数理统计试卷(最终定稿)

时间:2020-11-05 14:20:14下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《数理统计试卷》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《数理统计试卷》。

第一篇:数理统计试卷

试卷名称:

数理统计I 课程所在院系:

理学院 考试班级:

学号:

姓名:

成绩:

试卷说明:

1.本次考试为闭卷考试。本试卷共4页,共八大部分,请勿漏答;

2.考试时间为120分钟,请掌握好答题时间;

3.所有试题答案写在试卷上;

4.答题中可能用到的数据如下: ,,,,,,,一.填空(每空2分,共30分)1.设 A、B、C 为三个随机事件,则事件“A、B 发生但C不发生” 可表示为。

2.将一枚骰子连续投掷两次,第二次出现的点数为3的概率等于。

3.每次试验结果相互独立,设每次试验成功的概率为。则重复进行试验直到第10次才取得 次成功的概率等于。

4.已知为从总体中抽取出来的容量为20的简单随机样本的样本平均,且=7,=4,则 ,。

5.已知到连续型随机变量的概率密度函数为,则

6. 已知,,则 ,。

7.为估计大学生近视眼所占的百分比,用重复抽样方式抽取200名同学进行调查,结果发现有68个同学是近视眼。则大学生近视眼所占的百分比的95%的置信区间为。8.已知是来自总体的简单随机样本。令,则当 时,为总体均值的无偏估计。

9.已知随机变量和相互独立,且,则所服从的分布为。

10.已知=25,36,且和的相关系数,则。

11.已知,(这里).由车比雪夫不等知。

12.已知和都是连续型随机变量,设的概率密度函数,则的概率密度函数

13.已知服从参数为1的泊松分布,则=。

二.(12分)一个口袋里有三个球,这三个球上面依次标有数字0、1、1。现在从袋里任取一个球,不放回袋中,接着再从袋里取出一个球。设表示第一次取到的球上标有的数字,表示第二次取到的球上标有的数字。

(1)求的联合概率分布;

(2)求关于 的边缘概率分布和关于的边缘概率分布,判断和是否独立(3)计算和 的协方差。

三.(8分)某商场所供应的电视机中,甲厂产品与乙厂产品各占50%;

甲厂产品的次品率是10%,乙厂产品的次品率是15%。(1)求该商场电视机的次品率;

(2)现某人从该商场上买了一台电视,发现它是次品,求它由甲厂生产的概率。

四.(8分)设某研究所有200名研究人员,现该研究所准备在会议厅举行一个内部学术交流会。假设每个研究人员都以 现在该所准备在会议厅举行一个内部学术交流会,假设每一位研究人员都以0.6的概率去参加这个学术交流会,并且每一位研究人员是否去参加会议是相互独立的,问会议厅应至少准备多少个座位,才能以99.9%概率保证去参加交流会的人员都有座位坐。

五.(10分)一批糖袋的重量(单位:千克)服从正态分布。现在从该批糖袋中随机抽取12袋,测得这12糖袋的平均重量为,样本方差为0.1291。

(1)求这批糖袋的平均重量的置信度为95%的置信区间,并计算估计的精度。

(2)求这批糖袋的重量方差的置信度为95%的置信区间。

六.(8分)某批电子元件的寿命(单位:小时)服从正态分布。正常情况下,元件的平均寿命为225。现在从中该批电子元件中任意抽取16件,测得这16件元件的平均寿命为241,样本方差为92。据此以显著水平0.05来判断是否可以认为这批电子元件的平均寿命与225无显著差异? 七.(12分)一批由同一种原料织成的布,用不同的印染工艺处理,然后进行缩水处理。假设采用A、B、C三种不同的工艺,每种工艺处理4块布样,测得缩水率(单位:%)的数据如表1所示。根据这些数据,完成下列问题:

(1)填写下列未完成的方差分析表(表2),并根据方差分析表以显著水平来判断不同的工艺对布的缩水率的影响是否有显著差异?(2)若有显著差异,则用费歇检验法(即LSD检验法)做进一步多重比较,并且指出存在显著差异的工艺的总体均值差的置信度为95%的置信区间。

工艺种类 缩水率 A 5 7 4 2 B 7 6 6 5 C 8 7 9 7 表1 变差来源平方和 自由度 均方和 F值 组间 21.167 F= 组内 \ 总计 38.917 \ \ 表2 八.(12分)为了研究某地区年度汽车拥有量y(单位:百台)与货运周转量x(单位:万吨*公里)之间的关系,抽样测量得下列样本数据:

货运周转量x 0.1 0.3 0.4 0.55 0.7 0.8 0.95 汽车拥有量y 15 18 19 21 22.6 23.8 26(1)求y对x的线性回归系数与回归剩余标准差,并写出经验线性回归方程。

(2)计算样本相关系数,并进行线性回归的显著性检验(显著水平=0.05)。

(3)求当货运周转量x=0.5时,该地区年度汽车拥有量y的置信度为95%的置信区间。

参考答案 试卷名称:

数理统计I 课程所在院系:

理学院 考试班级:

学号:

姓名:

成绩:

试卷说明:

5.本次考试为闭卷考试。本试卷共4页,共八大部分,请勿漏答;

6.考试时间为120分钟,请掌握好答题时间;

7.所有试题答案写在试卷上;

