钢质曲轴圆角工艺研究论文[共五篇]

时间:2019-10-24 00:51:14下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《钢质曲轴圆角工艺研究论文》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《钢质曲轴圆角工艺研究论文》。

第一篇:钢质曲轴圆角工艺研究论文

摘要:针对钢质曲轴圆角强化工艺研究及强化效果进行了分析。

关键词:曲轴;圆角;试验

1概述

曲轴是发动机的重要零部件,曲轴的安全系数是整机安全系数提高的可靠保证。曲轴常用的强化方式主要是表面淬火技术,对连杆颈、主轴颈、法兰及止推面进行表面处理提高耐磨性能,这种工艺在我们加工线应用已有二十余年的历史;随着工艺技术的进步和发动机升功率的提升,人们对曲轴热处理的要求发生了改变,除了耐磨性能要求外增加了强度提升的要求,提升强度需要对曲轴的圆角进行强化处理,这样才能提高曲轴的强度满足柴油机整机使用要求。国外技术资料通常有两种方法可以提高曲轴的疲劳强度。一是采用圆角感应淬火,二是采用圆角滚压,主要是对圆角进行强化处理来实现曲轴整体强度的提升。

2强化方案选择

首先根据研究资料显示。结合我们生产线实际情况,我们曲轴的材质45钢、42GrMoA以两种钢质曲轴为主,因此优先选用轴径和圆角同时淬火的强化处理路线。

3方案实施

3.1曲轴毛坯的充分去应力处理按照轴径和圆角同时淬火的强化处理路线的特点,主要解决难题为曲轴整体变形量比较大,因此需要将曲轴毛坯20根做针对性处理,即二次正火处理:工艺参数为560℃,在井式炉中保温6小时后空冷至常温。3.2圆角淬火工艺参数确定根据确定的工艺参数范围,进行多组参数试验,将试验后的样件送工艺材料研究所进行硬度、淬硬层深度和金相组织等参数的检验。根据检验情况确定最好的工艺参数进行细化调整,最终确定设备工艺参数如表2。3.3切样经过调试最终效果可以达到预计要求,下面的照片是最终工艺定型后圆角淬火后的断面切样照片,根据工艺材料研究所的检测,硬度和层深、组织均符合设计要求。

4疲劳试验对比

4.1曲轴仅进行轴颈淬火的疲劳试验结果(圆角不淬火)(表3)根据试样的疲劳试验数据,按照QC/T637-2000标准规定的算法要求,计算圆角未感应淬火工艺路线的成品曲轴的弯矩疲劳极限:由统计计算后结果可得,所得M-1满足置信度为95%、相对误差≤5%的要求,其存活率为50%的弯矩疲劳极限M-1(50%)=1358.33Nm;而存活率为99.9%的弯矩疲劳极限M-1(99.9%)=1161.68Nm;

4.2轴颈和圆角同时淬火曲轴疲劳试验结果(表4)根据试样的疲劳试验数据,按照QC/T637-2000标准规定的算法要求,计算圆角和轴径同时进行感应淬火强化工艺路线的成品曲轴的弯矩疲劳极限:由统计计算后结果可得,所得M-1满足置信度为95%、相对误差≤5%的要求,其存活率为50%的弯矩疲劳极限M-1(50%)=2883.33Nm;其存活率为99.9%的弯矩疲劳极限M-1(99.9%)=2439.62Nm。

5结论

通过对比试验结果显示:我们LR系列型号的钢质曲轴经过圆角强化的处理后,疲劳强度大幅提高,也就是说曲轴的强度得到了大幅提升,同时按照QC/T637-2000标准里规定的存活率为99.9%的弯矩疲劳极限M-1计算,曲轴的疲劳强度为提高了110%,这样工艺处理的曲轴可以承受更大的爆发压力,可以满足更大升功率发动机的使用要求。在现有发动机行业,20KW/L以上的发动机曲轴全部需要做圆角淬火强化处理,以满足发动机的整机使用要求。

第二篇:柴油机曲轴的加工工艺毕业设计

摘要

曲轴是发动机上的一个重要的旋转机件,装上连杆后,可承接活塞的上下(往复)运动变成循环运动。曲轴主要有两个重要加工部位:主轴颈和连杆颈。主轴颈被安装在缸体上,连杆颈与连杆大头孔连接,连杆小头孔与汽缸活塞连接,是一个典型的曲柄滑块机构。发动机工作过程就是:活塞经过混合压缩气的燃爆,推动活塞做直线运动,并通过连杆将力传给曲轴,由曲轴将直线运动转变为旋转运动。而曲轴加工的好坏将直接影响着发动机整体性能的表现。曲轴的材料是由碳素结构钢或球墨铸铁制成的,有两个重要部位:主轴颈,连杆颈。本次采用球墨铸铁QT600-2.设计的主要就是这两方面的在数控机床的加工。集合多种的曲轴加工后,深入分析了曲轴的加工工艺。

