第一篇:高考数学试卷(文科)(全国卷ⅰ)(含解析版),09版
2009年全国统一高考数学试卷(文科)(全国卷Ⅰ)一、选择题(共12小题,每小题5分,满分60分)1.(5分)sin585°的值为()A. B. C. D. 2.(5分)设集合A={4,5,7,9},B={3,4,7,8,9},全集U=A∪B,则集合∁U(A∩B)中的元素共有()A.3个 B.4个 C.5个 D.6个 3.(5分)不等式<1的解集为()A.{x|0<x<1}∪{x|x>1} B.{x|0<x<1} C.{x|﹣1<x<0} D.{x|x<0} 4.(5分)已知tana=4,cotβ=,则tan(a+β)=()A. B.﹣ C. D.﹣ 5.(5分)已知双曲线﹣=1(a>0,b>0)的渐近线与抛物线y=x2+1相切,则该双曲线的离心率为()A. B.2 C. D. 6.(5分)已知函数f(x)的反函数为g(x)=1+2lgx(x>0),则f(1)+g(1)=()A.0 B.1 C.2 D.4 7.(5分)甲组有5名男同学,3名女同学;
乙组有6名男同学、2名女同学.若从甲、乙两组中各选出2名同学,则选出的4人中恰有1名女同学的不同选法共有()A.150种 B.180种 C.300种 D.345种 8.(5分)设非零向量、、满足,则=()A.150° B.120° C.60° D.30° 9.(5分)已知三棱柱ABC﹣A1B1C1的侧棱与底面边长都相等,A1在底面ABC上的射影D为BC的中点,则异面直线AB与CC1所成的角的余弦值为()A. B. C. D. 10.(5分)如果函数y=3cos(2x+φ)的图象关于点(,0)中心对称,那么|φ|的最小值为()A. B. C. D. 11.(5分)已知二面角α﹣l﹣β为60°,动点P、Q分别在面α、β内,P到β的距离为,Q到α的距离为,则P、Q两点之间距离的最小值为()A.1 B.2 C. D.4 12.(5分)已知椭圆C:+y2=1的右焦点为F,右准线为l,点A∈l,线段AF交C于点B,若=3,则||=()A. B.2 C. D.3 二、填空题(共4小题,每小题5分,满分20分)13.(5分)(x﹣y)10的展开式中,x7y3的系数与x3y7的系数之和等于 . 14.(5分)设等差数列{an}的前n的和为Sn,若S9=72,则a2+a4+a9= . 15.(5分)已知OA为球O的半径,过OA的中点M且垂直于OA的平面截球面得到圆M.若圆M的面积为3π,则球O的表面积等于 . 16.(5分)若直线m被两平行线l1:x﹣y+1=0与l2:x﹣y+3=0所截得的线段的长为,则m的倾斜角可以是①15°②30°③45°④60°⑤75°其中正确答案的序号是(写出所有正确答案的序号)三、解答题(共6小题,满分70分)17.(10分)设等差数列{an}的前n项和为Sn,公比是正数的等比数列{bn}的前n项和为Tn,已知a1=1,b1=3,a3+b3=17,T3﹣S3=12,求{an},{bn}的通项公式. 18.(12分)在△ABC中,内角A、B、C的对边长分别为a、b、c,已知a2﹣c2=2b,且sinAcosC=3cosAsinC,求b. 19.(12分)如图,四棱锥S﹣ABCD中,底面ABCD为矩形,SD⊥底面ABCD,AD=,DC=SD=2,点M在侧棱SC上,∠ABM=60°(I)证明:M是侧棱SC的中点;
(Ⅱ)求二面角S﹣AM﹣B的大小. 20.(12分)甲、乙二人进行一次围棋比赛,约定先胜3局者获得这次比赛的胜利,比赛结束.假设在一局中,甲获胜的概率为0.6,乙获胜的概率为0.4,各局比赛结果相互独立.已知前2局中,甲、乙各胜1局.(Ⅰ)求再赛2局结束这次比赛的概率;
(Ⅱ)求甲获得这次比赛胜利的概率. 21.(12分)已知函数f(x)=x4﹣3x2+6.(Ⅰ)讨论f(x)的单调性;
(Ⅱ)设点P在曲线y=f(x)上,若该曲线在点P处的切线l通过坐标原点,求l的方程. 22.(12分)如图,已知抛物线E:y2=x与圆M:(x﹣4)2+y2=r2(r>0)相交于A、B、C、D四个点.(Ⅰ)求r的取值范围;
(Ⅱ)当四边形ABCD的面积最大时,求对角线AC、BD的交点P的坐标. 2009年全国统一高考数学试卷(文科)(全国卷Ⅰ)参考答案与试题解析 一、选择题(共12小题,每小题5分,满分60分)1.(5分)sin585°的值为()A. B. C. D. 【考点】GE:诱导公式.菁优网版权所有 【分析】由sin(α+2kπ)=sinα、sin(α+π)=﹣sinα及特殊角三角函数值解之. 【解答】解:sin585°=sin(585°﹣360°)=sin225°=sin(45°+180°)=﹣sin45°=﹣,故选:A. 【点评】本题考查诱导公式及特殊角三角函数值. 2.(5分)设集合A={4,5,7,9},B={3,4,7,8,9},全集U=A∪B,则集合∁U(A∩B)中的元素共有()A.3个 B.4个 C.5个 D.6个 【考点】1H:交、并、补集的混合运算.菁优网版权所有 【分析】根据交集含义取A、B的公共元素写出A∩B,再根据补集的含义求解. 【解答】解:A∪B={3,4,5,7,8,9},A∩B={4,7,9}∴∁U(A∩B)={3,5,8}故选A. 也可用摩根律:∁U(A∩B)=(∁UA)∪(∁UB)故选:A. 【点评】本题考查集合的基本运算,较简单. 3.(5分)不等式<1的解集为()A.{x|0<x<1}∪{x|x>1} B.{x|0<x<1} C.{x|﹣1<x<0} D.{x|x<0} 【考点】7E:其他不等式的解法.菁优网版权所有 【分析】本题为绝对值不等式,去绝对值是关键,可利用绝对值意义去绝对值,也可两边平方去绝对值. 【解答】解:∵<1,∴|x+1|<|x﹣1|,∴x2+2x+1<x2﹣2x+1. ∴x<0. ∴不等式的解集为{x|x<0}. 故选:D. 【点评】本题主要考查解绝对值不等式,属基本题.解绝对值不等式的关键是去绝对值,去绝对值的方法主要有:利用绝对值的意义、讨论和平方. 4.(5分)已知tana=4,cotβ=,则tan(a+β)=()A. B.﹣ C. D.﹣ 【考点】GP:两角和与差的三角函数.菁优网版权所有 【专题】11:计算题. 【分析】由已知中cotβ=,由同角三角函数的基本关系公式,我们求出β角的正切值,然后代入两角和的正切公式,即可得到答案. 【解答】解:∵tana=4,cotβ=,∴tanβ=3 ∴tan(a+β)===﹣ 故选:B. 【点评】本题考查的知识点是两角和与差的正切函数,其中根据已知中β角的余切值,根据同角三角函数的基本关系公式,求出β角的正切值是解答本题的关键. 5.(5分)已知双曲线﹣=1(a>0,b>0)的渐近线与抛物线y=x2+1相切,则该双曲线的离心率为()A. B.2 C. D. 【考点】KC:双曲线的性质;
KH:直线与圆锥曲线的综合.菁优网版权所有 【专题】11:计算题. 【分析】先求出渐近线方程,代入抛物线方程,根据判别式等于0,找到a和b的关系,从而推断出a和c的关系,答案可得. 【解答】解:由题双曲线的一条渐近线方程为,代入抛物线方程整理得ax2﹣bx+a=0,因渐近线与抛物线相切,所以b2﹣4a2=0,即,故选:C. 【点评】本小题考查双曲线的渐近线方程直线与圆锥曲线的位置关系、双曲线的离心率,基础题. 6.(5分)已知函数f(x)的反函数为g(x)=1+2lgx(x>0),则f(1)+g(1)=()A.0 B.1 C.2 D.4 【考点】4R:反函数.菁优网版权所有 【专题】11:计算题. 【分析】将x=1代入即可求得g(1),欲求f(1),只须求当g(x)=1时x的值即可.从而解决问题. 【解答】解:由题令1+2lgx=1 得x=1,即f(1)=1,又g(1)=1,所以f(1)+g(1)=2,故选:C. 【点评】本小题考查反函数,题目虽然简单,却考查了对基础知识的灵活掌握情况,也考查了运用知识的能力. 7.(5分)甲组有5名男同学,3名女同学;
乙组有6名男同学、2名女同学.若从甲、乙两组中各选出2名同学,则选出的4人中恰有1名女同学的不同选法共有()A.150种 B.180种 C.300种 D.345种 【考点】D1:分类加法计数原理;
D2:分步乘法计数原理.菁优网版权所有 【专题】5O:排列组合. 【分析】选出的4人中恰有1名女同学的不同选法,1名女同学来自甲组和乙组两类型. 【解答】解:分两类(1)甲组中选出一名女生有C51•C31•C62=225种选法;
(2)乙组中选出一名女生有C52•C61•C21=120种选法.故共有345种选法. 故选:D. 【点评】分类加法计数原理和分类乘法计数原理,最关键做到不重不漏,先分类,后分步!8.(5分)设非零向量、、满足,则=()A.150° B.120° C.60° D.30° 【考点】9S:数量积表示两个向量的夹角.菁优网版权所有 【分析】根据向量加法的平行四边形法则,两个向量的模长相等可构成菱形的两条相邻边,三个向量起点处的对角线长等于菱形的边长,这样得到一个含有特殊角的菱形. 【解答】解:由向量加法的平行四边形法则,∵两个向量的模长相等 ∴、可构成菱形的两条相邻边,∵ ∴、为起点处的对角线长等于菱形的边长,∴两个向量的夹角是120°,故选:B. 【点评】本小题考查向量的几何运算、考查数形结合的思想,基础题.向量知识,向量观点在数学.物理等学科的很多分支有着广泛的应用,而它具有代数形式和几何形式的“双重身份”能融数形于一体. 9.(5分)已知三棱柱ABC﹣A1B1C1的侧棱与底面边长都相等,A1在底面ABC上的射影D为BC的中点,则异面直线AB与CC1所成的角的余弦值为()A. B. C. D. 【考点】LO:空间中直线与直线之间的位置关系.菁优网版权所有 【分析】首先找到异面直线AB与CC1所成的角(如∠A1AB);
而欲求其余弦值可考虑余弦定理,则只要表示出A1B的长度即可;
不妨设三棱柱ABC﹣A1B1C1的侧棱与底面边长为1,利用勾股定理即可求之. 【解答】解:设BC的中点为D,连接A1D、AD、A1B,易知θ=∠A1AB即为异面直线AB与CC1所成的角;
并设三棱柱ABC﹣A1B1C1的侧棱与底面边长为1,则|AD|=,|A1D|=,|A1B|=,由余弦定理,得cosθ==. 故选:D. 【点评】本题主要考查异面直线的夹角与余弦定理. 10.(5分)如果函数y=3cos(2x+φ)的图象关于点(,0)中心对称,那么|φ|的最小值为()A. B. C. D. 【考点】HB:余弦函数的对称性.菁优网版权所有 【专题】11:计算题. 【分析】先根据函数y=3cos(2x+φ)的图象关于点中心对称,令x=代入函数使其等于0,求出φ的值,进而可得|φ|的最小值. 【解答】解:∵函数y=3cos(2x+φ)的图象关于点中心对称. ∴∴由此易得. 故选:A. 【点评】本题主要考查余弦函数的对称性.属基础题. 11.(5分)已知二面角α﹣l﹣β为60°,动点P、Q分别在面α、β内,P到β的距离为,Q到α的距离为,则P、Q两点之间距离的最小值为()A.1 B.2 C. D.4 【考点】LQ:平面与平面之间的位置关系.菁优网版权所有 【专题】11:计算题;
16:压轴题. 【分析】分别作QA⊥α于A,AC⊥l于C,PB⊥β于B,PD⊥l于D,连CQ,BD则∠ACQ=∠PBD=60°,在三角形APQ中将PQ表示出来,再研究其最值即可. 【解答】解:如图 分别作QA⊥α于A,AC⊥l于C,PB⊥β于B,PD⊥l于D,连CQ,BD则∠ACQ=∠PDB=60°,又∵ 当且仅当AP=0,即点A与点P重合时取最小值. 故选:C. 【点评】本题主要考查了平面与平面之间的位置关系,以及空间中直线与平面之间的位置关系,考查空间想象能力、运算能力和推理论证能力,属于基础题. 12.(5分)已知椭圆C:+y2=1的右焦点为F,右准线为l,点A∈l,线段AF交C于点B,若=3,则||=()A. B.2 C. D.3 【考点】K4:椭圆的性质.菁优网版权所有 【专题】11:计算题;