8.答题中可能用到的数据如下: ,,,, ;,二.填空(每空2分,共30分)1.设 A、B、C 为三个随机事件,则事件“A、B 发生但C不发生” 可表示为。

2.将一枚骰子连续投掷两次,第二次出现的点数为3的概率等于 1/6。

3.每次试验结果相互独立,设每次试验成功的概率为。则重复进行试验直到第10次才取得 次成功的概率等于 C9k pk(1-p)10-k。

4.已知为从某个总体中抽取出来的容量为20的简单随机样本的样本平均,且=7,=4,则 7 , 0.2。

5.已知到连续型随机变量的概率密度函数为,则 0.5。

6. 已知,,则1/3 ,1/6。

7.为估计大学生近视眼所占的百分比,用重复抽样方式抽取200名同学进行调查,结果发现有68个同学是近视眼。则大学生近视眼所占的百分比的95%的置信区间为 [0.2743,0.4057]或 [0.278,0.408]。

8.已知是来自总体的简单随机样本。令,则当 1/16 时,为总体均值的无偏估计。

9.已知随机变量和相互独立,且,则所服从的分布为 N(-11,38)。

10.已知=25,36,且和的相关系数,则 37。

11.为随机变量,且,.由车比雪夫不等知 0.9375。

12.已知和都是连续型随机变量,设的概率密度函数,则的概率密度函数

13.已知服从参数为1的泊松分布,则= 2。

二.(12分)一个口袋里有三个球,这三个球上面依次标有数字0、1、1。现在从袋里任取一个球,不放回袋中,接着再从袋里取出一个球。设表示第一次取到的球上标有的数字,表示第二次取到的球上标有的数字。

(2)求的联合概率分布律;

(2)求关于 的边缘概率分布和关于的边缘概率分布,判断和是否独立;

(3)求和 协方差。

解:(1)0 1 0 0 1/3 1 1/3 1/3(2)0 1 P 1/3 2/3 0 1 P 1/3 2/3 和不独立。

(3),,三.(8分)某商场所供应的电视机中,甲厂产品与乙厂产品各占50%;

甲厂产品次品率是10%,乙厂产品次品率是15%。(1)求该商场电视机的次品率;

(2)现某人从该商场上买了一台电视,发现它是次品,求它由甲厂生产的概率。

解:用A表示“甲厂产品”, 用B表示“次品率”, 则 , ,(1).-----4分(2).----8分 四.(8分)设某研究所有200名研究人员,现该研究所准备在会议厅举行一个内部学术交流会。假设每个研究人员都以 现在该所准备在会议厅举行一个内部学术交流会,假设每一位研究人员都以0.6的概率去参加这个学术交流会,并且每一位研究人员是否去参加是相互独立的,问会议厅应至少准备多少个座位,才能以99.9%概率保证去参加交流会的人员都有座位坐。

解:假设准备x个座位条,用表示与会的人数,显然 服从B(200,0.6),1分 np=120,np(1-p)=48, 2分 因为n=10000,充分大由中心极限定理可以认为近似服从,4分, 根据题意知道:

6分 所以:,即,解得,至少准备141个座位 8分 五.(10分)一批糖袋的重量(单位:千克)服从正态分布。现在从该批糖袋中随机抽取12袋,测得这12糖袋的平均重量为,方差为0.1291(3)求这批糖袋的平均重量的置信度为95%的置信区间,并计算估计的精度。

(4)求这批糖袋的重量方差的置信度为95%的置信区间。

解:因为 S2=0.1291,得,1分(1),, 查表得 的置信度为95%的置信区间为 4 分 估计精度为 7分(2)置信度为95%的估计:

查表得,所以,新生男婴儿体重的方差的区间估计为.10分 六.(8分)某批电子元件的寿命(单位:小时)服从正态分布。正常情况下,元件的平均寿命为225。现在从中该批电子元件中任意抽取16件,测得它们的平均寿命为241,样本方差为92。据此以显著水平0.05来判断是否可以认为这批电子元件的平均寿命与225无显著差异? 解:样本标准差9.591(1)建立统计假设 1分(2)建立统计量:

3分(3)在成立前提下计算:

5分 由0.05求得 6分(4)因为,拒绝即不可以认为这批电子元件的寿命与225无显著差异.8分 七.(12分)一批由同一种原料织成的布,用不同的印染工艺处理,然后进行缩水处理。假设采用A、B、C三种不同的工艺,每种工艺处理4块布样,测得缩水率(单位:%)的数据如表1所示。根据这些数据,完成下列问题:

(3)填写下列未完成的方差分析表(表2),并根据方差分析表以显著水平来判断不同的工艺对布的缩水率的影响是否有显著差异?(4)若有显著差异,则用费歇检验法(即LSD检验法)做进一步多重比较,并且指出存在显著差异的工艺的总体均值差的置信度为95%的置信区间。(10分)工艺种类 缩水率 A 5 7 4 2 B 7 6 6 5 C 8 7 9 7 表1 方差来源平方和 自由度 均方和 F值 组间 21.167 2 10.583 F= 5.366 * 组内 17.750 9 1.972 \ 总计 38.917 11 \ \ 表2 解:(1)完成方差分析表如上 4分(其中F值1分,其他每空格0.5分)由知, F= 5.366>, 5分 可认为有显著差异.6分(2),1.972,所以,()计算得,多重比较结果:

3.25* 1.5 1.75 / 因为时,认为差异显著。

由上表知A和C有差异显著。A和B,B和C差异不显著 的可靠性为的置信区间为 计算LSD 7分 多重比较结果 10分 均值差的取间估计 12分 八.(12分)为了研究某地区年度汽车拥有量y(单位:百台)与货运周转量x(单位:万吨*公里)之间的关系,抽样测量得下列样本数据:

货运周转量x 0.1 0.3 0.4 0.55 0.7 0.8 0.95 汽车拥有量y 15 18 19 21 22.6 23.8 26(1)求y对x的线性回归系数与回归剩余标准差,写出经验线性回归方程。

(2)计算样本相关系数,并进行线性回归的显著性检验(显著水平=0.05)。

(3)求当货运周转量x=0.5时,该地区年度汽车拥有量y的置信度为95%的置信区间。

解∶ 1分 2分 4分(1):经验线性回归方程为 5分(2)7分 检验假设 :对的线性回归关系不显著。

=0.05, 因为 所以拒绝,认为对的线性回归关系显著,关于是正相关的。

9分(3)因为经验回归方程为:。

所以 时,2.571 的置信区间为[19.67, 20.80],可靠性为95% 12分

第二篇:数理统计学习心得

数理统计学习心得

现实中常常存在这种情况,我们所掌握的数据只是部分单位的数据或有限单位的数据,而我们所关心的却是整个总体甚至是无限总体的数量特征。例如民意测验谁会当选主席?体育锻炼对增强心脏功能是否有益?某种新药是否提高疗效?全国婴儿性别比例如何?等等。这时只靠部分数据的描述是无法获得总体特征的知识。我们利用统计推断的方法来解决。所谓统计推断就是以一定的置信标准要求,根据样本数据来判断总体数量特征的归纳推理的方法。统计推断是逻辑归纳法在统计推理的应用,所以称为归纳推理的方法。统计推断可以用于总体数量特征的估计,也可以用于对总体某些假设的检验,所以又有不同的推断方法,下面就参数估计和假设检验的基本概念及原理简单谈谈。

参数估计是根据从总体中抽取的样本估计总体分布中包含的未知参数的方法。它是统计推断的一种基本形式,是数理统计学的一个重要分支,分为点估计和区间估计两部分。参数估计包括点估计和区间估计两种方法。

点估计是依据样本估计总体分布中所含的未知参数或未知参数的函数。通常它们是总体的某个特征值,如数学期望、方差和相关系数等。点估计问题就是要构造一个只依赖于样本的量,作为未知参数或未知参数的函数的估计值。构造点估计常用的方法是:①矩估计法。用样本矩估计总体矩,如用样本均值估计总体均值。②最大似然估计法。于1912年由英国统计学家R.A.费希尔提出,利用样本分布密度构造似然函数来求出参数的最大似然估计。③最小二乘法。主要用于线性统计模型中的参数估计问题。④贝叶斯估计法。基于贝叶斯学派(见贝叶斯统计)的观点而提出的估计法。

区间估计是依据抽取的样本,根据一定的正确度与精确度的要求,构造出适当的区间,作为总体分布的未知参数或参数的函数的真值所在范围的估计。例如人们常说的有百分之多少的把握保证某值在某个范围内,即是区间估计的最简单的应用。1934年统计学家J.奈曼创立了一种严格的区间估计理论。求置信区间常用的三种方法:①利用已知的抽样分布。②利用区间估计与假设检验的联系。③利用大样本理论。

假设检验是抽样推断中的一项重要内容。它是根据原资料作出一个总体指标是否等于某一个数值,某一随机变量是否服从某种概率分布的假设,然后利用样本资料采用一定的统计方法计算出有关检验的统计量,依据一定的概率原则,以较小的风险来判断估计数值与总体数值(或者估计分布与实际分布)是否存在显著差异,是否应当接受原假设选择的一种检验方法。假设检验的一般步骤

1、提出检验假设(又称无效假设,符号是H0))和备择假设(符号是H1)。H0:样本与总体或样本与样本间的差异是由抽样误差引起的; H1:样本与总体或样本与样本间存在本质差异; 预先设定的检验水准为0.05;当检验假设为真,但被错误地拒绝的概率,记作α,通常取α=0.05或α=0.01。

2、选定统计方法,由样本观察值按相应的公式计算出统计量的大小,如X2值、t值等。根据资料的类型和特点,可分别选用Z检验,T检验,秩和检验和卡方检验等。

3、根据统计量的大小及其分布确定检验假设成立的可能性P的大小并判断结果。若P>α,结论为按α所取水准不显著,不拒绝H0,即认为差别很可能是由于抽样误差造成的,在统计上不成立;如果P≤α,结论为按所取α水准显著,拒绝H0,接受H1,则认为此差别不大可能仅由抽样误差所致,很可能是实验因素不同造成的,故在统计上成立。P值的大小一般可通过查阅相应的界值表得到。

学好数理统计这门课程,其实有很大的作用,它会让人对日常生活中一些涉及概率方面的问题有更加深刻的体会。如果没有统计学,人们在收集资料和进行各项的大型的数据收集工作是非常困难的,通过对统计方法的研究,使得我们处理各种数据更加简便,所以统计也是一门很实用的科学,应该受到大家的重视。

第三篇:数理统计学习心得

数理统计学习心得

现实中常常存在这种情况,我们所掌握的数据只是部分单位的数据或有限单位的数据,而我们所关心的却是整个总体甚至是无限总体的数量特征。例如民意测验谁会当选主席?体育锻炼对增强心脏功能是否有益?某种新药是否提高疗效?全国婴儿性别比例如何?等等。这时只靠部分数据的描述是无法获得总体特征的知识。我们利用统计推断的方法来解决。所谓统计推断就是以一定的置信标准要求,根据样本数据来判断总体数量特征的归纳推理的方法。统计推断是逻辑归纳法在统计推理的应用,所以称为归纳推理的方法。统计推断可以用于总体数量特征的估计,也可以用于对总体某些假设的检验,所以又有不同的推断方法,下面就参数估计和假设检验的基本概念及原理简单谈谈。

