伍中现拥有全国模范教师、重庆市中青年骨干教师、重庆邮电大学优秀青年教师。他们多次在赛区组织的教练交流活动中介绍数学建模类课程程建设经验和竞赛经验,在重庆市乃至西部地区发挥了示范辐射作用。
4.课程建设成绩显著。在该门课程建设过程中,编著出版了《数学建模的认识与实践》一书,《数学建模》已成为重庆市精品课程,“数学建模与数学实验”已获重庆市市级教学团队称号,《数学建模理论与方法》于2011年成为重庆邮电大学立项建设教材。
有鉴于此,该课程是有较大影响的富有特色的课程,已具备了重庆邮电大学重点课程的条件。
学生评价
(一):
数学建模与数学实验这门课程是一门开放性和主动性的一门课程,它就是需要从现实生活、现实问题中抽象出数学模型,从而解决问题。这门课程融合了许多学科,对于学生来说,有机会广泛涉猎各种知识,这对于我们后续的发展是十分有好处的,因为目前在实际部门工作,也许不需要你对某一方面的有很深的知识,主要是遇到一个问题,能有解决的方法;再有就是对于继续深造的同学,也十分有益,因为通过广泛的知识储备,学生可以从中找到自己感兴趣的方向,继续深入的做下去,《数学建模与数学实验》这门课就为我们在这两方面打下了良好的基础。
同时,数学建模有利于培养学生的创造性思维能力,数学建模主要考查学生的数学思想方法,它是一种数学活动,而不单单像传统的数学练习题一样,做出来的答案是唯一的。相反,它可以有多种多样的答案,只要学生建立的模型是可行的,那它就是正确的。在学习这门课程的过程中,我也做过很多的实际题目,从那些过程中,我体会到的数学在实际生活中的应用,更重要的是培养了我们合作交流的方法、习惯,特别是促进学生的数学应用意识,提高了解决实际问题的能力。无论是数学研究还是数学学习,其目的之一就是将数学运用于社会,运用于现实,数学建模就重视培养学生的数学思维,加强数学应用意识,切实提高分析和解决实际问题的能力。
学习《数学建模与数学实验》是我大三的时候,朱伟老师将这门数学课讲得生动有趣,他没有介绍过于高深的理论,而是从实际应用出发。让我们对这门课程充满了兴趣,同时也对数学有了重新的认识,目前我正在进行硕士研究生阶段的学习,觉得那个时候学到的一些理论知识还有用,虽然那个时候没有过多的去深入研究那些知识,但现在当我遇到问题的时候,我知道有那样的一个理论存在,所以对于我来说就多了一些解决问题的方法。总之,在解决实际问题时,我们只有多了解一些方法,才能去掌握它,从而运用它,《数学建模与数学实验》就是一个连接理论与实际应用的桥梁。
(重庆邮电大学信息与计算科学专业,现西南财经大学统计学院硕士研究生 周黎)
校内学生(二)评价
大一的时候我就接触过数学建模,那是学校组织的数学建模竞赛,我们小组在比赛中获得了第三名,虽然是一个小小的第三名,当时还是给我很大的鼓舞,因为那时候大一能得奖好像只有两组,因此这学期一听说要开数模选修课,我就立马去报了名,抱着一点能学点东西的态度,认认真真的听完了前面大半的内容,后面由于很难坐倒好坐位,就只有自学了。
通过这门课的学习,我认识到了数模课多么的博大精深,虽然还是要靠一点小聪明,但主要还是要靠勤奋,因为数模涉及到太多的东西了,基本涉及到所有数学方面的知识,还有社会,科学等各方面的知识,要想能在这上面有所成就,只有靠平时的认真学习,打下牢实的基础。只有这样,才有可能在这上面有所发展。学习这门课,不管从学知识的角度,还是从学做学问的角度,对我而言,我都有很大的收获,衷心感谢各位数学组的老师在星期六不辞辛苦为我们上课。
(重庆邮电大学通信学院, 杨鹏)
校内学生(三)评价
从小到大,我对数学充满了爱好和兴趣,于是报名参加了数模学习辅导班。通过一个学期的数模学习,使自己学到了很多东西,不仅对数模的概念有了一定的了解,对数学建模的方法有了一定的掌握,同时也使自己加深了对数学知识的理解,能灵活运用数学解决一些实际吻题。数学建模是一种具有创造性的科学方法,它将现实问题简化,抽象为一个数学问题或者数学模型,然后采用恰当的数学方法求解,进而对现实问题进行定量分析和研究,最终达到解决实际问题的目的。随着计算机的运用和发展,数学建模成为高科技的一种“数学技术”,起着关键性的作用,作为计算机学员的一名学生,掌握新的技术和方法是必要的,是受益匪浅的。通过一个学期的学习,数模培养了我的洞察力,想象力,逻辑思维能力以及分析问题,解决问题的能力。在学习过程中,虽然碰到了很多的问题和困难,但是在老师的指点和教导下,使得很多问题都得到了解决,在这里要感谢辛勤教育我们的老师。虽然我没有去参加数模竞赛,但是我确实学到了很多东西,我相信这些我所学到的知识,对我的将来是有好处的。
(重庆邮电大学计算机学院:陈辉)