关键词:曲轴

主轴劲

连杆劲

数控加工。

曲轴的根底信息

1.1曲轴的作用

曲轴是汽车发动机中的重要零件,它与连杆配合将作用在活塞上的气体压力变为旋转的动力,传给底盘的传动机构,同时,驱动配气机构和其它辅助装置。

曲轴在工作时,受气体压力,惯性力及惯性力矩的作用,受力大而且受力复杂,同时,曲轴又是高速旋转件,因此,要求曲轴具有足够的刚度和强度,具有良好的承受冲击载荷的能力,耐磨损且润滑良好。

1.2曲轴的结构及其特点

图1-1

曲轴的结构图

曲轴一般由主轴颈,连杆轴颈、曲柄、平衡块、前端和后端等组成。一个主轴颈、一个连杆轴颈和一个曲柄组成了一个曲拐,曲轴的曲拐数目等于气缸数(直列式发动机);V型发动机曲轴的曲拐数等于气缸数的一半。

主轴颈是曲轴的支承局部,通过主轴承支承在曲轴箱的主轴承座中。主轴承的数目不仅与发动机气缸数目有关,还取决于曲轴的支承方式。

连杆轴颈是曲轴与连杆的连接局部,在连接处用圆弧过渡,以减少应力集中。

曲柄是主轴颈和连杆轴颈的连接局部,断面为椭圆形,为了平衡惯性力,曲柄处铸有(或紧固有)平衡重块。平衡重块用来平衡发动机不平衡的离心力矩,有时还用来平衡一局部往复惯性力,从而使曲轴旋转平稳。

曲轴前端装有齿轮,驱动风扇和水泵的皮带轮以及起动爪等。为了防止机油沿曲轴轴颈外漏,在曲轴前端装有一个甩油盘,在齿轮室盖上装有油封。曲轴的后端用来安装飞轮,在后轴颈与飞轮凸缘之间制成挡油凸缘与回油螺纹,以阻止机油向后窜漏。

1.3曲轴的主要技术要求分析

〔1〕.主轴颈、连杆轴颈本身的精度,即尺寸公关等级IT6,外表粗糙度Ra值为1.25~0.63μm。轴颈长度公差等级为IT9~IT10。轴颈的形状公差,如圆度、圆柱度控制在尺寸公差之半。

〔2〕.位置精度,包括主轴颈与连杆轴颈的平行度:一般为100mm之内不大于0.02mm;曲轴各主轴颈的同轴度:小型高速曲轴为0.025mm,中大型低速曲轴为0.03~0.08mm。

〔3〕.各连杆轴颈的位置度不大于±20′。

1.4曲轴的材料和毛坯确实定

曲轴工作时要承受很大的转矩及交变的弯曲应力,容易门生扭振、折断及轴颈磨损,因此要求用材应有较高的强度、冲击韧度、疲劳强度和耐磨性。常用材料有:一般曲轴为35、40、45钢或球墨铸铁QT600-2;对于高速、重载曲轴,可采用40Cr、42Mn2V等材料。

1.5曲轴的机械加工工艺过程

曲轴的尺寸精度、加工外表形状精度以及位置精度的要求都很高,但刚性比拟差,容易产生变形,这就给曲轴的机械加工带来了很多困难,必须予以充分的重视。

曲轴需要加工的外表有:主轴颈、连杆轴颈、键槽、外圆。由于使用了工艺搭子,铣键槽安排在切除工艺搭子后,磨削外圆安排在保存工艺搭子前。

根据曲轴的结构特点及机械加工的要求,加工顺序大致可归纳为:铣两端面;车工艺搭子和钻中心孔;粗、精车三连杆轴颈;粗、精车各处外圆;精磨连杆轴颈、主轴颈和外圆;切除工艺搭子、车端面、铣键槽等。

1.6曲轴机械加工工艺根本路线

(1)

根底锻造

(2)

热处理

(3)

铣两端面

(4)

车两端工艺搭子外圆

(5)

钻主轴颈中心孔

(6)

钻连杆轴颈中心孔

(7)

检验

(8)

粗车连杆轴颈

(9)

精车连杆轴颈

(10)

车工艺搭子两端面

(11)

粗车各处外圆

(12)

精车各处外圆

(13)

检验

(14)

磨削连杆轴颈外圆

(15)

磨削主轴颈

(16)

磨削外圆

(17)

磨削φ20

0

-00.021mm外圆

(18)

检验

(19)

车掉两端工艺搭子

(20)

车两端面

(21)

铣键槽

(22)

倒角

(23)

去毛刺

(24)