参数估计是根据从总体中抽取的样本估计总体分布中包含的未知参数的方法。它是统计推断的一种基本形式,是数理统计学的一个重要分支,分为点估计和区间估计两部分。参数估计包括点估计和区间估计两种方法。

点估计是依据样本估计总体分布中所含的未知参数或未知参数的函数。通常它们是总体的某个特征值,如数学期望、方差和相关系数等。点估计问题就是要构造一个只依赖于样本的量,作为未知参数或未知参数的函数的估计值。构造点估计常用的方法是:①矩估计法。用样本矩估计总体矩,如用样本均值估计总体均值。②最大似然估计法。于1912年由英国统计学家R.A.费希尔提出,利用样本分布密度构造似然函数来求出参数的最大似然估计。③最小二乘法。主要用于线性统计模型中的参数估计问题。④贝叶斯估计法。基于贝叶斯学派(见贝叶斯统计)的观点而提出的估计法。

区间估计是依据抽取的样本,根据一定的正确度与精确度的要求,构造出适当的区间,作为总体分布的未知参数或参数的函数的真值所在范围的估计。例如人们常说的有百分之多少的把握保证某值在某个范围内,即是区间估计的最简单的应用。1934年统计学家J.奈曼创立了一种严格的区间估计理论。求置信区间常用的三种方法:①利用已知的抽样分布。②利用区间估计与假设检验的联系。③利用大样本理论。

假设检验是抽样推断中的一项重要内容。它是根据原资料作出一个总体指标是否等于某一个数值,某一随机变量是否服从某种概率分布的假设,然后利用样

本资料采用一定的统计方法计算出有关检验的统计量,依据一定的概率原则,以较小的风险来判断估计数值与总体数值(或者估计分布与实际分布)是否存在显著差异,是否应当接受原假设选择的一种检验方法。假设检验的一般步骤

1、提出检验假设(又称无效假设,符号是H0))和备择假设(符号是H1)。H0:样本与总体或样本与样本间的差异是由抽样误差引起的; H1:样本与总体或样本与样本间存在本质差异; 预先设定的检验水准为0.05;当检验假设为真,但被错误地拒绝的概率,记作α,通常取α=0.05或α=0.01。

2、选定统计方法,由样本观察值按相应的公式计算出统计量的大小,如X2值、t值等。根据资料的类型和特点,可分别选用Z检验,T检验,秩和检验和卡方检验等。

3、根据统计量的大小及其分布确定检验假设成立的可能性P的大小并判断结果。若P>α,结论为按α所取水准不显著,不拒绝H0,即认为差别很可能是由于抽样误差造成的,在统计上不成立;如果P≤α,结论为按所取α水准显著,拒绝H0,接受H1,则认为此差别不大可能仅由抽样误差所致,很可能是实验因素不同造成的,故在统计上成立。P值的大小一般可通过查阅相应的界值表得到。

假设检验应注意的问题

1、做假设检验之前,应注意资料本身是否有可比性。

2、当差别有统计学意义时应注意这样的差别在实际应用中有无意义。回归分析:应用数学的方法,通过对大量的试验数据进行处理和分析,从而得出正确的反映变量之间的相互关系的数学表达式,并判断其有效性。进而根据表达式,根据一些变量的取值去预测或控制另一变量的变化,并分析这些变量对另一变量的影响程度。(强调的是数学模型的建立,且用F检验验证所有自变量与因变量的显著性。用T检验验证模型中每个自变量单独与因变量的影响显著性。)

相关分析:在统计分析中,对两个及两个以上变量间数量关系的性质、特点、表现形式进行描述、处理的一种专门的统计分析技术。变量之间的不严格、不准确、不稳定的数量依存关系被称为相关关系,相关关系的强弱、疏密、因环境、时间的变化而呈现出一种独特的规律性。相关分析的目的就是探索相关关系的变动规律,并利用相关分析的结果,为回归分析及统计决策提供有力的依据。

相关系数只能描述变量间的关系密切程度,不能揭示现象间的本质联系。相关系数:随机向量的各个变量之间线性关系的密切程度。

多重共线问题:当自变量之间存在一定程度的关联,即相关系数在0和1之间时,回归模型中的自变量就会削弱各自对因变量的影响,在一定程度上影响参数估计值的准确性和稳定性。

对多重共线问题的测度:

1,自变量的容忍度,以容许度指标表示。容许度=1-R平方。容许度越大,说明某个自变量X与方程中的其他自变量之间的线性关系越弱,多重共线性较低。反之,容许度接近0,说明某个自变量X与方程中的其他自变量之间的线性关系较强,多重共线性较高,应将此自变量剔除出模型。

2,方差膨胀因子。方差膨胀因子是容许度的倒数,其数值越大,说明自变量之间的多重共线越高。

3,D-W检验。检验模型中的误差项是否存在自相关的一种有效方法。D在0-4之间。D=2,残差之间独立。D<2,残差之间正相关。D>2,残差之间负相关。根据经验,D∈(1.5,2.5)之间表示没有显著自相关问题。

