数学建模文献综述

2021-04-07 20:24:12下载本文作者:会员上传
简介:写写帮文库小编为你整理了这篇《数学建模文献综述》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《数学建模文献综述》。

数学建模文献综述

摘要:综述 数学建模方法

前言:数学建模,就是根据实际问题来建立数学模型,对数学模型来进行求解,然后根据结果去解决实际问题。数学模型是一种模拟,是用数学符号,数学式子,程序,图形等对实际课题本质属性的抽象而又简洁的刻画,它或能解释某些客观现象,或能预测未来的发展规律,或能为控制某一现象的发展提供某种意义下的最优策略或较好策略。应用知识从实际课题中抽象、提炼出数学模型的过程就称为数学建模。在21世纪新时代下,信息技术的快速发展使得数学建模成了解决实际问题的一个重要的有效手段。

正文:自从20世纪以来,随着科学技术的迅速发展和计算机的日益普及,人们对各种问题的要求越来越精确,使得数学的应用越来越广泛和深入,特别是在21世纪这个知识经济时代,数学科学的地位会发生巨大的变化,它正在从国家经济和科技的后备走到了前沿。经济发展的全球化、计算机的迅猛发展、数学理论与方法的不断扩充,使得数学已经成为当代高科技的一个重要组成部分和思想库,数学已经成为一种能够普遍实施的技术。培养学生应用数学的意识和能力已经成为数学教学的一个重要方面。而数学建模作为数学方面的分支,在其中起到了关键性的作用。

谈到数学建模的过程,可以分为以下几个部分:

一.模型准备

了解问题的实际背景,明确其实际意义,掌握对象的各种信息。以数学思想来包容问题的精髓,数学思路贯穿问题的全过程,进而用数学语言来描述问题。要求符合数学理论,符合数学习惯,清晰准确。

二.模型假设

根据实际对象的特征和建模的目的,对问题进行必要的简化,并用精确的语言提出一些恰当的假设。

三.模型建立

在假设的基础上,利用适当的数学工具来刻划各变量常量之间的数学关系,建立相应的数学结构。

四.模型计算

利用获取的数据资料,对模型的所有参数做出计算(或近似计算)。其中需要应用到一些计算工具,如matlab。

五.模型分析

对所要建立模型的思路进行阐述,对所得的结果进行数学上的分析。

六.模型检验

将模型分析结果与实际情形进行比较,以此来验证模型的准确性、合理性和适用性。如果模型与实际较吻合,则要对计算结果给出其实际含义,并进行解释。如果模型与实际吻合较差,则应该修改假设,再次重复建模过程。

数学建模中比较重要的是,我们需要根据实际问题,适当调整,采取正确的数学建模方法,以较为准确地对实际问题发展的方向进行有据地预测,达到我们解决实际问题的目的,在近些年,数学建模涉及到的实际问题有关于各个领域,包括病毒传播问题、人口增长预测问题、卫星的导航跟踪、环境质量的评价和预测等等,这些就能说明数学建模涉及领域之广泛,针对这些问题我们需要采取对应的数学建模方法,采用不同的数学模型,再综合起来分析,得出结论,这需要我们要有一定的数学基础和掌握一些应用数学方法,以适应各种实际问题类型的研究,也应该在一些数学方法的基础上,进行不断地拓展和延伸,这也是在新时代下对于数学工作者的基本要求,我们对数学建模的所能达到的要求就是实现对实际问题的定性分析达到定量的程度,更能直观地展现其中的内在关系,体现数学建模的巨大作用。

而在对数学建模中的数据处理中,我们往往采用十类算法:

一.蒙特卡罗算法

也称统计模拟方法,是二十世纪四十年代中期由于科学技术的发展和电子计算机的发明,而被提出的一种以概率统计理论为指导的一类非常重要的数值计算方法。当所求解问题是某种随机事件出现的概率,或者是某个随机变量的期望值时,通过某种“实验”的方法,以这种事件出现的频率估计这一随机事件的概率,或者得到这个随机变量的某些数字特征,并将其作为问题的解。如粒子输运问题。