最后检验

曲轴的机械加工工艺过程分析

2.1曲轴的机械加工工艺特点

三拐曲轴除了具有轴的一般加工规律外,也有它的工艺特点,主要包括形状复杂,刚性差及技术要求高,针对这些特点应采取相应的措施

2.2曲轴的机械加工工艺特点分析

〔1〕该零件是多拐小型曲轴,生产批量不大,应选用中心孔定位,它是辅助基准,装夹方便,节省找正时间,又能保证三处连杆轴颈的位置精度。但轴两端的轴颈比例不再统一圆周上,故不能直接在轴端面上钻三对中心孔。于是,在曲轴毛坯制造时,预先铸造两端的工艺搭子,这样就可以在工艺搭子上钻出四对中心孔,到达用中心孔定位的目的。

〔2〕在工艺搭子端面上钻四对中心孔,先以两主轴颈为粗基准,钻好主轴颈的一对中心孔;然后以这一对中心孔定位,以连杆轴颈为粗基准划线,再将曲轴放到回转工作台上,加工φ32mm、圆周120°均布的三个连杆轴颈的中心孔,这样就保证了它们之间的位置精度。

〔3〕该零件刚性较差,应按先粗后精的原那么安排加工顺序,逐步提高加工精度。对于主轴颈与连杆轴颈的加工顺序是,先加工三个连杆轴颈,然后再加工主轴颈及其他各处的外圆,这样安排可以防止一开始就降低工件刚度,减少受力变形,有利于提高曲轴加工精度。

〔4〕由于使用了工艺搭子,铣键槽工序安排在切除中心孔后进行,故磨外圆工序必须提前在还保存工艺搭子中心孔时进行,同时要注意防止已磨好的外表被碰伤。

2.3曲轴主要加工工序分析

〔1〕铣曲轴两端面,钻中心孔

本工序在钻铣车组合车床上完成,主要保证曲轴总长及中心孔的质量,假设端面不平那么中心钻上的两切削刃的受力不均,钻头可能引偏而折断,因此采用先面后孔的原那么。中心孔除影响曲轴质量分布外,它还是曲轴加工的重要基准贯穿整个曲轴加工始终。因而直接影响曲轴加工精度。打中心孔在本次工艺设计中因考虑设备因素,采用找出曲轴的几何中心代替质量中心。打中心孔以毛坯的外外表作为基准,因而毛坯外外表质量好坏直接影响孔的位置误差。

〔2〕曲轴主轴颈的车削

由于曲轴年产量不大,主轴颈加工采用车削,在刚度较强的普通车床上进行。曲轴安装在前、后顶尖上线一端用大盘夹住而另一端用顶尖顶住,用硬质合金车几道工序上完成主轴颈的车削。由于加工余大且不均匀,旋转不平衡,加工时产生冲击,因此工件要夹牢固。车床、刀具、夹具要有足够的刚性。主轴颈车削顺序是先精车一端主轴颈及轴肩,然后以车好的主轴颈定位。另一侧用顶尖以中心孔定位。车另一端主轴颈、肩及各个轴颈,半精度及精车都按此顺序进行,逐渐提高主轴颈及其他轴颈的加工精度。

〔3〕曲轴连杆轴颈的车削

主轴颈及其它外圆车好后,以主轴颈作为加工连杆轴颈的基准,采用专用的车夹具、车削连杆轴颈,车削同样在普通车床上进行。车削连杆轴颈需要解决的是角度定位〔两连杆轴颈轴线需要控制在180度+30度或180度—30度〕以及曲轴旋转的不平衡问题。这些都由专用夹具来保证,夹具体为一对用以定位的V型块组成,装在接盘上。接盘与车床过渡接盘靠中间的定位销定位并连接,接盘在过渡接盘上靠棱形定位销可转180度,依次车削两个连杆轴颈。V型块中心与车床主轴线距离一个曲轴半径。车削过程中,一端与曲轴主轴颈定位并夹紧,另一端靠偏中心座夹紧,中心座上钻有中心孔,中心孔偏心距同样为一个曲轴半径。用顶尖顶紧中心孔,这样就能保证连杆轴颈轴线与车床主轴线一致。安装夹具体的接盘上有平衡块,消除曲轴旋转时不平衡力矩的生。曲轴加工时由于受到离心力和两顶尖的轴向压紧偏心力的作用,容易发生弯曲变形,为了加强工件刚度,用撑杆来撑住另一个曲拐的开移。车削连杆轴颈时为了使切削力不致于太大,每次车削余量控制在1~1.5mm内,同时车床旋转不能太高,刀具采用高速钢。

〔4〕键槽加工

这个键槽主要用于飞轮,加工此键槽应安排在主轴颈精车工序之后,这样能保证定位精度及控制键槽的深度以及对称度。键槽加工是以两主轴颈定位,同样用专用夹具在普通铣床上进行。