16:压轴题. 【分析】过点B作BM⊥x轴于M,设右准线l与x轴的交点为N,根据椭圆的性质可知FN=1,进而根据,求出BM,AN,进而可得|AF|. 【解答】解:过点B作BM⊥x轴于M,并设右准线l与x轴的交点为N,易知FN=1. 由题意,故FM=,故B点的横坐标为,纵坐标为± 即BM=,故AN=1,∴. 故选:A. 【点评】本小题考查椭圆的准线、向量的运用、椭圆的定义,属基础题. 二、填空题(共4小题,每小题5分,满分20分)13.(5分)(x﹣y)10的展开式中,x7y3的系数与x3y7的系数之和等于 ﹣240 . 【考点】DA:二项式定理.菁优网版权所有 【专题】11:计算题. 【分析】首先要了解二项式定理:(a+b)n=Cn0anb0+Cn1an﹣1b1+Cn2an﹣2b2++Cnran﹣rbr++Cnna0bn,各项的通项公式为:Tr+1=Cnran﹣rbr.然后根据题目已知求解即可. 【解答】解:因为(x﹣y)10的展开式中含x7y3的项为C103x10﹣3y3(﹣1)3=﹣C103x7y3,含x3y7的项为C107x10﹣7y7(﹣1)7=﹣C107x3y7. 由C103=C107=120知,x7y3与x3y7的系数之和为﹣240. 故答案为﹣240. 【点评】此题主要考查二项式定理的应用问题,对于公式:(a+b)n=Cn0anb0+Cn1an﹣1b1+Cn2an﹣2b2++Cnran﹣rbr++Cnna0bn,属于重点考点,同学们需要理解记忆. 14.(5分)设等差数列{an}的前n的和为Sn,若S9=72,则a2+a4+a9= 24 . 【考点】83:等差数列的性质.菁优网版权所有 【分析】先由S9=72用性质求得a5,而3(a1+4d)=3a5,从而求得答案. 【解答】解:∵ ∴a5=8 又∵a2+a4+a9=3(a1+4d)=3a5=24 故答案是24 【点评】本题主要考查等差数列的性质及项与项间的内在联系. 15.(5分)已知OA为球O的半径,过OA的中点M且垂直于OA的平面截球面得到圆M.若圆M的面积为3π,则球O的表面积等于 16π . 【考点】LG:球的体积和表面积.菁优网版权所有 【专题】11:计算题;
16:压轴题. 【分析】由题意求出圆M的半径,设出球的半径,二者与OM构成直角三角形,求出球的半径,然后可求球的表面积. 【解答】解:∵圆M的面积为3π,∴圆M的半径r=,设球的半径为R,由图可知,R2=R2+3,∴R2=3,∴R2=4. ∴S球=4πR2=16π. 故答案为:16π 【点评】本题是基础题,考查球的体积、表面积的计算,理解并能够应用小圆的半径、球的半径、以及球心与圆心的连线的关系,是本题的突破口,解题重点所在,仔细体会. 16.(5分)若直线m被两平行线l1:x﹣y+1=0与l2:x﹣y+3=0所截得的线段的长为,则m的倾斜角可以是①15°②30°③45°④60°⑤75°其中正确答案的序号是 ①或⑤(写出所有正确答案的序号)【考点】I2:直线的倾斜角;
N1:平行截割定理.菁优网版权所有 【专题】11:计算题;
15:综合题;
16:压轴题. 【分析】先求两平行线间的距离,结合题意直线m被两平行线l1与l2所截得的线段的长为,求出直线m与l1的夹角为30°,推出结果. 【解答】解:两平行线间的距离为,由图知直线m与l1的夹角为30°,l1的倾斜角为45°,所以直线m的倾斜角等于30°+45°=75°或45°﹣30°=15°. 故填写①或⑤ 故答案为:①或⑤ 【点评】本题考查直线的斜率、直线的倾斜角,两条平行线间的距离,考查数形结合的思想. 三、解答题(共6小题,满分70分)17.(10分)设等差数列{an}的前n项和为Sn,公比是正数的等比数列{bn}的前n项和为Tn,已知a1=1,b1=3,a3+b3=17,T3﹣S3=12,求{an},{bn}的通项公式. 【考点】8M:等差数列与等比数列的综合.菁优网版权所有 【专题】11:计算题. 【分析】设{an}的公差为d,数列{bn}的公比为q>0,由题得,由此能得到{an},{bn}的通项公式. 【解答】解:设{an}的公差为d,数列{bn}的公比为q>0,由题得,解得q=2,d=2 ∴an=1+2(n﹣1)=2n﹣1,bn=3•2n﹣1. 【点评】本小题考查等差数列与等比数列的通项公式、前n项和,基础题. 18.(12分)在△ABC中,内角A、B、C的对边长分别为a、b、c,已知a2﹣c2=2b,且sinAcosC=3cosAsinC,求b. 【考点】HR:余弦定理.菁优网版权所有 【分析】根据正弦定理和余弦定理将sinAcosC=3cosAsinC化成边的关系,再根据a2﹣c2=2b即可得到答案. 【解答】解:法一:在△ABC中∵sinAcosC=3cosAsinC,则由正弦定理及余弦定理有:,化简并整理得:2(a2﹣c2)=b2. 又由已知a2﹣c2=2b∴4b=b2. 解得b=4或b=0(舍);
法二:由余弦定理得:a2﹣c2=b2﹣2bccosA. 又a2﹣c2=2b,b≠0. 所以b=2ccosA+2①又sinAcosC=3cosAsinC,∴sinAcosC+cosAsinC=4cosAsinCsin(A+C)=4cosAsinC,即sinB=4cosAsinC由正弦定理得,故b=4ccosA②由①,②解得b=4. 【点评】本题主要考查正弦定理和余弦定理的应用.属基础题. 19.(12分)如图,四棱锥S﹣ABCD中,底面ABCD为矩形,SD⊥底面ABCD,AD=,DC=SD=2,点M在侧棱SC上,∠ABM=60°(I)证明:M是侧棱SC的中点;
(Ⅱ)求二面角S﹣AM﹣B的大小. 【考点】LO:空间中直线与直线之间的位置关系;
MJ:二面角的平面角及求法.菁优网版权所有 【专题】11:计算题;
14:证明题. 【分析】(Ⅰ)法一:要证明M是侧棱SC的中点,作MN∥SD交CD于N,作NE⊥AB交AB于E,连ME、NB,则MN⊥面ABCD,ME⊥AB,设MN=x,则NC=EB=x,解RT△MNE即可得x的值,进而得到M为侧棱SC的中点;
法二:分别以DA、DC、DS为x、y、z轴如图建立空间直角坐标系D﹣xyz,并求出S点的坐标、C点的坐标和M点的坐标,然后根据中点公式进行判断;
法三:分别以DA、DC、DS为x、y、z轴如图建立空间直角坐标系D﹣xyz,构造空间向量,然后数乘向量的方法来证明.(Ⅱ)我们可以以D为坐标原点,分别以DA、DC、DS为x、y、z轴如图建立空间直角坐标系D﹣xyz,我们可以利用向量法求二面角S﹣AM﹣B的大小. 【解答】证明:(Ⅰ)作MN∥SD交CD于N,作NE⊥AB交AB于E,连ME、NB,则MN⊥面ABCD,ME⊥AB,设MN=x,则NC=EB=x,在RT△MEB中,∵∠MBE=60°∴. 在RT△MNE中由ME2=NE2+MN2∴3x2=x2+2 解得x=1,从而∴M为侧棱SC的中点M.(Ⅰ)证法二:分别以DA、DC、DS为x、y、z轴如图建立空间直角坐标系D﹣xyz,则. 设M(0,a,b)(a>0,b>0),则,由题得,即 解之个方程组得a=1,b=1即M(0,1,1)所以M是侧棱SC的中点.(I)证法三:设,则 又 故,即,解得λ=1,所以M是侧棱SC的中点.(Ⅱ)由(Ⅰ)得,又,设分别是平面SAM、MAB的法向量,则且,即且 分别令得z1=1,y1=1,y2=0,z2=2,即,∴ 二面角S﹣AM﹣B的大小. 【点评】空间两条直线夹角的余弦值等于他们方向向量夹角余弦值的绝对值;
空间直线与平面夹角的余弦值等于直线的方向向量与平面的法向量夹角的正弦值;
空间锐二面角的余弦值等于他的两个半平面方向向量夹角余弦值的绝对值;
20.(12分)甲、乙二人进行一次围棋比赛,约定先胜3局者获得这次比赛的胜利,比赛结束.假设在一局中,甲获胜的概率为0.6,乙获胜的概率为0.4,各局比赛结果相互独立.已知前2局中,甲、乙各胜1局.(Ⅰ)求再赛2局结束这次比赛的概率;
(Ⅱ)求甲获得这次比赛胜利的概率. 【考点】C8:相互独立事件和相互独立事件的概率乘法公式.菁优网版权所有 【专题】12:应用题. 【分析】根据题意,记“第i局甲获胜”为事件Ai(i=3,4,5),“第j局甲获胜”为事件Bi(j=3,4,5),(1)“再赛2局结束这次比赛”包含“甲连胜3、4局”与“乙连胜3、4局”两个互斥的事件,而每局比赛之间是相互独立的,进而计算可得答案,(2)若“甲获得这次比赛胜利”,即甲在后3局中,甲胜2局,包括3种情况,根据概率的计算方法,计算可得答案. 【解答】解:记“第i局甲获胜”为事件Ai(i=3,4,5),“第j局甲获胜”为事件Bi(j=3,4,5).(Ⅰ)设“再赛2局结束这次比赛”为事件A,则A=A3•A4+B3•B4,由于各局比赛结果相互独立,故P(A)=P(A3•A4+B3•B4)=P(A3•A4)+P(B3•B4)=P(A3)P(A4)+P(B3)P(B4)=0.6×0.6+0.4×0.4=0.52.(Ⅱ)记“甲获得这次比赛胜利”为事件H,因前两局中,甲、乙各胜1局,故甲获得这次比赛胜利当且仅当在后面的比赛中,甲先胜2局,从而B=A3•A4+B3•A4•A5+A3•B4•A5,由于各局比赛结果相互独立,故P(H)=P(A3•A4+B3•A4•A5+A3•B4•A5)=P(A3•A4)+P(B3•A4•A5)+P(A3•B4•A5)=P(A3)P(A4)+P(B3)P(A4)P(A5)+P(A3)P(B4)P(A5)=0.6×0.6+0.4×0.6×0.6+0.6×0.4×0.6=0.648 【点评】本小题考查互斥事件有一个发生的概率、相互独立事件同时发生的概率,解题之前,要分析明确事件间的关系,一般先按互斥事件分情况,再由相互独立事件的概率公式,进行计算. 21.(12分)已知函数f(x)=x4﹣3x2+6.(Ⅰ)讨论f(x)的单调性;
(Ⅱ)设点P在曲线y=f(x)上,若该曲线在点P处的切线l通过坐标原点,求l的方程. 【考点】6B:利用导数研究函数的单调性;
6H:利用导数研究曲线上某点切线方程.菁优网版权所有 【专题】16:压轴题. 【分析】(1)利用导数求解函数的单调性的方法步骤进行求解.(2)根据已知,只需求出f(x)在点P处的导数,即斜率,就可以求出切线方程. 【解答】解:(Ⅰ)令f′(x)>0得或;
令f′(x)<0得或 因此,f(x)在区间和为增函数;
在区间和为减函数.(Ⅱ)设点P(x0,f(x0)),由l过原点知,l的方程为y=f′(x0)x,因此f(x0)=f′(x0)x0,即x04﹣3x02+6﹣x0(4x03﹣6x0)=0,整理得(x02+1)(x02﹣2)=0,解得或. 所以的方程为y=2x或y=﹣2x 【点评】本题比较简单,是一道综合题,主要考查函数的单调性、利用导数的几何意义求切线方程等函数基础知识,应熟练掌握. 22.(12分)如图,已知抛物线E:y2=x与圆M:(x﹣4)2+y2=r2(r>0)相交于A、B、C、D四个点.(Ⅰ)求r的取值范围;
(Ⅱ)当四边形ABCD的面积最大时,求对角线AC、BD的交点P的坐标. 【考点】IR:两点间的距离公式;
JF:圆方程的综合应用;
K8:抛物线的性质.菁优网版权所有 【专题】15:综合题;
16:压轴题. 【分析】(1)先联立抛物线与圆的方程消去y,得到x的二次方程,根据抛物线E:y2=x与圆M:(x﹣4)2+y2=r2(r>0)相交于A、B、C、D四个点的充要条件是此方程有两个不相等的正根,可求出r的范围.(2)先设出四点A,B,C,D的坐标再由(1)中的x二次方程得到两根之和、两根之积,表示出面积并求出其的平方值,最后根据三次均值不等式确定得到最大值时的点P的坐标. 【解答】解:(Ⅰ)将抛物线E:y2=x代入圆M:(x﹣4)2+y2=r2(r>0)的方程,消去y2,整理得x2﹣7x+16﹣r2=0(1)抛物线E:y2=x与圆M:(x﹣4)2+y2=r2(r>0)相交于A、B、C、D四个点的充要条件是:
方程(1)有两个不相等的正根 ∴ 即. 解这个方程组得,.(II)设四个交点的坐标分别为、、、. 则直线AC、BD的方程分别为y﹣=•(x﹣x1),y+=(x﹣x1),解得点P的坐标为(,0),则由(I)根据韦达定理有x1+x2=7,x1x2=16﹣r2,则 ∴ 令,则S2=(7+2t)2(7﹣2t)下面求S2的最大值. 由三次均值有:
当且仅当7+2t=14﹣4t,即时取最大值. 经检验此时满足题意. 故所求的点P的坐标为. 【点评】本题主要考查抛物线和圆的综合问题.圆锥曲线是高考必考题,要强化复习.