二.数据拟合、参数估计、插值等数据处理算法

比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用Matlab作为工具,而在其中有一些要用到参数估计的方法,包括矩估计、极大似然法、一致最小方差无偏估计、最小风险估计、同变估计、最小二乘法、贝叶斯估计、极大验后法、最小风险法和极小化极大熵法。最基本的方法是最小二乘法和极大似然法。数据拟合在数学建模中常常有应用,与图形处理有关的问题很多与拟合有关系。

三.线性规划、整数规划、多元规划、二次规划等规划类问题

建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo、Lingo软件实现。它尤其适用于传统搜索方法难于解决的复杂和非线性问题,在运筹学和模糊数学中也有应用。

四.图论算法

这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备,其中,图论具有广泛的应用价值,图论可将各种复杂的工程系统和管理问题用“图”来描述,然后用数学方法求得最优结果,图论是解决许多工程问题中算法设计的一种有效地数学模型,便于计算分析和计算机存储。

五.动态规划、回溯搜索、分治算法、分支定界等计算机算法

动态规划的应用极其广泛,包括工程技术、经济、工业生产、军事以及自动化控制等领域,并在背包问题、生产经营问题、资金管理问题、资源分配问题、最短路径问题和复杂系统可靠性问题等中取得了显著的效果。回溯算法是深度优先策略的典型应用,回溯算法就是沿着一条路向下走,如果此路不同了,则回溯到上一个分岔路,在选一条路走,一直这样递归下去,直到遍历万所有的路径。八皇后问题是回溯算法的一个经典问题,还有一个经典的应用场景就是迷宫问题。回溯算法是深度优先,那么分支限界法就是广度优先的一个经典的例子。回溯法一般来说是遍历整个解空间,获取问题的所有解,而分支限界法则是获取一个解。分治算法的基本思想是将一个规模为N的问题分解为K个规模较小的子问题,这些子问题相互独立且与原问题性质相同。求出子问题的解,就可得到原问题的解。即一种分目标完成程序算法,简单问题可用二分法完成。

这些算法是算法设计中比较常用的方法,很多场合可以用到竞赛中。

六.最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法

模拟退火算法的依据是固体物质退火过程和组合优化问题之间的相似性。物质在加热的时候,粒子间的布朗运动增强,到达一定强度后,固体物质转化为液态,这个时候再-进行退火,粒子热运动减弱,并逐渐趋于有序,最后达到稳定。
  “物竞天择,适者生存”,是进化论的基本思想。遗传算法就是模拟自然界想做的事。遗传算法可以很好地用于优化问题,若把它看作对自然过程高度理想化的模拟,更能-显出它本身的优雅——虽然生存竞争是残酷的。遗传算法以一种群体中的所有个体为对象,并利用随机化技术指导对一个被编码的参数空间进行高效搜索。

神经网络从名字就知道是对人脑的模拟。它的神经元结构,它的构成与作用方式都是在模仿人脑,但是也仅仅是粗糙的模仿,远没有达到完美的地步。和冯·诺依曼机不同-,神经网络计算非数字,非精确,高度并行,并且有自学习功能。

这些问题是用来解决一些较困难的最优化问题的算法,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用。

七.网格算法和穷举法

对于小数据量穷举法就是最优秀的算法,网格算法就是连续问题的枚举。网格算法和穷举法都是暴力搜索最优点的算法,在很多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具。

八.一些连续离散化方法

很多问题都是实际来的,数据可以是连续的,而计算机只认的是离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的。

九.数值分析算法

在比赛中采用高级语言进行编程的话,那一些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用。

十.图像处理法

赛题中有一类问题与图形有关,即使与图形无关,论文中也应该要不乏图片的,这些图形如何展示以及如何处理就是需要解决的问题,通常使用Matlab进行处理。

这十类算法对于数据处理有很大的帮助,甚至从其中可以发现在它们中的很多算法都是数学某些分支的延伸,可能我们不一定能掌握里面的所有算法,但是我们可以尽可能学习,相信这对我们今后的数学学习有很大的帮助,然后,就是数学模型的类别。