自变量:我们将变量中的原因变量称为自变量,即不受其他因素影响而发生变化在前的变量。

因变量:结果变量,受自变量变化影响而跟着发生变化的变量。

线性回归模型:是线性模型中的一种,变量之间的关系呈线性关系,数学基础是回归分析。(用回归分析方法建立的,变量之间的关系呈线性关系,用以揭示经济现象中的因果关系的模型)。

事件分析法:主要是分析某事件对于社会经济生活是否确实有冲击作用。需要首先界定事件发生作用的时间段,即事件窗口,然后通过事件窗口超额收益的大小来衡量事件的影响。所谓超额收益是指实际收益与假设发生该事件的期望收益之差,而期望收益是由计量经济模型计算。

事件窗口即为事件期。

配对T检验主要解决配对样本数据的两个总体均值有否显著差异的问题。主要解决来自配对样本数据的两个总体均值有否显著差异的问题。所谓配对样本,通常是指对同一观察对象在使用某种新方法前后的两组数据进行比照,用两组数据的均值,有否显著差异来判断这种新方法的有效性。配对样本的T检验对数据的要求:1,抽取样本数据的两个总体必须服从正态分布。2,两个样本的样本容量相同。

显著性水平:假设检验中,常有=0.05,=0.01作为检验的显著水平。显著性水平是指当原假设为真时人们拒绝它的概率,亦称拒真概率。根据假设检验的原理,拒真概率应是一个小概率事件。如果在检验中发现用样本数据计算出来的实际概率小于或等于事先给定显著性水平(p≦),就可以认为这个在一次试验中不应该发生的更小概率,居然在一次试验中发生了,我们有理由怀疑原假设的真实性,所以拒绝原假设。(p>),接受原假设。学习到连续型随机变量时已经与高中学习的相差很大,对连续型随机变量求其在去某值时的概率是无意义的,只能求变量落在某一范围内的概率。因为现实生活中的事件大多受到两个或多个因素影响,很多随机现象中,往往要涉及到多个随机变量,而且这些随机变量之间存在某种联系,因此多维随机变量的知识在生活中应用更广。随机变量的概率密度与分布直接反映出随机变量的分布情况,随机变量的数学期望,方差等在生活中可以帮助人们做出选择。比如大赛前选拔选手才赛,对某产品的质量估计等。

当一些随机变量的分布不易求出或不需要知道随机变量的概率分布,而只需要知道其数学期望,方差即可知道其大概分布情况。随机变量的数学期望反映了随机变量取值的平均值,而随机变量的方差反映了随机变量离开其平均值的平均偏离大小,反映了随机变量的稳定性。

学好数理统计这门课程,其实有很大的作用,它会让人对日常生活中一些涉及概率方面的问题有更加深刻的体会。如果没有统计学,人们在收集资料和进行各项的大型的数据收集工作是非常困难的,通过对统计方法的研究,使得我们处理各种数据更加简便,所以统计也是一门很实用的科学,应该受到大家的重视。

第四篇:概率论与数理统计

《概率论与数理统计》公共基础课教学实践

1012502-31 汤建波

概率与数理统计在现实的牛产和生活中有着广泛的应用,因此,《概率论与数理统计》作为公共课是很多专业所必修的。但是,由于这门课的学习方法与《微积分》《线性代数》等其他课程有着极大的差异,很多学生在学习过程中感到难以把握概念与理论,在遇到问题时不知如何人手。因此,笔者在总结这几年教学实践的基础上,提出以下思考。

一、适度引入案例。形成生动教学及启发性教学

概率论源于博弈,是赌博中的很多问题催生了概率论这门数学学科。在开课伊始,教师就适度引入触发概率论的一些问题,如“De.mere”问题,“分赌金问题”等等,使学生在故事中不仅得到r课本里所没有的历史知识,而且无形中可以提高学习兴趣,消弭一部分同学的畏难情绪。另外,再在随后的教学过程中引入“彩票中奖问题”“蒙特卡罗法求订法”“保险付赔问题”等等,引导学生了解、探索这门学科在现实中的应用,使学乍实现由知识向能力的转化,从而增强学,F利用概率统计解决实际问题的“欲望”,促使他们更好地认识现实世界。

概念是概率课程中最基本的内容,对概念的理解程度直接影响学生对这门课程的学习与掌握程度。在教学中,应尽量从实际问题入手,先提出问题,接着在问题的分析和解决中抽象出概念,让学生清楚概念的来龙去脉,而不是硬性给出定义,让学生死记硬背。例如,在讲述“事件”这个定义时,引入“卫瞿嫦娥二号将于2010年10月1日发射”这一现实中的“事件”在概率论中应该是“实验”,而其结果“发射成功”才能算是概率论所定义的“事件”,这样,在区别现实的“事件”与概率论所研究的“事件”基础上,学生加深了对“事件”这一定义的理解。在阐明相互独立和互不相容之间的区别有P(A)>0,P(B)>0时,A、B相瓦独屯与互不相容是不能同时成立的,直观上可以这样解释:相互独立意味这

4、B其中一方发生与否并不影响另一方的发生,而互不相容意味着A、B只要其中一方发生了,另一方就一定不发生,所以这两个关系不能同时存在。从公式上解释是:P(A)>0,P(B)>0且A、B相互独立,则P(AB)=P(A)P(B)>0,而如果A、B互不相容,则P(AB)=P(西)=0。但是只要有一方的概率为0,如,如果A=西,则A与B既相互独立又互不相容,因为此时P(AB)=P(A)P(B)=0。综上所述,相互独立与互不相容并没有必然的联系。