第二篇:湖南省高考数学试卷(文科)解析
2014年湖南省高考数学试卷(文科)
(扫描二维码可查看试题解析)
一、选择题(共10小题,每小题5分,共50分)1.(5分)(2014•湖南)设命题p:∀x∈R,x+1>0,则¬p为()22 ∈R,x∈R,x A.B. ∃x+1>0 ∃x+1≤0 000022∈R,x C.D. ∃x+1<0 ∀x∈R,x+1≤0 00 2.(5分)(2014•湖南)已知集合A={x|x>2},B={x|1<x<3},则A∩B=()
A.{x|x>2} B. {x|x>1} C. {x|2<x<3} D. {x|1<x<3} 3.(5分)(2014•湖南)对一个容量为N的总体抽取容量为n的样本,当选取简单随机抽样、系统抽样和分层抽样三种不同方法抽取样本时,总体中每个个体被抽中的概率分别为P,P,P,则()123 A.B. C. D. P=P<P P=P<P P=P<P P=P=P 123231132123 4.(5分)(2014•湖南)下列函数中,既是偶函数又在区间(﹣∞,0)上单调递增的是()
23x ﹣ A.B. C. D. f(x)=x+1 f(x)=x f(x)=2 f(x)= 5.(5分)(2014•湖南)在区间[﹣2,3]上随机选取一个数X,则X≤1的概率为()
A.B. C. D.
2222 6.(5分)(2014•湖南)若圆C:x+y=1与圆C:x+y﹣6x﹣8y+m=0外切,则12m=()
19 9 A.B. C. D. ﹣11 7.(5分)(2014•湖南)执行如图所示的程序框图,如果输入的t∈[﹣2,2],则输出的S属于()第1页(共21页)
A.[﹣6,﹣2] B. [﹣5,﹣1] C. [﹣4,5] D. [﹣3,6] 8.(5分)(2014•湖南)一块石材表示的几何体的三视图如图所示,将该石材切削、打磨,加工成球,则能得到的最大球的半径等于()2 3 4 A.B. C. D.
9.(5分)(2014•湖南)若0<x<x<1,则()1
2A.B.
﹣>lnx﹣lnx ﹣<lnx﹣lnx 2121
C.D.
x>x x<x 212
110.(5分)(2014•湖南)在平面直角坐标系中,O为原点,A(﹣1,0),B(0,),C(3,0),动点D满足||=1,则|++|的取值范围是()
D. A.[4,6] B. C.,2] [﹣1,[﹣1,+1] [2+1]
二、填空题(共5小题,每小题5分,共25分)第2页(共21页)
11.(5分)(2014•湖南)复数(i为虚数单位)的实部等于 .
12.(5分)(2014•湖南)在平面直角坐标系中,曲线C:(t为参数)的普通方程为
.
13.(5分)(2014•湖南)若变量x,y满足约束条件,则z=2x+y的最大值为 .
14.(5分)(2014•湖南)平面上一机器人在行进中始终保持与点F(1,0)的距离和到直线x=﹣1的距离相等,若机器人接触不到过点P(﹣1,0)且斜率为k的直线,则k的取值范围是 .
3x 15.(5分)(2014•湖南)若f(x)=ln(e+1)+ax是偶函数,则a= .
三、解答题(共6小题,75分)
* 16.(12分)(2014•湖南)已知数列{a}的前n项和S=,n∈N. nn(Ⅰ)求数列{a}的通项公式; n
n(Ⅱ)设b=+(﹣1)a,求数列{b}的前2n项和. nnn
17.(12分)(2014•湖南)某企业有甲、乙两个研发小组,为了比较他们的研发水平,现随机抽取这两个小组往年研发新产品的结果如下:
(a,b),(a,),(a,b),(,b),(,),(a,b),(a,b),(a,),(,b),(a,),(,),(a,b),(a,),(,b)(a,b)
其中a,分别表示甲组研发成功和失败,b,分别表示乙组研发成功和失败.(Ⅰ)若某组成功研发一种新产品,则给该组记1分,否则记0分,试计算甲、乙两组研发新产品的成绩的平均数和方差,并比较甲、乙两组的研发水平;(Ⅱ)若该企业安排甲、乙两组各自研发一样的产品,试估计恰有一组研发成功的概率.
18.(12分)(2014•湖南)如图,已知二面角α﹣MN﹣β的大小为60°,菱形ABCD在面β内,A、B两点在棱MN上,∠BAD=60°,E是AB的中点,DO⊥面α,垂足为O. 第3页(共21页)
(Ⅰ)证明:AB⊥平面ODE;(Ⅱ)求异面直线BC与OD所成角的余弦值.
19.(13分)(2014•湖南)如图,在平面四边形ABCD中,DA⊥AB,DE=1,EC=,EA=2,∠ADC=,∠BEC=.(Ⅰ)求sin∠CED的值;(Ⅱ)求BE的长. 20.(13分)(2014•湖南)如图,O为坐标原点,双曲线C:﹣=1(a>0,11 b>0)和椭圆C:+=1(a>b>0)均过点P(,1),且以C的两个顶点和12221C的两个焦点为顶点的四边形是面积为2的正方形. 2(Ⅰ)求C、C的方程; 12(Ⅱ)是否存在直线l,使得l与C交于A、B两点,与C只有一个公共点,且|+|=||?12证明你的结论.
21.(13分)(2014•湖南)已知函数f(x)=xcosx﹣sinx+1(x>0).(Ⅰ)求f(x)的单调区间; 第4页(共21页)
**(Ⅱ)记x为f(x)的从小到大的第i(i∈N)个零点,证明:对一切n∈N,有++…+i <. 第5页(共21页)2014年湖南省高考数学试卷(文科)
参考答案与试题解析
一、选择题(共10小题,每小题5分,共50分)21.(5分)(2014•湖南)设命题p:∀x∈R,x+1>0,则¬p为()22 ∈R,x∈R,x A.B. ∃x+1≤0 ∃x+1>0 000022∈R,x C.D. ∃x+1<0 ∀x∈R,x+1≤0 00 考点: 命题的否定. 专题: 简易逻辑. 分析: 题设中的命题是一个特称命题,按命题否定的规则写出其否定即可找出正确选项
2解答:
解∵命题p:∀x∈R,x+1>0,是一个特称命题. 2∈R,x∴¬p:∃x+1≤0. 00故选B. 点评: 本题考查特称命题的否定,掌握其中的规律是正确作答的关键. 2.(5分)(2014•湖南)已知集合A={x|x>2},B={x|1<x<3},则A∩B=()A.{x|x>2} B. {x|x>1} C. {x|2<x<3} D. {x|1<x<3} 考点: 交集及其运算. 专题: 集合. 分析: 直接利用交集运算求得答案. 解答: 解:∵A={x|x>2},B={x|1<x<3},∴A∩B={x|x>2}∩{x|1<x<3}={x|2<x<3}.
故选:C.
点评: 本题考查交集及其运算,是基础的计算题.
3.(5分)(2014•湖南)对一个容量为N的总体抽取容量为n的样本,当选取简单随机抽样、系统抽样和分层抽样三种不同方法抽取样本时,总体中每个个体被抽中的概率分别为P,1P,P,则()23 A.B. C. D. P=P<P P=P<P P=P<P P=P=P 123231132123 考点: 简单随机抽样;分层抽样方法;系统抽样方法. 专题: 概率与统计. 分析: 根据简单随机抽样、系统抽样和分层抽样的定义即可得到结论. 解答: 解:根据简单随机抽样、系统抽样和分层抽样的定义可知,无论哪种抽样,每个个体被抽中的概率都是相等的,即P=P=P. 123第6页(共21页)
故选:D. 点评: 本题主要考查简单随机抽样、系统抽样和分层抽样的性质,比较基础.
4.(5分)(2014•湖南)下列函数中,既是偶函数又在区间(﹣∞,0)上单调递增的是()
23x ﹣ A.B. C. D. f(x)=x+1 f(x)=x f(x)=2 f(x)= 考点: 函数奇偶性的判断;函数单调性的判断与证明. 专题: 函数的性质及应用. 分析: 利用函数函数的奇偶性和单调性即可判断出.
解答: 23解:只有函数f(x)=,f(x)=x+1是偶函数,而函数f(x)=x是奇函数,f(x)x﹣=2不具有奇偶性. 2,f(x)=x+1中,只有函数f(x)=而函数f(x)=在区间(﹣∞,0)上单调递增的. 综上可知:只有A正确. 故选:A. 点评: 本题考查了函数函数的奇偶性和单调性,属于基础题. 5.(5分)(2014•湖南)在区间[﹣2,3]上随机选取一个数X,则X≤1的概率为()A.B. C. D. 考点: 几何概型. 专题: 概率与统计. 分析: 利用几何槪型的概率公式,求出对应的区间长度,即可得到结论. 解答: 解:在区间[﹣2,3]上随机选取一个数
X,则﹣2≤X≤3,则X≤1的概率P=,故选:B. 点评: 本题主要考查几何槪型的概率的计算,求出对应的区间长度是解决本题的关键,比较基础.