常见的数学模型有离散动态模型、连续动态模型、库存模型、线性回归模型、线性规划模型、综合评价模型、传染病模型等数学模型、常微分方程模型、常微分方程的数值稳定性、人口模型、差分方程模型,这些模型都有针对性地从实际问题中抽象出来,得到这些模型的建立,我们在其中加入适当合理的简化,但要保证能反映原型的特征,在数学模型中,我们能进行理性的分析,也能进行计算和演绎推导,我们最终都会通过实践检验数学建模的正确性,加以完善和提升,在对现实对象进行建模时,人们常常对预测未来某个时刻变量的值感兴趣,变量可能是人口、房地产的价值或者有一种传染病的人数。数学模型常常能帮助人们更好的了解一种行为或者规划未来,可以把数学模型看做一种研究特定的实际系统或者人们感兴趣的行为而设计的数学结构。

例如人口增长模型:

中国是世界上人口最多的发展中国家,人口多,底子薄,人均耕地少,人均占有资源相对不足,是我国的基本国情,人口问题一直是制约中国经济发展的首要因素。人口数量、质量和年龄分布直接影响一个地区的经济发展、资源配置、社会保障、社会稳定和城市活力。在我国现代化进程中,必须实现人口与经济、社会、资源、环境协调发展和可持续发展,进一步控制人口数量,提高人口质量,改善人口结构。对此,单纯的人口数量控制(如已实施多年的计划生育)不能体现人口规划的科学性。政府部门需要更详细、更系统的人口分析技术,为人口发展策略的制定提供指导和依据。长期以来,对人口年龄结构的研究仅限于粗线条的定性分析,只能预测年龄结构分布的大致范围,无法用于分析年龄结构的具体形态。随着对人口规划精准度要求的提高,通过数学方法来定量计算各种人口指数的方法日益受到重视,这就是人口控制和预测。

人口增长模型是由生育、死亡、疾病、灾害、环境、社会、经济等诸多因素影响和制约的共同结果,如此众多的因素不可能通过几个指标就能表达清楚,他们对人口增长的潜在而复杂的影响更是无法精确计算。这反映出人口系统具有明显的灰色性,适宜采用灰色模型去发掘和认识原始时间序列综合灰色量所包含的内在规律。灰色预测模型属于全因素的非线性拟合外推类法,其特点是单数列预测,在形式上只用被预测对象的自身序列建立模型,根据其自身数列本身的特性进行建模、预测,与其相关的因素并没有直接参与,而是将众多直接的明显的和间接的隐藏着的、已知的、未知的因素包含在其中,看成是灰色信息即灰色量,对灰色量进行预测,不必拼凑数据不准、关系不清、变化不明的参数,而是从自身的序列中寻找信息建立模型,发现和认识内在规律进行预测。

基于以上思想我们建立了灰色预测模型:

灰色建模的思路是:从序列角度剖析微分方程,是了解其构成的主要条件,然后对近似满足这些条件的序列建立近似的微分方程模型。而对序列而言(一般指有限序列)只能获得有限差异信息,因此,用序列建立微分方程模型,实质上是用有限差异信息建立一个无限差异信息模型。

在灰色预测模型中,与起相关的因素并没有直接参与,但如果考虑到直接影响人口增长的因素,例如出生率、死亡率、迁入迁出人口数等,根据具体的数据进行计算,则可以根据年龄移算理论,从某一时点的某年龄组人数推算一年或多年后年龄相应增长一岁或增长多岁的人口数。在这个人口数的基础上减去相应年龄的死亡人数,就可以得到未来某年龄组的实际人口数。对于0 岁的新生人口,则需要通过生育率作重新计算。当社会经济条件变化不大时,各年龄组死亡率比较稳定,相应活到下一年龄组的比例即存活率也基本上稳定不变。因而可以根据现有的分性别年龄组存活率推算未来各相应年龄组的人数。