而在区别“不相关”与“相互独立”的区别时,可以通过举例得知J]|f、y不相关不一定就独立,因为X、l,之间有可能存在其他的函数关系,但是存在函数关系的随机变量是否就不独立了呢?答案是未必,例子如下:

考察随机变量X、l,和Z:假定x与l,独立月.都服从参数为P的(0—1)分布,令z为x与y的函数:

可以得到当P=1/2时,Z与X相互独立。转载于 无忧论文网 http://www.xiexiebang.com

通过这些举例,避免了学生将“独立”和“互不相容”等同起来,又说明了“独立”与“函数关系”之间的联系。

二、课堂教学中注重数学思想的教育。培养学生建模能力

概率统计中的很多问题都可以归结为同一类问题,数学模型就是这类事物共同本质的抽象。“数学建模”是指对于现实世界的一个特定对象,为了一个特定目的,根据特有的内在规律,做出一些必要的简化假设,运用适当的数学工具,得到一个数学结构。数学模型在概率统计中的应用随处可见,模型化方法贯穿本课程全过程,因此,在教学过程中应该注意培养学生抽象出问题的本质以建立起一般的数学模型的能力。

如“将n只球随机地放入Ⅳ(N大于等于n)个盒子中去,求每个盒子至多有一只球的概率”与“班级同学生日各不相同”具有相同的数学模型。另外,还有古典概型、贝努利概型、正态分布等等这些都是生产生活中抽象出来的,在很多问题中都可以归结为以上的模型。如以下两个

例1,设有80台同类型设备,各台工作是相互独立的,发生故障的概率都是0.01,且一台设备的故障能由一个人处理。考虑两种配备维修工人的方法,其一是由4人维护,每人负责20台;其二是由3人共同维护80台。试比较这两种方法在设备发生故障时不能及时维修的概率的大小。

例2,保险公司在一天内承保了5000张相同年龄、为期1年的寿险保单,每人一份。在合同有效期内若投保人死亡,则公司赔付3万元。设在一年内,该年龄段的死亡率为0.0015,且各个投保人是否死亡相互独立。求该公司对于这批投保人的赔付总额不超过30万元的概率。

以上两个例子虽然不同,但都可以归结为伯努利概型,利用二项分布解决。对这类模型,不应简单地给出它的结果,而应注秀模型的建立、模型的应用范围以及如何把实际问题转化为有关的数学模型去解决。

三、适度引入多媒体教学及数据处理软件。促进课堂教学手段多样化

在概率统计教学中,实际题目信息及文字很多,“一支粉笔、一块黑板,以讲授为主”的传统教学方法显然已经跟不上现代化的教学要求,不利于培养学生的综合素质和创新能力。因此,有必要借助于现代化媒体技术和统计软件,制作内容、图形、声音、图像等结合起来的多媒体课件。~方面,采用多媒体教学手段进行辅助教学,能够将教师从很多重复性的劳动中解脱出来,教师可以将更多的精力和时间投入到如何分析和解释问题,以提高课堂效率,与学生有效地进行课堂交流。另一方面,用图形动画和模拟实验等多媒体作为辅助教学手段,便于学生对概念、图形等的理解。如投币试验、高尔顿板钉实验等小动画在不占用太多课堂时间的同时,又增添了课堂的趣味性。又如在利用Mathematica软件演示大数定律和中心极限定理时,就能将抽象的定理化为形象的直观认识,达到一定的教学效果。在处理概率统计问题中,教师也会面对大量的数据,另外,集数学计算、处理与分析为一身的数据处理软件如:Excel,Matlab,Mathematic,SAS,SPSS等,在计算一些冗长数据时可以简化计算,降低理论难度。而且,在教师的演示过程中,能让学生初步了解如何应用计算机及软件,将所学的知识用于解决生产生活中的实际问题,从而激发他们学习概率知识的热情,提高他们利用计算机解决问题的能力。

最后,在教学过程中,教师应该考虑到各个专业的学生今后学习与发展的需要,在满足教学大纲的要求下,选择与其专业关系紧密的知识点进行重点讲授。同时,在讲授过程中,本着以人为本的教学理念,注意多种方法灵活应用,建立积极的互动教学模式,尽量避免教师在课堂上满堂灌、填鸭式地教学,充分调动学生学习的主动性,挖掘学生的学习潜能,最大限度地发挥和发展学生的聪明才智,使学生能理解概率统计这一学科领域思想方法的精髓。

论文参考文献:

[1]盛骤,谢式千。潘承毅.概率论与数理统计[M].北京:高等教育出版社,2009.

[2] 姜启源.数学模型[M].北京:高等教育出版社。2003:4—7.

[3] 徐钟济.蒙特卡罗方法[M].上海:上海科学技术出版社,1985:171—188.

[4] 郝晓斌,董西广.数学建模思想在概率论与数理统计课程教学中的应用[J].经济研究导刊,2010,90(16):244—245.

[5]徐荣聪,游华.(概率论与数理统计)课程案例教学法[J].宁德师专学报(自然科学版),2008(2):145—147.