22226.(5分)(2014•湖南)若圆C:x+y=1与圆C:x+y﹣6x﹣8y+m=0外切,则m=()12 21 19 9 A.B. C. D. ﹣11 考点: 圆的切线方程. 专题: 直线与圆. 分析: 化两圆的一般式方程为标准方程,求出圆心和半径,由两圆心间的距离等于半径和列式求得m值. 第7页(共21页)
22解答: 解:由C:x+y=1,得圆心C(0,0),半径为1,由圆C:x+y﹣6x﹣8y+m=0,得(x﹣3)+(y﹣4)=25﹣112222m,2∴圆心C(3,4),半径为.
2∵圆C与圆C外切,12 ∴,解得:m=9. 故选:C. 点评: 本题考查两圆的位置关系,考查了两圆外切的条件,是基础题.
7.(5分)(2014•湖南)执行如图所示的程序框图,如果输入的t∈[﹣2,2],则输出的S属于()
A.[﹣6,﹣2] B. [﹣5,﹣1] C. [﹣4,5] D. [﹣3,6] 考点: 程序框图. 专题: 算法和程序框图. 分析: 根据程序框图,结合条件,利用函数的性质即可得到结论. 解答: 解:若0≤t≤2,则不满足条件输出S=t﹣3∈[﹣3,﹣1],2若﹣2≤t<0,则满足条件,此时t=2t+1∈(1,9],此时不满足条件,输出S=t﹣3∈(﹣2,6],综上:S=t﹣3∈[﹣3,6],故选:D 点评: 本题主要考查程序框图的识别和判断,利用函数的取值范围是解决本题的关键,比较基础.
8.(5分)(2014•湖南)一块石材表示的几何体的三视图如图所示,将该石材切削、打磨,加工成球,则能得到的最大球的半径等于()
第8页(共21页)
A.B. C. D. 考点: 球内接多面体;由三视图求面积、体积;球的体积和表面积. 专题: 计算题;空间位置关系与距离. 分析: 由题意,该几何体为三棱柱,所以最大球的半径为正视图直角三角形内切圆的半径r. 解答: 解:由题意,该几何体为三棱柱,所以最大球的半径为正视图直角三角形内切圆的半径r,则
8﹣r+6﹣r=,∴r=2. 故选:B. 点评: 本题考查三视图,考查几何体的内切圆,考查学生的计算能力,属于基础题. 9.(5分)(2014•湖南)若0<x<x<1,则()12 A.B.
﹣>lnx﹣lnx ﹣<lnx﹣lnx 2121 C.D.
x>x x<x 2121 考点: 对数的运算性质. 专题: 导数的综合应用.
分析: x分别设出两个辅助函数f(x)=e+lnx,g(x)=,由导数判断其在(0,1)上的单调性,结合已知条件0<x<x<1得答案. 12x解答: 解:令f(x)=e+lnx,当0<x<1时,f′(x)>0,∴f(x)在(0,1)上为增函数,∵0<x<x<1,12 ∴,即. 第9页(共21页)
由此可知选项A,B不正确.
令g(x)=,当0<x<1时,g′(x)<0. ∴g(x)在(0,1)上为减函数,∵0<x<x<1,12 ∴,即. ∴选项C正确而D不正确. 故选:C. 点评: 本题考查利用导数研究函数的单调性,考查了函数构造法,解答此题的关键在于想到构造两个函数,是中档题. 10.(5分)(2014•湖南)在平面直角坐标系中,O为原点,A(﹣1,0),B(0,),C
(3,0),动点D满足||=1,则|++|的取值范围是()A.[4,6] B. C. D. [﹣1,+1] [2,2] [﹣1,+1] 考向量的加法及其几何意义. 点: 专平面向量及应用. 题: 分 由于动点D满足||=1,C(3,0),可设D(3+cosθ,sinθ)(θ∈[0,2π)).再利用向量析: 的坐标运算、数量积性质、模的计算公式、三角函数的单调性即可得出.
解
解:∵动点D满足||=1,C(3,0),答: ∴可设D(3+cosθ,sinθ)(θ∈[0,2π)). 又A(﹣1,0),B(0,),∴++=.
∴|++|===,(其中sinφ=,cosφ=)∵﹣1≤sin(θ+φ)≤1,第10页(共21页)
∴=sin(θ+φ)≤=,∴|++|的取值范围是.
故选:D. 点本题考查了向量的坐标运算、数量积性质、模的计算公式、三角函数的单调性等基础知评: 识与基本技能方法,考查了推理能力和计算能力,属于难题.
二、填空题(共5小题,每小题5分,共25分)
11.(5分)(2014•湖南)复数(i为虚数单位)的实部等于 ﹣3 . 考点: 复数代数形式的乘除运算. 专题: 数系的扩充和复数. 分析: 直接由虚数单位i的运算性质化简,则复数的实部可求.
解答: 解:∵=. ∴复数(i为虚数单位)的实部等于﹣3. 故答案为:﹣3. 点评: 本题考查复数代数形式的乘法运算,考查了虚数单位i的运算性质,是基础题.
12.(5分)(2014•湖南)在平面直角坐标系中,曲线C:(t为参数)的普通方程为 x﹣y﹣1=0 .
考点: 直线的参数方程. 专题: 选作题;坐标系和参数方程. 分析: 利用两式相减,消去t,从而得到曲线C的普通方程. 解答: 解:∵曲线C:(t为参数),∴两式相减可得x﹣y﹣1=0. 故答案为:x﹣y﹣1=0. 点评: 本题考查参数方程化成普通方程,应掌握两者的互相转化.
13.(5分)(2014•湖南)若变量x,y满足约束条件,则z=2x+y的最大值为 7 .
第11页(共21页)
考点: 简单线性规划. 专题: 不等式的解法及应用. 分析: 作出不等式组对应的平面区域,利用z的几何意义,进行平移即可得到结论.
解答:
解:作出不等式组对应的平面区域如图: 由z=2x+y,得y=﹣2x+z,平移直线y=﹣2x+z,由图象可知当直线y=﹣2x+z经过点C,直线y=﹣2x+z的截距最大,此时z最大,由,解得,即C(3,1),此时z=2×3+1=7,故答案为:7. 点评: 本题主要考查线性规划的应用,利用z的几何意义,利用数形结合是解决本题的关键. 14.(5分)(2014•湖南)平面上一机器人在行进中始终保持与点F(1,0)的距离和到直线x=﹣1的距离相等,若机器人接触不到过点P(﹣1,0)且斜率为k的直线,则k的取值范围是 k<﹣1或k>1 .
考点: 抛物线的简单性质. 专题: 圆锥曲线的定义、性质与方程. 分析: 由抛物线的定义,求出机器人的轨迹方程,过点P(﹣1,0)且斜率为k的直线方程2为y=k(x+1),代入y=4x,利用判别式,即可求出k的取值范围. 2解答: 解:由抛物线的定义可知,机器人的轨迹方程为y=4x,过点P(﹣1,0)且斜率为k的直线方程为y=k(x+1),22222代入y=4x,可得kx+(2k﹣4)x+k=0,∵机器人接触不到过点P(﹣1,0)且斜率为k的直线,224∴△=(2k﹣4)﹣4k<0,∴k<﹣1或k>1. 故答案为:k<﹣1或k>1. 点评: 本题考查抛物线的定义,考查直线与抛物线的位置关系,属于中档题. 第12页(共21页)
3x15.(5分)(2014•湖南)若f(x)=ln(e+1)+ax是偶函数,则a= ﹣ .
考点: 函数奇偶性的性质. 结论. 3x专题: 函数的性质及应用. 分析: 根据函数奇偶性的定义,建立方程关系即可得到解答: 解:若f(x)=ln(e+1)+ax是偶函数,则f(﹣x)=f(x),3x3x﹣即ln(e+1)点评: 本题主要考查函数奇偶性的应用,根据偶函数的定义得到f(﹣x)=f(x)是+ax=ln(e+1)﹣ax,3x3x3x﹣﹣即2ax=ln(e+1)﹣ln(e+1)=ln=lne=﹣3x,即2a=﹣3,解得a=﹣,故答案为:﹣,解决本题的关键.
三、解答题(共6小题,75分)*16.(12分)(2014•湖南)已知数列{a}的前n项和S=,n∈N. nn(Ⅰ)求数列{a}的通项公式; n
n(Ⅱ)设b=+(﹣1)a,求数列{b}的前2n项和. nnn 考点: 数列的求和;数列递推式. 专题: 等差数列与等比数列. 分析:(Ⅰ)利
解答: 解:(Ⅰ)当n=1时,a=s=1,用公式法即可求得;(Ⅱ)利用数列分组求和即可得出结论. 当n≥2时,a=s﹣s=﹣=n,nnn1﹣∴数列{a}的通项公式是a=n. nnnn(Ⅱ)由(Ⅰ)知,b=2+(﹣1)n,记数列{b}的前2n项和为T,则 nn2n122nT=(2+2+…+2)+(﹣1+2﹣3+4﹣…+2n)2n 2n+1=+n=2+n﹣2. 2n+1∴数列{b}的前2n项和为2+n﹣2. n
点评: 本题主要考查数列通项公式的求法﹣公式法及数列求和的方法﹣分组求和法,考查学生的运算能力,属中档题. 第13页(共21页)
17.(12分)(2014•湖南)某企业有甲、乙两个研发小组,为了比较他们的研发水平,现随机抽取这两个小组往年研发新产品的结果如下:(a,b),(a,),(a,b),(,b),(,),(a,b),(a,b),(a,),(,b),(a,),(,),(a,b),(a,),(,b)(a,b)
其中a,分别表示甲组研发成功和失败,b,分别表示乙组研发成功和失败.(Ⅰ)若某组成功研发一种新产品,则给该组记1分,否则记0分,试计算甲、乙两组研发新产品的成绩的平均数和方差,并比较甲、乙两组的研发水平;(Ⅱ)若该企业安排甲、乙两组各自研发一样的产品,试估计恰有一组研发成功的概率. 考点: 模拟方法估计概率;极差、方差与标准差. 专题: 概率与统计. 分析:(Ⅰ)分别求出甲乙的研发成绩,再根据平均数和方差公式计算平均数,方差,最后比较即可.(Ⅱ)找15个结果中,找到恰有一组研发成功的结果是7个,求出频率,将频率视为概率,问题得以解决. 解答: 解:(Ⅰ)甲组研发新产品的成绩为1,1,1,0,0,1,1,1,0,1,0,1,1,0,1,则=,== =,乙组研发新产品的成绩为1,0,1,1,0,1,1,0,1,0,0,1,0,1,1则
==.
因为 所以甲的研发水平高于乙的研发水平.(Ⅱ)记E={恰有一组研发成功},在所抽到的15个结果中,恰有一组研发成功的结果是(a,),(,b),(a,),(,b),(a,),(a,),(,b)共7个,故事件E发生的频率为,. 将频率视为概率,即恰有一组研发成功的概率为P(E)=点评: 本题主要考查了平均数方差和用频率表示概率,培养的学生的运算能力.