通过这样的实例就能很细致地说明数学建模的方法应用,数学模型方法是把实际问题加以抽象概括,建立相应的数学模型,利用这些模型来研究实际问题的一般数学方法。它是将研究的某种事物系统,采用数学形式化语言把该系统的特征和数量关系,抽象出一种数学结构的方法,这种数学结构就叫数学模型。一般地,一个实际问题系统的数学模型是抽象的数学表达式,如代数方程、微分方程、差分方程、积分方程、逻辑关系式,甚至是一个计算机的程序等等。由这种表达式算得某些变量的变化规律,与实际问题系统中相应特征的变化规律相符。一个实际系统的数学模型,就是对其中某些特征的变化规律作出最精炼的概括。

数学模型为人们解决现实问题提供了十分有效和足够精确的工具,在现实生活中,我们经常用模型的思想来认识和改造世界,模型是针对原型而言的,是人们为了一定的目的对原型进行的一个抽象。

随着科学技术的快速发展,数学在自然科学、社会科学、工程技术与现代化管理等方面获得越来越广泛而深入的应用,尤其是在经济发展方面,数学建模也有很重要的作用。数学模型这个词汇越来越多地出现在现代人的生产、工作和社会活动中,从而使人们逐渐认识到建立数学模型的重要性。数学模型就是要用数学的语言、方法去近似地刻画实际,是由数字、字母或其他数学符号组成的,描述现实对象数量规律的数学公式、图形或算法。也可以这样描述:对于一个现实对象,为了一个特定目的,根据其内在规律,做出必要的简化假设,运用适当的数学工具,得到的一个数学结构。数学建模的作用在21实际毋庸置疑,我们通过不断学习数学建可以掌握解决实际问题的强大武器。

参考文献:数学建模方法与案例,张万龙,等编著,国防工业出版社(2014).数学模型建模分析,蔡常丰编著,科学出版社,(1995).

数学模型基础,王树禾编著,中国科学技术大学出版社,(1996).

下载数学建模文献综述word格式文档
下载数学建模文献综述.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    数学建模

    A题:一种汽车比赛的最优策略 汽车运动是当前世界上一项重要的体育项目。 这项运动比传统的体育项目更具综合性, 尤其涉及科学技术的各个方面。数学物理科学在这个项目中自然十......

    数学建模

    数学建模论文格式模板 (第一页内容) 保证书 我们仔细阅读了中国大学生数学建模竞赛的竞赛规则, 我们完全明白在竞赛开始后不能以任何方式与队外的任何人(包括指导教师)讨论竞赛......

    数学建模

    第一篇 我的大学职业生涯规划作为当代大学生,若是带着一脸茫然,踏入这个拥挤的社会怎能满足社会的需要,使自己占有一席之地?每当人类经过一次重大变革,总是新的机会在产生,有的机......

    数学建模

    护士排班问题的建议 摘要:综述了我国护士的排班类型,原则及排班方式:按功能制和整体护理模式排班。按值班时间包括固定,弹性,三班制排班。排班模式的改革:护士的自我排班等支持系......

    数学建模学习体会

    1 数学建模 数学建模学习体会 以前在大一时就曾听说过数学建模这一学科,但只是很肤浅的了解,还错误的以为这门学科只是跟数学有关系,只要数学学好了,学好数学建模就轻而易举了......

    数学建模总结

    数学建模总结 (河南科技大学 许光辉 李贵涛 蔡亚娟) 数学建模比赛虽然已经结束半年之久,但是整个参赛过程我们依旧历历在目。从参加学校的建模比赛,到暑期培训、全国大赛,到最终......

    数学建模总结

    数学建模实践总结 本学期的第八周是大学以来的第一个数学建模实践周,我们虽然只有一个星期的学习实时间,一个星期时间并不能让我们对数学建模有着很深的了解,,但我们可以通过这......

    数学建模论文

    舰艇会和问题数学建模论文姓名:班级:学号:舰艇会和问题摘要:当舰艇执行完任务会合航母时,需要采取合适的航行方向与航母会和,可以用坐标系解决这类问题。现代战争中,航空母舰被视为......