第五篇:数理统计学习感想

数理统计学习感想

学习了一学期的数理统计,我学会了如何在生活中运用所学的知识去解决一些问题。

现实中常常存在这种情况,我们所掌握的数据只是部分单位的数据或有限单位的数据,而我们所关心的却是整个总体甚至是无限总体的数量特征。例如,民意测验谁会当选主席?体育锻炼对增强心脏功能是否有益?某种新药是否提高疗效?全国婴儿性别比例如何?等等。这时只靠部分数据的描述是无法获得总体特征的知识。

我们利用统计推断的方法来解决。所谓统计推断就是以一定的置信标准要求,根据样本数据来判断总体数量特征的归纳推理的方法。统计推断是逻辑归纳法在统计推理的应用,所以称为归纳推理的方法。统计推断可以用于总体数量特征的估计,也可以用于对总体某些假设的检验,所以又有不同的推断方法。下面就参数估计和假设检验的基本概念及原理简单谈谈。

参数估计是根据从总体中抽取的样本估计总体分布中包含的未知参数的方法。它是统计推断的一种基本形式,是数理统计学的一个重要分支,分为点估计和区间估计两部分。参数估计包括点估计和区间估计两种方法。

点估计是依据样本估计总体分布中所含的未知参数或未知参数的函数。通常它们是总体的某个特征值,如数学期望、方差和相关系数等。点估计问题就是要构造一个只依赖于样本的量,作为未知参数或未知参数的函数的估计值。构造点估计常用的方法是:①矩估计法。用样本矩估计总体矩,如用样本均值估计总体均值。②最大似然估计法。于1912年由英国统计学家R.A.费希尔提出,利用样本分布密度构造似然函数来求出参数的最大似然估计。③最小二乘法。主要用于线性统计模型中的参数估计问题。④贝叶斯估计法。基于贝叶斯学派(见贝叶斯统计)的观点而提出的估计法。

区间估计是依据抽取的样本,根据一定的正确度与精确度的要求,构造出适当的区间,作为总体分布的未知参数或参数的函数的真值所在范围的估计。例如人们常说的有百分之多少的把握保证某值在某个范围内,即是区间估计的最简单的应用。1934年统计学家J.奈曼创立了一种严格的区间估计理论。求置信区间常用的三种方法:①利用已知的抽样分布。②利用区间估计与假设检验的联系。③利用大样本理论。

假设检验是抽样推断中的一项重要内容。它是根据原资料作出一个总体指标是否等于某一个数值,某一随机变量是否服从某种概率分布的假设,然后利用样本资料采用一定的统计方法计算出有关检验的统计量,依据一定的概率原则,以较小的风险来判断估计数值与总体数值(或者估计分布与实际分布)是否存在显著差异,是否应当接受原假设选择的一种检验方法。

假设检验的一般步骤

1、提出检验假设(又称无效假设,符号是H0))和备择假设(符号是H1)。H0:样本与总体或样本与样本间的差异是由抽样误差引起的; H1:样本与总体或样本与样本间存在本质差异; 预先设定的检验水准为0.05;当检验假设为真,但被错误地拒绝的概率,记作α,通常取α=0.05或α=0.01。

2、选定统计方法,由样本观察值按相应的公式计算出统计量的大小,如X2值、t值等。根据资料的类型和特点,可分别选用Z检验,T检验,秩和检验和卡方检验等。

3、根据统计量的大小及其分布确定检验假设成立的可能性P的大小并判断结果。若P>α,结论为按α所取水准不显著,不拒绝H0,即认为差别很可能是由于抽样误差造成的,在统计上不成立;如果P≤α,结论为按所取α水准显著,拒绝H0,接受H1,则认为此差别不大可能仅由抽样误差所致,很可能是实验因素不同造成的,故在统计上成立。P值的大小一般可通过查阅相应的界值表得到。

假设检验应注意的问题

1、做假设检验之前,应注意资料本身是否有可比性。

2、当差别有统计学意义时应注意这样的差别在实际应用中有无意义。

3、根据资料类型和特点选用正确的假设检验方法。

4、根据专业及经验确定是选用单侧检验还是双侧检验。

5、当检验结果为拒绝无效假设时,应注意有发生I类错误的可能性,即错误地拒绝了本身成立的H0,发生这种错误的可能性预先是知道的,即检验水准那么大;当检验结果为不拒绝无效假设时,应注意有发生II类错误的可能性,即仍有可能错误地接受了本身就不成立的H0,发生这种错误的可能性预先是不知道的,但与样本含量和I类错误的大小有关系。

6、判断结论时不能绝对化,应注意无论接受或拒绝检验假设,都有判断错误的可能性。

区间估计与假设检验有区别也有联系。

(一)主要区别:

1、参数估计是以样本资料估计总体参数的真值,假设检验是以样本资料检验对总体参数的先验假设是否成立;

2、区间估计求得的是求以样本估计值为中心的双侧置信区间,假设检验既有双侧检验,也有单侧检验;

3、区间估计 立足于大概率,假设检验立足于小概率。

(二)主要联系:

1、都是根据样本信息推断总体参数;

2、都以抽样分布为理论依据,建立在概率论基础之上的推断;

3、二者可相互转换,形成对偶性。

另外,在统计推断中,我们是利用样本统计量估计和推测总体参数的。那么,很重要的一点就是要保证样本的代表性。因为如果从总体中抽取出来的样本缺乏代表性,那么利用这个样本提供的信息是难以准确有效地推测总体的某些分布特征的。因此,搞好统计推断的前提条件就是要利用随机抽样,尽量减小抽样误差。有关抽样的方法主要有以下几种:

1. 简单随机抽样

如果总体中每个个体被抽到的机会是均等的(即抽样的随机性),并且在抽取一个个体之后总体内成分不变(抽样的独立性),这种抽样方法称为简单随机抽样。简单随机抽样是最简单的抽样方法,它简便易行,使用范围广。常用的方式有:抽签法、随机数字表法等。