18.(12分)(2014•湖南)如图,已知二面角α﹣MN﹣β的大小为60°,菱形ABCD在面β内,A、B两点在棱MN上,∠BAD=60°,E是AB的中点,DO⊥面α,垂足为O.(Ⅰ)证明:AB⊥平面ODE;(Ⅱ)求异面直线BC与OD所成角的余弦值. 第14页(共21页)
考点: 异面直线及其所成的角;直线与平面垂直的判定. 专题: 计算题;证明题;空间位置关系与距离;空间角. 分析:(Ⅰ)运用直线与平面垂直的判定定理,即可证得,注意平面内的相交二直线;(Ⅱ)根据异面直线的定义,找出所成的角为∠ADO,说明∠DEO是二面角α﹣MN﹣β的平面角,不妨设AB=2,从而求出OD的长,再在直角三角形AOD中,求出cos∠ADO. 解答:(1)证明:如图 ∵DO⊥面α,AB⊂α,∴DO⊥AB,连接BD,由题设知,△ABD是正三角形,又E是AB的中点,∴DE⊥AB,又DO∩DE=D,∴AB⊥平面ODE;(Ⅱ)解:∵BC∥AD,∴BC与OD所成的角等于AD与OD所成的角,即∠ADO是BC与OD所成的角,由(Ⅰ)知,AB⊥平面ODE,∴AB⊥OE,又DE⊥AB,于是∠DEO是二面角α﹣MN﹣β的平面角,从而∠DEO=60°,不妨设AB=2,则AD=2,易知DE=,在Rt△DOE中,DO=DEsin60°=,连AO,在Rt△AOD中,cos∠ADO==,故异面直线BC与OD所成角的余弦值为. 点评: 本题主要考查线面垂直的判定,以及空间的二面角和异面直线所成的角的定义以及计算,是一道基础题.
19.(13分)(2014•湖南)如图,在平面四边形ABCD中,DA⊥AB,DE=1,EC=,EA=2,∠ADC=,∠BEC=.(Ⅰ)求sin∠CED的值;(Ⅱ)求BE的长.
第15页(共21页)
考点: 余弦定理的应用;正弦定理. 专题: 解三角形. 分析:(Ⅰ)根据三角形边角之间的关系,结合正弦定理和余弦定理即可得到结论.(Ⅱ)利用两角和的余弦公式,结合正弦定理即可得到结论.
解答: 解:(Ⅰ)设α=∠CED,222在△CDE中,由余弦定理得EC=CD+ED﹣2CD•DEcos∠CDE,22即7=CD+1+CD,则CD+CD﹣6=0,解得CD=2或CD=﹣3,(舍去),在△CDE中,由正弦定理得,则sinα=,即sin∠CED=.
(Ⅱ)由题设知0<α<,由(Ⅰ)知cosα=,而∠AEB=,∴cos∠AEB=cos()=coscosα+sinsinα=,在Rt△EAB中,cos∠AEB= 故BE=. 点评: 本题主要考查解三角形的应用,根据正弦定理和余弦定理是解决本题本题的关键,难度不大. 20.(13分)(2014•湖南)如图,O为坐标原点,双曲线C:﹣=1(a>0,b>0)111 和椭圆C:+=1(a>b>0)均过点P(,1),且以C的两个顶点和C的两个22212焦点为顶点的四边形是面积为2的正方形.(Ⅰ)求C、C的方程; 12(Ⅱ)是否存在直线l,使得l与C交于A、B两点,与C只有一个公共点,且|+|=||?12证明你的结论. 第16页(共21页)
考点: 直线与圆锥曲线的综合问题.
专题: 圆锥曲线中的最值与范围问题. 分析:(Ⅰ)由条件可得a=1,c=1,根据点P(,1)在上求得=3,可得双曲线12 =﹣的值,从而求得椭圆C的方程.再由椭圆的定义求得a=,可得12C的方程.(Ⅱ)若直线l垂直于x轴,检验部不满足|+|≠||.若直线l不垂直于x轴,设
直线l得方程为 y=kx+m,由 可得y•y=.由 可12222得(2k+3)x+4kmx+2m﹣6=0,根据直线l和C仅有一个交点,根据判别式△=0,22求得2k=m﹣3,可得≠0,可得|+|≠||.综合(1)、(2)可得结论. 解答: 解:(Ⅰ)设椭圆C的焦距为2c,由题意可得2a=2,∴a=1,c=1. 22112 由于点P(,1)在上,∴﹣=1,=3,2∴双曲线C的方程为:x﹣=1. 1再由椭圆的定义可得 2a=+=2,∴a=,22 ∴=﹣=2,∴椭圆C的方程为:+=1. 2(Ⅱ)不存在满足条件的直线l.
(1)若直线l垂直于x轴,则由题意可得直线l得方程为x=,或 x=﹣. 当x=时,可得 A(,)、B(,﹣),求得||=2,||=2,第17页(共21页)
显然,|+|≠||. 时,也有|+|≠||. 同理,当x=﹣(2)若直线l不垂直于x轴,设直线l得方程为 y=kx+m,由 可得 222(3﹣k)x﹣2mkx﹣m﹣3=0,∴x+x=,x•x=. 1212 22于是,y•y=kx•x+km(x+x)+m=. 121212 222由 可得(2k+3)x+4kmx+2m﹣6=0,根据直线l和C仅有一个交点,1222222∴判别式△=16km﹣8(2k+3)(m﹣3)=0,∴2k=m﹣3.
∴=x•x+y•y=≠0,∴≠,1212 ∴|+|≠||. 综合(1)、(2)可得,不存在满足条件的直线l.
点评: 本题主要考查椭圆的定义、性质、标准方程,直线和圆锥曲线的位置关系的应用,韦达定理,体现了分类讨论的数学思想,属于中档题.
21.(13分)(2014•湖南)已知函数f(x)=xcosx﹣sinx+1(x>0).(Ⅰ)求f(x)的单调区间;
**(Ⅱ)记x为f(x)的从小到大的第i(i∈N)个零点,证明:对一切n∈N,有++…+i <. 考利用导数求闭区间上函数的最值;利用导数研究函数的单调性. 点: 专导数的综合应用. 题:
分(Ⅰ)求函数的导数,利用导数研究页)
f(x)的单调区间; 第18页(共21
析(Ⅱ)利用放缩法即可证明不等式即可. : 解解:(Ⅰ)∵f(x)=xcosx﹣sinx+1(x>0),答∴f′(x)=cosx﹣xsinx﹣cosx=﹣xsinx,*: 由f′(x)=﹣xsinx=0,解得x=kπ(k∈N),当x∈(2kπ,(2k+1)π)(k∈N),sinx>0,此时f′(x)<0,函数单调递减,当x∈((2k+1)π,(2k+2)π)(k∈N),sinx<0,此时f′(x)>0,函数单调递增,故f(x)的单调增区间为((2k+1)π,(2k+2)π),k≥0,单调递减区间为(2kπ,(2k+1)π),k≥0.
(Ⅱ)由(Ⅰ)知,f(x)在区间(0,π)上单调递减,又f()=0,故x=,1*当n∈N,nn+1∵f(nπ)f((n+1)π)=[(﹣1)nπ+1][(﹣1)(n+1)π+1]<0,且函数f(x)的图象是连续不间断的,∴f(x)在区间(nπ,(n+1)π)内至少存在一个零点,又f(x)在区间(nπ,(n+1)π)是单调的,故nπ<x<(n+1)π,n+1 因此当n=1时,有=<成立. 当n=2时,有+<<. 当n≥3时,… ++…+< [][ ](6﹣)<.
*综上证明:对一切n∈N,有++…+<. 点本题主要考查函数单调性的判定和证明,以及利用导数和不等式的综合,利用放缩法是评解决本题的关键,综合性较强,运算量较大. : 第19页(共21页)
第20页(共21页)
参与本试卷答题和审题的老师有:xintrl;sxs123;maths;孙佑中;刘长柏;liu老师;whgcn;双曲线;caoqz(排名不分先后)菁优网 2015年5月20日 第21页(共21页)
第三篇:2018年高考真题——文科数学(全国卷Ⅲ)+Word版含解析
2018年普通高等学校招生全国统一考试
(新课标 III 卷)文 科 数 学 注意事项: 1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2.选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4.考试结束后,请将本试题卷和答题卡一并上交。
一、选择题(本题共12小题,每小题5分,共60分.在每小题给的四个选项中,只有一项符合)1.已知集合Ax|x1≥0,B0,1,2,则AA.0 2.1i2i()A.3i 3.中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫棒头,凹进部分叫卯眼,图中木构件右边的小长方体是棒头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是()B.3i C.3i D.3i B.1 B()C.1,2 D.0,1,2 考场号 座位号 14.若sin,则cos2()3 8A. 9 B.7 9 7C. 9 8D. 9 5.若某群体中的成员只用现金支付的概率为0.45,既用现金支付也用非现金支付的概率为0.15,则不用现金支付的概率为()A.0.3 6.函数 fxA. 7.下列函数中,其图像与函数ylnx的图像关于直线x1对称的是()A.yln1x D.yln2x 8.直线xy20分别与x轴,y轴交于A,B两点,点P在圆x2y22上,则ABP面积的取值范围是()A.2,6 D.22,32 2 B.0.4 C.0.6 D.0.7 tanx的最小正周期为()1tan2x 4 B. 2 C. D.2 B.yln2x C.yln1x 8 B.4,C.2,32 9.函数yx4x22的图像大致为()x2y2b0)的离心率为2,则点4,10.已知双曲线C:221(a0,0到C的渐近线的ab距离为()A.2 B.2 C.32 2 D.22 a2b2c211.ABC的内角A,B,C的对边分别为a,b,c.若ABC的面积为,则C4()A. 12.设A,B,C,D是同一个半径为4的球的球面上四点,ABC为等边三角形且其面积为93,则三棱锥DABC体积的最大值为()A.123
二、填空题(本题共4小题,每小题5分,共20分)13.已知向量a=1,2,b=2,2,c=1,λ.若c∥2a+b,则________. B.183 C.243 D.543 2 B. 3 C. 4 D. 614.某公司有大量客户,且不同龄段客户对其服务的评价有较大差异.为了解客户的评价,该公司准备进行抽样调查,可供选择的抽样方法有简单随机抽样、分层抽样和系统抽样,则最合适的抽样方法是________. 2xy3≥0,115.若变量x,y满足约束条件x2y4≥0,则zxy的最大值是________. 3x2≤0. 16.已知函数fxln
三、解答题(共70分,解答应写出文字说明、证明过程或演算步骤,第17~31题为必考题,每个试题考生都必须作答,第22、23题为选考题,考生根据要求作答.)
(一)必考题:共60分。
17.(12分)等比数列an中,a11,a54a3. ⑴求an的通项公式; ⑵记Sn为an的前n项和.若Sm63,求m. 18.(12分)某工厂为提高生产效率,开展技术创新活动,提出了完成某项生产任务的两种新的生产方式.为比较两种生产方式的效率,选取40名工人,将他们随机分成两组,每组20人,第一组工人用第一种生产方式,第二组工人用第二种生产方式.根据工人完成生产任务的工作时间(单位:min)绘制了如下茎叶图: 1x2x1,fa4,则fa________. ⑴根据茎叶图判断哪种生产方式的效率更高?并说明理由; ⑵求40名工人完成生产任务所需时间的中位数m,并将完成生产任务所需时间超过m和不超过m的工人数填入下面的列联表: 第一种生产方式 第二种生产方式 超过m 不超过m ⑶根据⑵中的列表,能否有99%的把握认为两种生产方式的效率有差异? PK2≥k0.0500.0100.001附:K,. k3.8416.63510.828abcdacbd2nadbc2 19.(12分)如图,矩形ABCD所在平面与半圆弧CD所在平面垂直,M是CD上异于C,D的点. ⑴证明:平面AMD⊥平面BMC; ⑵在线段AM上是否存在点P,使得MC∥平面PBD?说明理由. 20.(12分)x2y2已知斜率为k的直线l与椭圆C:1交于A,B两点.线段AB的中点为43M1,mm0. 1⑴证明:k; 2⑵设F为C的右焦点,P为C上一点,且FPFAFB0.证明:2FPFAFB . 21.(12分)ax2x1已知函数fx. ex1处的切线方程; ⑴求由线yfx在点0,⑵证明:当a≥1时,fxe≥0.
(二)选考题:共10分,请考生在第22、23题中任选一题作答。
如果多做,则按所做的第一题计分. 22.[选修4—4:坐标系与参数方程](10分)xcos⊙O的参数方程为在平面直角坐标系xOy中,(为参数),过点0,2ysin且倾斜角为的直线l与⊙O交于A,B两点. ⑴求的取值范围; ⑵求AB中点P的轨迹的参数方程. 23.[选修4—5:不等式选讲](10分)设函数fx2x1x1. ⑴画出yfx的图像; ⑵当x∈0,,fx≤axb,求ab的最小值. 2018年普通高等学校招生全国统一考试(新课标 III 卷)文 科 数 学 答 案
一、选择题 1.答案:C 解答:∵A{x|x10}{x|x1},B{0,1,2},∴A2.答案:D 解答:(1i)(2i)2ii3i,选D.3.答案:A 解答:根据题意,A选项符号题意; 4.答案:B 解答:cos212sin15.答案:B 解答:由题意P10.450.150.4.故选B.6.答案:C 解答: 2B{1,2}.故选C.227.故选B.99sinxtanxcosxsinxcosxsinxcosx1sin2x,∴f(x)的周期f(x)sin2xsin2xcos2x1tan2x212cosxT2.故选C.27.答案:B 解答:f(x)关于x1对称,则f(x)f(2x)ln(2x).故选B.8.答案:A 解答: 由直线xy20得A(2,0),B(0,2),∴|AB|222222,圆22∴点P22,11∴圆心到直线xy20的距离为(x2)2y22的圆心为(2,0),到直线xy20的距离的取值范围为222d222,即2d32,∴SABP1|AB|d[2,6].29.答案:D 解答: 当x0时,y2,可以排除A、B选项; 又因为y4x2x4x(x322)(x),则f(x)0的解集为22(,2222),(0,);f(x)0的解集为)U(0,),f(x)单调递增区间为(,2222(2222,0)U(,),f(x)单调递减区间为(,0),(,).结合图象,可知D选2222项正确.10.答案:D 解答: 由题意e为dcb2,则1,故渐近线方程为xy0,则点(4,0)到渐近线的距离aa|40|22.故选D.211.答案:C 解答: SABC∴C1a2b2c22abcosC1anC1,又SABCabsinC,故tabcosC,24424.故选C.12.答案:B 解答: 如图,ABC为等边三角形,点O为A,B,C,D外接球的球心,G为ABC的重心,由SABC93,得AB6,取BC的中点H,∴AHABsin6033,∴2AH23,∴球心O到面ABC的距离为d42(23)22,∴三棱锥31DABC体积最大值VDABC93(24)183.3AG
二、填空题 13.答案:解答: 1 21.22ab(4,2),∵c//(2ab),∴1240,解得14.答案:分层抽样 解答:由题意,不同龄段客户对其服务的评价有较大差异,故采取分层抽样法.15.答案:3 解答: 由图可知在直线x2y40和x2的交点(2,3)处取得最大值,故1z233.3 16.答案:2 解答:fxln1x2x1(xR),f(x)f(x)ln(1x2x)1ln(1x2x)1ln(1x2x2)22,∴f(a)f(a)2,∴f(a)2.三、解答题 17.答案:(1)an2n1或an(2)n1;(2)6.解答:(1)设数列{an}的公比为q,∴q∴an2n1或an(2)n1.2a54,∴q2.a312n1(2)n1n(2)由(1)知,Sn21或Sn[1(2)n],12123∴Sm2m163或Sm[1(2)]63(舍),∴m6.18.答案:见解析 13m 解答:(1)第一种生产方式的平均数为x184,第二种生产方式平均数为x274.7,∴ x1x2,所以第一种生产方式完成任务的平均时间大于第二种,∴第二种生产方式的效率更高.(2)由茎叶图数据得到m80,∴列联表为
n(adbc)240(151555)2K106.635(ab)(cd)(ac)(bd)20202020(3),∴有299% 的把握认为两种生产方式的效率有差异.19.答案:见解答 解答:(1)∵正方形ABCD半圆面CMD,∴AD半圆面CMD,∴AD平面MCD.∵CM在平面MCD内,∴ADCM,又∵M是半圆弧CD上异于C,D的点,∴CMMD.又∵ADIDMD,∴CM平面ADM,∵CM在平面BCM内,∴平面BCM平面ADM.(2)线段AM上存在点P且P为AM中点,证明如下: 连接BD,AC交于点O,连接PD,PB,PO;在矩形ABCD中,O是AC中点,P是AM的中点; ∴OP//MC,∵OP在平面PDB内,MC不在平面PDB内,∴MC//平面PDB.20.答案:见解答: 解答:(1)设直线l方程为ykxt,设A(x1,y1),B(x2,y2), ykxt2联立消y得(4k23)x28ktx4t2120,xy2134则64k2t24(4t212)(34k2)0,得4k23t2…①,8kt6t2yyk(xx)2t2m,121234k234k2∵m0,∴t0且k0.且x1x234k2且t…②.4k(34k2)2由①②得4k3,216k211或k.221∵k0,∴k.2uuruuruurruuruuurr(2)FPFAFB0,FP2FM0, ∴k∵M(1,m),F(1,0),∴P的坐标为(1,2m).14m2331,∴m,M(1,),由于P在椭圆上,∴2443x12y12x22y22又1,1,4343两式相减可得y1y23xx12,x1x24y1y23,∴k1,2又x1x22,y1y2直线l方程为y即yx3(x1),47,47yx4∴2,2xy134消去y得28x56x10,x1,2214321,14 uuruur|FA||FB|(x11)2y12(x21)2y223,uur33|FP|(11)2(0)2, 22∴|FA||FB|2|FP|.21.答案:详见解析 ax2x1解答:(1)由题意:fx得ex(2ax1)ex(ax2x1)exax22axx2,f(x)x2x(e)e∴f(0)22,即曲线yfx在点0,1处的切线斜率为2,∴1y(1)2(x0),即2xy10;(2)证明:由题意:原不等式等价于:ex1ax2x10恒成立;令g(x)ex1ax2x1,∴g(x)ex12ax1,g(x)ex12a,∵a1,∴g(x)0恒成立,∴g(x)在(,)上单调递增,∴g(x)在(,)上存在唯一x0使g(x0)0,∴ex012ax010,即ex012ax01,且g(x)在(,x0)上单调递减,在(x0,)上单调递增,∴g(x)g(x0).又g(x0)e0x1ax02x01ax02(12a)x02(ax01)(x02),111111g()ea1,∵a1,∴0ea1e1,∴x0,∴g(x0)0,得证.aa综上所述:当a1时,fxe0.22.答案:见解析 解答:(1)eO的参数方程为xcos22,∴eO的普通方程为xy1,当90时,ysin直线:l:x0与eO有两个交点,当90时,设直线l的方程为yxtan2,由直线l与eO有两个交点有|002|1tan21,得tan21,∴tan1或tan1,∴4590或90135,综上(45,135).(2)点P坐标为(x,y),当90时,点P坐标为(0,0),当90时,设直线l的22xy1①方程为ykx2,A(x1,y1),B(x2,y2),∴有x2(kx2)21,整理ykx2②2kx③222k221k得(1k2)x222kx10,∴x1x2,y1y2,∴得1k21k2y2④1k2kx代入④得x2y22y0.当点P(0,0)时满足方程x2y22y0,∴AB中y2点的P的轨迹方程是x2y22y0,即x(y22122由图可知,A(),,),22222xcos2222则故点P的参数方程为(为参数,B(,),y0,222y22sin220).23.答案:见解答 解答: 13x,x21(1)f(x)x2,x1,如下图:
23x,x1(2)由(1)中可得:a3,b2,当a3,b2时,ab取最小值,∴ab的最小值为5.。
第四篇:2017年广东省高考数学试卷(文科)
2017年广东省高考数学试卷(文科)
篇一:广东省广东实验中学2017届高三8月月考文科数学试卷含答案
2016-2017学年高三8月月考
文科数学
一、选择题:本大题共12小题。每小题5分,在每个小题给出的四个选项中,只有一项是符合要求的。
B={x|lgx?0},则A?B?()1.已知全集U? RA B C D 2.已知a,b?R,i是虚数单位,若a?i?3?bi,则
a?bi ?()1?i A.2?i B.2?iC.1?2i D.1?i 63 3.设a?2,b?()6,c?ln,则()
7? A.c?a?b B.c?b?aC.a?b?cD.b?a?c 1 5 1 x2y2 ??1相切,则p的值为()4.已知抛物线x?2py(p?0)的准线与椭圆64 2 A.2 B.3C.4 D.5 5.将函数y?2sin?2x? ? ? ?? 6? ?的图像向右平移 个周期后,所得图像对应的函数为()4 A.y?2sin?2x? ?? ?? 4? ? B.y?2sin?2x? ?? ?? ?? ? 3? C.y?2sin?2x? ?? ?? 4? ? D.y?2sin?2x? ?? ? 3? 6.已知一个三棱锥的三视图如图所示,若该三棱锥的四个顶点均在同一球面上,则该球的体
积为()A.
32??4? B.? C. D. 333 7.若
cos2?sin(??)4 ?? ??25,且??(,),则tan2?的值为()
425 A.? 3434 B.? C. D. 4343 8.若下框图所给的程序运行结果为S?35,那么判断框中应填入的关于k的条件是()
A.k?7B.k?6 C.k?6D.k?6 9.已知函数f(x)?cos2xcos??sin2xsin?(0???(? 2)的图像的一个对称中心为
?,0),则下列说法正确的个数是()6 5 ?是函数f(x)的图像的一条对称轴 12 ①直线x? ②函数f(x)在[0,? 6 ]上单调递减
③函数f(x)的图像向右平移④函数f(x)在[0, ? 个单位可得到y?cos2x的图像 ? 2 ]的最小值为?1 A.1个 B .2个
C .3个 D.4个 10.函数y? 1?lnx 的图像大致为.()
1?lnx
x2y2 11.过双曲线2?2?1(a?0,b?0)的一个焦点F作一条渐近线的垂线,垂足为点?,ab 与另一条渐近线交于点?,若F??2F?,则此双曲线的离心率()
A B C.2 D x?1 ?1?x?1,x?2 12.已知函数f(x)??,g(x)?22,设方程f(x)?g(x)的根从小到大依
?2f(x?2),x?2 次为x1,x2,?xn,?,n?N*,则数列?f(x)?的前n项和为()A.2 n?1 ?2B.2n?1 C.n2 D.n2?1
二、填空题:本大题共4小题,每小题5分,共20分。
13.已知定义在R上的函数f(x)满足f(x?2)?f(x)?0,当x?(0,2]时,f(x)?2x,则
f(2016)? 14.某学校准备从4名男同学和2名女同学中选出2人代表学校参加数学竞赛,则有女同学被选中的概率是__________.15.如图,在?ABC中,D是BC上的一点.已知?B?60?,AD?2,AC?,DC?2,则
AB?__________.?2x?y?2? 16.设不等式组?x?2y??4所表示的平面区域为M,若z?2x?y?2a?b(a?0,b?0)的?3x?y?3? 最大值为3,则 ?的最小值为__________.ab
三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(本小题满分12分)
已知函数f(x)?xcosx?2cos2x?1.(1)求函数f(x)的最小正周期;
(2)在?ABC中,若f()?2,边AC?1,AB?2,求边BC的长及sinB的值..A 2 18.(本小题满分12分)
刚刚结束的奥运会女排决赛,中国队3:1战胜塞尔维亚队,勇夺冠军,这场比赛吸引了大量观众进入球迷吧看现场直播,不少是女球迷,根据某体育球迷社区统计,在“球色伊人”球迷吧,共有40名球迷观看,其中20名女球迷;在“铁汉柔情”球迷吧,共有30名球迷观看,其中10名是女球迷.