抽签法:先将总体中每个个体编上号码,再将每个号码写在签上,将签充分混合后,从中抽取n个(即样本的容量)签,与被抽到的签号相应的个体就进入样本。

随机数字表法:利用随机数字表抽样是简单随机抽样中常用的一种方法。随机数字表是用电子随机编号器编成的,由许多随机数排列起来的数字表。例如,要从30人的班级中抽选出5个学生作为样本,先把这30个学生编号,然后任意从表中的一个数字作为起点,或向上、向下、向左、向右的数字,选用其头两位按顺序选取5个。凡是编号与选取的数字相同者,定为被选对象,构成样本。

除利用随机数字表产生随机数字外,还可以利用计算机编制程序,或在计算机上产生随机数,这样抽样也很方便。2.机械随机抽样

机械随机抽样要先将总体中的所有个体按一定顺序编号,然后按确定的相等距离抽取个体(间隔距离的大小依据所需样本与总体中个体数目的比率而定)。例如,要从1000个学生中抽取10名学生作为样本,可将这1000名学生从1—1000编号后,先从1—100编号中随机抽出一个号码,假定是39,以下从39号开始,每隔100个号码抽取一个,抽到39,139,239,…939共10个编号,这些编号对应的学生就构成容量为10的样本。

3.分层随机抽样

分层随机抽样也称类型随机抽样。先把总体按一定标准分为同质的若干层或类型,然后在每层或类型中随机抽样。采用分层随机抽样时应遵循一个基本原则,即所分的各层内的差异要尽量小,二层与层之间的差异要尽量大。对一个总体来说,怎样分层要视具体情况而定,分层的标准可以是一个,也可以是多个。例如,研究某校高三毕业生的数学推理能力,可按文、理分层,各自取样。而要调查某省高中二年级学生的实验能力,在抽样时就应考虑性别、城乡、学校是否重点、家庭等等各种因素,以这几个标准作为分层标准,依次分层,再抽取样本。

在把总体分好层次后,如何将样本容量n合理地分到各层中去,常用的方法是根据各层人数的多少按比例抽取。

4.整群随机抽样

从总体中抽取出来的研究对象,不是以个体为单位,而是以整群作为单位的抽样方法,称为整群随机抽样。例如,要了解某市某年化学学科高考的成绩,可以以学校为单位进行随机抽样。

为了增强样本对总体的代表性,弥补整群抽样的不均匀性,可以采用整群随机抽样内部再进行分层随机抽样的两阶段随机抽样法。例如,要调查某省小学二年级学生的身体情况,抽样就可以分为两步。先将全省分为若干部分,从中随机抽取几个部分作为全省小学二年级学生的代表。接着在抽取的各部分中,再按性别、家庭、民族、学校等标准,以此进行分层抽样。在这种做法中,第一阶段中的样本,对于第二阶段来说又是总体。所以,在比较大的调查研究中,采用整群随机抽样与分层随机抽样相结合的做法是比较恰当的。

现实生活中概率问题随处可见,学好概率论和数理统计知识十分必要,我们学到的概率统计知识仅仅是一点点皮毛,如有必要我们还需深入学习它,达到学以致用的目的,在今后的学习生活中顺利解决遇到的此类问题。

下载数理统计试卷(最终定稿)word格式文档
下载数理统计试卷(最终定稿).doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    概率论与数理统计

    概率论与数理统计,运筹学,计算数学,统计学,还有新增的应用数学,每个学校情况不太一样,每个导师研究的方向也不太一样。看你报的哪个学校了~~ 赞同数学的方向还是比较多的,比如金融,......

    数理统计复习要点

    数理统计复习要点 1、熟练掌握概率论基本知识; 2、熟练掌握母体、子样的概念及其分布,重点掌握母体中X和S2的分布及三种重要的分布,理解分位数的概念。 3、掌握参数估计中的点......

    概率论与数理统计

    概率论与数理统计一、随机事件和概率考试内容随机事件与样本空间 事件的关系与运算 完备事件组 概率的概念 概率的基本性质 古典型概率 几何型概率 条件概率 概率的基本公式......

    会计与数理统计

    会计与数理统计 随着我国资本市场,特别是证券市场的建立,以及现代企业制度的推进,大量会计问题需要研究和分析论证。因此,盛行于西方会计界的实证会计在我国开始受到重视,并将逐......

    数理统计课程建设

    数理统计课程建设规划 《数理统计》课程是数学与应用数学专业的一门专业教育平台必修课程.数理统计的研究对象是随机现象的规律性.是在现代数学和概率论基础上,对随机现象进行......

    概率论与数理统计实验报告

    概率论与数理统计 实验报告 题目1:n个人中至少有两人生日相同的概率是多少?通过计算机模拟此结果。 问题分析:n编程: n=input('请输入总人数n='); a=365^n; m=n-1; b=1; for i=......

    《概率论与数理统计》课程标准

    《概率论与数理统计》课程建设 课程标准 第一部分 前言 《概率论与数理统计》(Probability Theory and Mathematical Statistics),由概率论和数理统计两部分组成。它是研究随......

    概率论与数理统计A,教学大纲

    概率论与数理统计A Probability & Statistics A 课程编码:09A00210 学分:3.5 课程类别:专业基础课 计划学时:56 其中讲课:56 实验或实践:0 上机:0 适用专业:部分理工类、经济、管......