(Ⅰ)从两个球迷吧当中所有的球迷中按分层抽样方法抽取7个球迷做兴趣咨询.
①在“球色伊人”球迷吧男球迷中抽取多少个?
②若从7个球迷中抽取两个球迷进行咨询,求这两个球迷恰来自于不同球迷吧且均属女球迷的概率;
(Ⅱ)根据以上数据,能否有85%的把握认为男球迷或女球迷进球迷吧观看比赛的动机与球迷吧取名有关?
PK?k0.500.400.0.150.10
19.(本小题满分12分)n?ad?bc?K? a?bc?da?cb?d2 2 如图,四棱锥A?BCDE中,BE∥CD, CD?平面ABC,D AB?BC?CD,AB?BC,M为AD上一点,EM?平
面ACD.
(Ⅰ)求证:EM∥平面ABC.(Ⅱ)若CD?2BE?2,求点D到平面EMC的距离.20.(本小题满分12分)
已知曲线C上任意一点到原点的距离与到A(3,?6)的距离之比均为(Ⅰ)求曲线C的方程.C A 1 . 2(Ⅱ)设点P(1,?2),过点P作两条相异直线分别与曲线C相交于B,C两点,且直线PB和直线
PC的倾斜角互补,求证:直线BC的斜率为定值.21.(本小题满分12分)已知函数f(x)? mx22,曲线y?f(x)在点(e,f(e))处的切线与直线2x?y?0垂直lnx(其中e为自然对数的底数).
(Ⅰ)求f(x)的解析式及单调递减区间;
(Ⅱ)是否存在常数k,使得对于定义域内的任意x,f(x)? k ?求出lnx k的值;若不存在,请说明理由.
请考生在第22、23、24三题中任选一题做答,如果多做,则按所做的第一题记分,答题时用2B铅笔在答题卡上把所选题目的题号涂黑。22.(本小题满分10分)选修4—1:几何证明选讲
如图,直线AB经过圆O上的点C,并且OA=OB,CA=CB,圆O交直线OB于点E、D,其中D在线段OB上.连结EC,CD.(1)证明:直线AB是圆O的切线.(2)若tan∠CED=
23.(本题满分10分)选修4-4:坐标系与参数方程选讲 已知平面直角坐标系xOy,以O为极点,x轴的非负半轴为极轴建立极坐标系,P点的极坐 1,圆O的半径为3,求OA的长. 2 ??x?2cos? 标为),曲线C 的参数方程为?(?为参数).6??y??2sin? ?(1)写出点P的直角坐标及曲线C的直角坐标方程;
(2)若Q为曲线C上的动点,求PQ中点M到直线l:?cos??2?sin??1?0的距离的最
小值.24.(本题满分10分)选修4-5:不等式选讲
已知函数错误!未找到引用源。
(1)若错误!未找到引用源。的解集为错误!未找到引用源。,求实数错误!未找到引用源。的值.(2)当错误!未找到引用源。且错误!未找到引用源。时,解关于 错误!未找到引用源。
篇二:2015年广东高考数学(文科)A卷 解析版
绝密★启用前试卷类型:A 2015年普通高等学校招生全国统一考试(广东卷)
数学(文科)
一、选择题(本大题共10小题,每小题5分,满分50分.在每小题给出的四个选
项中,只有一项是符合题目要求的.)
1、若集合1,1?,2,1,0?,则? ??()
A.?0,?1? B.?0? C.?1? D.??1,1? 考点:集合的交集运算.
2、已知i是虚数单位,则复数?1?i??()
A.2i B.?2iC.2 D.?2 2 【解析】?1?i??1?2i?i?1?2i?1?2i. 2 考点:复数的乘法运算.
3、下列函数中,既不是奇函数,也不是偶函数的是()A.y?x?sin2x B.y?x2?cosx C.y?2x?xD.y?x2?sinx 2 2 【解析】∵在R上函数f(x)?x,f(x)?sinx为奇函数,函数f(x)?x,f(x)?cosx为偶函数,∴f?x??x?sin2x是奇函数,f?x??x?cosx是偶函数,f?x??x?sinx既不是奇函数,也 2 不是偶函数.∵f??x??2考点:函数的奇偶性. ?x ? 111xx ??2?fxfx?2?,∴是偶函数. 2?x2x2x ?x?2y?2 ?
4、若变量x,y满足约束条件?x?y?0,则z?2x?3y的最大值为()
?x?4? A.2 B.5 C.8 D.10 【解析】作出可行域如下图所示,作直线l0:2x?3y?0,再作一组平行于l0的直线l:2x?3y?z,?x?2y?2?x?4当直线l经过点A时,z?2x?3y取得最大值,由?,得?,则A(4,?1),∴
x?4y??1??zmin?2?4?3?(?1)?5 考点:线性规划.
5、设???C的内角?,?,C的对边分别为a,b,c.若a? 2,c? cos??且b?c,则b?()
A.3B .C.2 D 【解析】由余弦定理a2?b2?c2? 2bccosA,得22?b2?2?2?b?即b2?6b?8?0,解得b?2或b?4,∵b?c,∴b?2.
考点:余弦定理.
,6、若直线l1和l2是异面直线,l1在平面?内,l2在平面?内,l是平面?与平面?的交线,则下列命题正确的是()
A.l与l1,l2都不相交B.l与l1,l2都相交
C.l至多与l1,l2中的一条相交 D.l至少与l1,l2中的一条相交
考点:空间点、线、面的位置关系.
7、已知5件产品中有2件次品,其余为合格品.现从这5件产品中任取2件,恰有一件次品的概率为()
A.0.4B.0.6C.0.8 D.1 【解析】5件产品中有2件次品,记为a,b,有3件合格品,记为c,d,e,从这5件产品中任取2件,有10种,分别是?a,b?,?a,c?,?a,d?,?a,e?,?b,c?,?b,d?,?b,e?,?c,d?,?c,e?,?d,e?,恰有一件次品,有6种,分别是?a,c?,?a,d?,?a,e?,?b,c?,?b,d?,?b,e?,设事件
??“恰有一件次品”,则? 考点:古典概型. ?0.6. 10 x2y2
8、已知椭圆?2?1(m?0)的左焦点为F1??4,0?,则m?()25m
A.2 B.3 C.4D.9 【解析】由题意得:m?25?4?9,∵m?0,∴m?3. 考点:椭圆的简单几何性质. 2
9、在平面直角坐标系x?y中,已知四边形??CD是平行四边形,1,?2?,?D??2,1?,则?D??C?()A.5 B.4 C.3D.2 【解析】在平行四边形ABCD 中,AC?AB?AD?(3,?1),AD?AC?2?3?1?(?1)?5. 考点:
1、平面向量的加法运算;
2、平面向量数量积的坐标运算.
10、若集合p,q,r,s?0?p?s?4,0?q?s?4,0?r?s?4且p,q,r,s???,F???t,u,v,w?0?t?u?4,0?v?w?4且t,u,v,w???,用card???表示集合?中的元素
个数,则cardcard?F??()
A.200 B.150C.100 D.50 【解析】当s?4时,p,q,r都是取0,1,2,3中的一个,有4?4?4?64种; 当s?3时,p,q,r都是取0,1,2中的一个,有3?3?3?27种; 当s?2时,p,q,r都是取0,1中的一个,有2?2?2?8种;
当s?1时,p,q,r都取0,有1种,∴card64?27?8?1?100.
当t?0时,u取1,2,3,4中的一个,有4种;当t?1时,u取2,3,4中的一个,有3种;
4中的一个,当t?2时,有2种;当t?3时,有1种,∴t、u取3,u取4,u的取值有1?2?3?4?10种,同理,v、w的取值也有10种,∴card?F??10?10?100.
因此,cardcard?F??100?100?200.
考点:推理与证明.
二、填空题(本大题共5小题,考生作答4小题,每小题5分,满分20分.)
(一)必做题(11~13题)
11、不等式?x2?3x?4?0的解集为.(用区间表示)【解析】由?x?3x?4?0变为x?3x?4?0,解得?4?x?1.考点:一元二次不等式.
12、已知样本数据x1,x2,???,xn的均值?5,则样本数据2x1?1,2x2?1,???,2xn?1的均值为.
【解析】∵样本数据x1,x2,???,xn的均值?5,∴样本数据2x1?1,2x2?1,???,2xn?1的均值为2?1?2?5?1?11.考点:均值的性质.
13、若三个正数a,b,c 成等比数列,其中a?5? c?5?b? 【解析】b?ac?5?考点:等比中项. ? 5??1,∵b?0,∴b?1.
(二)选做题(14、15题,考生只能从中选作一题)
14、(坐标系与参数方程选做题)在平面直角坐标系x?y中,以原点?为极点,x轴的正半轴为极轴建立极坐标系.曲线C1的极坐标方程为??cos??sin2,曲线C2的参 2 ??x?t 数方程为?(t为参数),则C1与C2交点的直角坐标为.
??y?【解析】曲线C1的直角坐标方程为x?y??2,曲线C2的普通方程为y2?8x,由
?x?y??2?x?2,解得?,∴C1与C2交点的直角坐标为(2,?4).?2 y?8xy?4?? 考点:
1、极坐标方程化为直角坐标方程;
2、参数方程化为普通方程;
3、两曲线的交点.
15、(几何证明选讲选做题)如图1,??为圆?的直径,?为?? 的延长线上一点,过?作圆?的切线,切点为C,过?作直线?C 的垂线,垂足为D.若??? 4,C???D? .
【解析】连结?C,则?C?D?,∵?D?D?,∴?C//?D,∴
图1 图1 ?C??2 ?,由切割线定理得:C???,∴??4??12,?D?? ?C???2?62 ??3. 即???4???12?0,解得:???2或6(舍去),∴?D? ??4 考点:
1、切线的性质;
2、平行线分线段成比例定理;
3、切割线定理.
三、解答题(本大题共6小题,满分80分.解答须写出文字说明、证明过程和演
算步骤.)
16、(本小题满分12分)已知tan??2.
???(1)求tan的值;
4?? sin2?(2)求2的值.
sin??sin?cos??cos2??1 2?1??3 解:(1)tan? 4?1?tan?tan1?2?1? 4 sin2?(2)2 sin??sin?cos??cos2??1 2sin?cos?2tan?2?2 1 sin2??sin?cos??2cos2?tan2??tan??222?2?2 考点:
1、两角和的正切公式;
2、特殊角的三角函数值;
3、二倍角的正、余弦公式;
4、同角三角函数的基本关系.tan??tan ?
17、(本小题满分12分)某城市100户居民的月平均用电量(单位:度),以?160,180?,?180,200?,?200,220?,?220,240?,?240,260?,?260,280?,?280,300?分组的频率分布
直方图如图2.
(1)求直方图中x的值;
(2)求月平均用电量的众数和中位数;(3)在月平均用电量为?220,240?,?240,260?,?260,280?,?280,300?的四组用
户中,用分层抽样的方法抽取11户居民,则月平均用电量在?220,240?的用户中应抽取
多少户? 图2 解:(1)由(0.002?0.0025?0.005?x?0.0095?0.011?0.0125)?20?1,得x?0.0075 220?240 ?230(2)月平均用电量的众数为: ∵(0.002?0.0095?0.011)?20?0.45,(0.002?0.0095?0.011?0.0125)?20?0.7 ∴中位数在?220,240?内,设为a,由0.0125?(a?220)?0.05,得a?224 ∴月平均用电量的中位数为224.
(3)月平均用电量在?220,240?,?240,260?,?260,280?,?280,300?这四组的居民共有
(0.0125?0.0075?0.005?0.0025)?20?100?55户,月平均用电量在?220,240?的居民有0.0125?20?100?25户,用分层抽样的方法抽取11户居民,则月平均用电量在?220,240? 的用户中应抽取25? 11 ?5户. 55 考点:
1、频率分布直方图;
2、样本的数字特征(众数、中位数);
3、分层抽样.18、(本小题满分14分)如图3,三角形?DC所在的平面与长方形??CD所在的平面垂直,?D??C?4,???6,?C?3.(1)证明:?C//平面?D?;(2)证明:?C??D;
(3)求点C到平面?D?的距离.
图3 C 篇三:2017届广东省高三上学期阶段性测评(一)数学(文)试题
广东省2017届高三上学期阶段性测评
(一)文科数学
第Ⅰ卷
一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项
中,只有一项 是符合题目要求的.1.设集俣S?xx??5或x?5,T??x?7?x?3?,则S?T?()
A.?x?7?x??5?B.?x3?x?5? C.?x?5?x?3? D.?x?7?x?5? ?? m?上随机选取一个数,若x?1的概率为2.在区间??1,A.2B.3 C.4 D.5 2,则实数m的值为()5 x?1? x?2?2e,3.设函数f?x???,则f?f?2??的值为()2 logx?1,x?23 A.0B.1 C.2 D.3 x2y2 ?1的左、右焦点分别为F1,F2,且F2为抛物线y2?2px的焦点.设P4.已知双曲线? 927为两曲线的一个公共点,则△PF1F2的面积为()A.18B . C.36D .
?y?x?1? 5.若实数x,y满足?y?x,则z?2x?y的最大值为()
2???x?y?1 A. B. C.1D.2 42 ??R,sin??sin??sin?.x2?2xsin??1?0;6.已知命题:p:?x?R,命题q:??,则下列命题中的真命题为()
A.??p??qB.p???q? C.??p??qD.??p?q? 7.若函数f?x?为区间D上的凸函数,则对于D上的任意n个值x1,x2,…,xn,总有?x?x2?…?xnf?x1??f?x2??…?f?xn??nf?1 n? ?上是?.现已知函数f?x??sinx在?0,2??? 凸函数,则在锐角△ABC中,sinA?sinB?sinC的最大值为()A. B C.D 22 8.三棱柱ABC?A1B1C1的侧棱垂直于底面,且AB?BC,AB?BC?AA1?2,若该三棱柱的所有顶点都在同一球面上,则该球的表面积为()A.48?B.32? C.12?D.8? b?,y??0,4?,则b?a的最小值为()9.执行如图所示的程序框图,若x??a,A.2B.3 C.4D.5 10.已知向量AB,AB?2,AD?1,E,AC,AD满足AC?AB?AD,F分别是线段
5BC,CD的中点,若DE?BF??,则向量AB与AD的夹角为()A.
? 6 B.
? 3 C.2?5?D. 36 11.一块边长为6cm的正方形铁皮按如图(1)所示的阴影部分裁下,然后用余下的四个全等的等腰三角形加工成一个正四棱锥形容器,将该容器按如图(2)放置,若其正视图为等腰直角三角形,则该容器的体积为()
A .3B . 3 C.3D .3 x2y2 ?2?,?1的一个顶点为C?0,12.已知椭圆E:?直线l与椭圆E交于A,若E B两点,54的左焦点为△ABC的重心,则直线l的方程为()
A.6x?5y?14?0B.6x?5y?14?0 C.6x?5y?14?0 D.6x?5y?14?0 第Ⅱ卷
二、填空题(每题5分,满分20分,将答案填在答题纸上)
13.若复数a?i是纯虚数,则实数a? .
1?处的切线方程为 . 14.曲线y?sinx?1在点?0,15.已知f?x?是定义在R上的奇函数,且f?x?2???f?x?,当0?x?1时,f?x??x,则
f?37.5?等于
n?时,f?x?至16.函数f? x??sin?x??x?1???0?的最小正周期为?,当x??m,少有5个零点,则n?m的最小值为 .
三、解答题:解答应写出文字说明、证明过程或演算步骤.17.(本小题满分10分)
在△ABC中,内角A,B,C所对的边分别是a,b,c,已知A?60?,b?5,c?4.(Ⅰ)求a;
(Ⅱ)求sinBsinC的值.18.(本小题满分12分)
设等差数列?an?的公差为d,且2a1?d,2an?a2n?1.(Ⅰ)求数列?an?的通项公式;(Ⅱ)设bn? an?1,求数列?bn?的前n项和Sn.2n?1 19.(本小题满分12分)
某市为了解各校《国学》课程的教学效果,组织全市各学校高二年级全体学生参加了国学知识水平测试,测试成绩从高到低依次分为A、B、C、D四个等级.随机调阅了甲、乙两所学校各60名学生的成绩,得到如下的分布图:(Ⅰ)试确定图中a与b的值;
(Ⅱ)若将等级A、B、C、D依次按照90分、80分、60分、50分转换成分数,试分别估计两校学生国学成绩的均值;
(Ⅲ)从两校获得A等级的同学中按比例抽取5人参加集训,集训后由于成绩相当,决定从中随机选2人代表本市参加省级比赛,求两人来自同一学校的概率.20.(本小题满分12分)
如图,三棱锥P?ABC中,PA?PC,底面ABC为正三角形.(Ⅰ)证明:AC?PB;
(Ⅱ)若平面PAC?平面ABC,AB?2,PA?PC,求三棱锥P?ABC的体积.21.(本小题满分12分)
已知圆C:?x?6??y2?20,直线l:y?kx与圆C交于不同的两点A,B.(Ⅰ)求实数k的取值范围;(Ⅱ)若OB?2OA,求直线l的方程.2 22.(本小题满分10分)
已知函数f?x??alnx?x2?x,其中a?R.(Ⅰ)若a?0,讨论f?x?的单调性;
(Ⅱ)当x?1时,f?x??0恒成立,求a的取值范围.2016-2017学高三年级阶段性测评
(一)文科数学参考答案及评分参考
一、选择题
1-5:ACCDC 6-10:CDCAB11、12:DB 解析:
1.A 【解析】借助数轴可得S?T??x?7?x??5?.2.C 【解析】由 22 ?得m?4.m?15 3.C 【解析】f?2??log33?1,∴f??f?2f?1??2.0?,4.D 【解析】双曲线的右焦点为F2?6,∴
?x2y2 ?1?? 由?927得P9,?.?y2?24x? p 则抛物线的方程为y2?24x.?6,p?12,?∴△
PF1F2的面积S? 1 ?2c??6??2 21,y?时,z?2x?y取到最大值 1.33 5.C 【解析】由图可知,当x?
6.C 【解析】p正确,q正确,所以??p??q正确.7.D 【解析】
sinA?sinB?sinC?A?B?C??sin??sin60??.? 33?? 8.C 【解析】设AC,A1C1的中点分别为H,H1,由几何知识可知,HH1的中点O为三棱
柱外接球的球心,且OA2? 2 ?1?3,∴S?4?R2?12?.x?0?x?1,9.A 【解析】程序框图的功能为求分段函数y??的函数值,2 x?0?4x?x,b?,当a?0,如图可知2??a,b?2或a?2,b?4时符合题意,∴b?a?2.
第五篇:2014年河南文科高考数学试卷
2014年普通高等学校招生全国统一考试(课标I文科卷)
数学(文科)
一.选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)已知集合Mx|1x3,Bx|2x1,则MB()
A.(2,1)B.(1,1)C.(1,3)D.(2,3)
(2)若tan0,则
A.sin0B.cos0C.sin20D.cos20
(3)设z1i,则|z| 1i
A.123B.C.D.2 22
2x2y2
1(a0)的离心率为2,则a(4)已知双曲线2a
3A.2B.65C.D.1 22
(5)设函数f(x),g(x)的定义域为R,且f(x)是奇函数,g(x)是偶函数,则下列结论中正确的是
A.f(x)g(x)是偶函数B.|f(x)|g(x)是奇函数
C.f(x)|g(x)|是奇函数D.|f(x)g(x)|是奇函数
(6)设D,E,F分别为ABC的三边BC,CA,AB的中点,则EBFC
A.B.11ADC.BCD.22
(7)在函数①ycos|2x|,②y|cosx|,③ycos(2x
为的所有函数为
A.①②③B.①③④C.②④D.①③
),④ytan(2x)中,最小正周期64
8.如图,网格纸的各小格都是正方形,粗实线画出的事一个几何体的三视图,则这个几何体是()
A.三棱锥B.三棱柱C.四棱锥D.四棱柱
9.执行右面的程序框图,若输入的a,b,k分别为1,2,3,则输出的M()A.20
3B.7161
52C.5D.8
10.已知抛物线C:y2x的焦点为F,Ax0,y0是C上一点,AF54x0,则x0(A.1B.2C.4D.8
(11)设x,y满足约束条件xya,且zxay的最小值为7
xy1,,则a
(A)-5(B)3
(C)-5或3(D)5或-3)
(12)已知函数f(x)ax33x21,若f(x)存在唯一的零点x0,且x00,则a的取值范围是
(A)2,(B)1,(C),2(D),1
第II卷
二、填空题:本大题共4小题,每小题5分
(13)将2本不同的数学书和1本语文书在书架上随机排成一行,则2本数学书相邻的概率为________.(14)甲、乙、丙三位同学被问到是否去过A、B、C三个城市时,甲说:我去过的城市比乙多,但没去过B城市;
乙说:我没去过C城市;
丙说:我们三人去过同一城市;
由此可判断乙去过的城市为________.ex1,x1,(15)设函数fx1则使得fx2成立的x的取值范围是________.3x,x1,(16)如图,为测量山高MN,选择A和另一座山的山顶C为测量观测点.从A点测得M点的仰角MAN60,C点的仰角CAB45以及MAC75;从C点测得MCA60.已知山高BC100m,则山高MN________m
.三、解答题:解答应写出文字说明,证明过程或演算步骤.(17)(本小题满分12分)
已知an是递增的等差数列,a2,a4是方程x5x60的根。
2(I)求an的通项公式;
(II)求数列an的前n项和.n2
(18)(本小题满分12分)
从某企业生产的某种产品中抽取100件,测量这些产品的一项质量指标值,由测量表得如下频数
(I)在答题卡上作出这些数据的频率分布直方图:
(II)估计这种产品质量指标值的平均数及方差(同一组中的数据用该组区间的中点值作代表);(III)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品的80%”的规定?
19(本题满分12分)
如图,三棱柱ABCA1B1C1中,侧面BB1C1C为菱形,且AO平面BB
1C1C.B1C的中点为O,(1)证明:B1CAB;
(2)若ACAB1,CBB160,BC1,求三棱柱ABCA1B1C1的高.20.(本小题满分12分)
已知点P(2,2),圆C:x2y28y0,过点P的动直线l与圆C交于A,B两点,线段AB的中点为M,O为坐标原点.(1)求M的轨迹方程;
(2)当OPOM时,求l的方程及POM的面积
21(12分)
设函数fxalnx
(1)求b;
(2)若存在x01,使得fx01a2xbxa1,曲线yfx在点1,f1处的切线斜率为0 2a,求a的取值范围。a
1请考生在第22、23、24题中任选一题作答,如果多做,则按所做的第一题记分,解答时请写清题号.(22)(本小题满分10分)选修4-1,几何证明选讲
如图,四边形ABCD是O的内接四边形,AB的延长线与DC的延长线交于点E,且CBCE.(I)证明:DE;
(II)设AD不是O的直径,AD的中点为M,且MBMC,证明:ABC为等边三角形
.(23)(本小题满分10分)选修4-4:坐标系与参数方程 x2tx2y2
1,直线l:已知曲线C:(t为参数)49y22t
(1)写出曲线C的参数方程,直线l的普通方程;
(2)过曲线C上任意一点P作与l夹角为30°的直线,交l于点A,求的最大值与最小值.(24)(本小题满分10分)选修4-5;不等式选讲
若a0,b0,且
3311ab ab(I)求ab的最小值;
(II)是否存在a,b,使得2a3b6?并说明理由.