〔5〕轴颈的磨削

由于主轴颈及连杆轴颈精度较高,尺寸精度为IT6级,外表粗糙度1.6~0.8μm,并且具有较高的形状精度及位置精度。因此主轴颈与连杆轴颈精车后要进行磨削,以提高精度外表粗糙度。

在工艺设计中,首先磨主轴颈然后磨连杆轴颈。中间主轴颈磨好后才能磨其余轴颈,磨主轴颈和连杆轴颈的安装方法根本上与车轴颈相同,磨主轴颈是以中心孔定位,在外圆磨床上进行,磨连杆轴颈那么以经过精磨的两端主轴颈定位,以保证与主轴颈的轴线距离及平行度要求,磨连杆轴颈是在曲轴磨床上进行的。

由于轴颈宽度不大,采用横向进给磨削法,生产率较高,磨轮的外形需仔细地修整,因为直接影响轴颈与圆角的形状,磨削余量根据车削后的精度而定,粗磨余量值每边0.2~0.3mm,精磨余量控制在0.1~0.15

mm内。

在横向进给磨削中,磨轮对工件的压力很大,为防止曲轴弯曲,采用可以调节的中心架,否那么就不能去掉上道工序留下的弯曲度,最好待这个轴颈的摆差减小才开始使用中心架。

磨削主轴颈时应把两顶尖孔倒角处抹干净,去砂粒及油泥,确保加工基准——中心孔的精度,磨削工序之前必须修研中心孔。

机械加工余量、工序尺寸及公差确实定

3.1曲轴主要加工外表的工序安排

曲轴的主要加工外表为主轴颈、连杆轴颈、各外圆;次要加工外表为两端面、键槽。此外,还有还有检验、清洗、去毛刺等工序。

连杆各主要外表的工序安排如下:

〔1〕、主轴颈:粗车、精车、磨削;

〔2〕、连杆轴颈:粗车、精车、磨削;

3.2确定工时定额

粗车七个连杆轴颈至φ。

〔1〕

被吃刀量:取=1mm,〔2〕

进给量f:取。

〔3〕

机床主轴转速:

取n=600r/min

〔4〕

切削速度:

〔5〕

计算切削工时:被切削层长度=3×22=66mm,因为粗车走刀两次,故tm=0.44min

精车三个连杆轴颈至φ24.50-0.033。

〔1〕

被吃刀量:取=0.65mm,〔2〕

进给量f:取f=0.3mm/r

〔3〕

机床主轴转速:

取n=800r/min

〔4〕

切削速度:

〔5〕

计算切削工时:被切削层长度=3×22=66mm,因为粗车走刀两次,故tm=0.55min

附录设备刀具

工序号

工序名称

设备名称型号

夹具、刀检具及辅具

005

铣端面

双面铣床

010

划线

可调V型架

015

打中心孔

中心孔钻床

可调中心架

020

粗车法兰外圆

C630

025

粗车主四

C630

030

粗磨主四

MQ8260

P900x38x305A46#P5V

035

车主颈及大小头

S1-206

卡瓦、成型车刀

040

粗磨主颈及小头

MQ8260

砂轮

045

精车大头

CA6140

050

车小头平端面

C3180

锥柄钻花

055

钻大头孔

C3180

锥柄麻花钻

060

铣定位面

065

车外端连颈

S1-217

卡瓦、成型车刀

070

车第二区连颈

S1-217

卡瓦、成型车刀

075

车中心区连颈

S1-217

卡瓦、成型车刀

080

粗磨连颈

MQ8260

三等分夹具、砂轮

085

半精磨小头

MQ8260

090

钻直油孔

Z35A

钻直油孔钻模

095

钻斜油孔

油孔钻床

钻斜油孔钻模

精磨主颈

MQ8260

砂轮、修整器、中心架、千分尺、卡板

精磨法兰

MQ8260

砂轮、修整器、中心架、千分尺、卡板

精磨连颈

MQ8260

砂轮、修整器、中心架、三等分夹具、中心高检具

115

探伤及退磁

JDC-900

120

氮化前抛光

砂纸150#

125

检验

130

校直

Y41-63

V型块

135

氮化

140

修中心孔、倒角

CA6140

145

精磨小头

MQ8260

表架、主一长度检具

150

精车轴承孔

CA6140

内径量缸表、校对规

155

钻法兰孔

Z35A

钻模、钻花、丝攻

160

铣键槽

X62W

铣键槽夹具

165

去毛刺

电开工具

170

油孔口抛光

橡胶锥及砂纸180#

175

动平衡及去重

动平衡机、Z35A

钻花

180

氮化后抛光

砂纸180#

185

检验

190

清洗、上蜡、包装

清洗机

柴油、清洗液、蜡

工序分析

〔1〕铣端面工序有两个作用:保证曲轴的总长;保证中心孔的质量。假设端面不平,那么中心钻上两个切削刃的受力不均,钻头引偏而折断。这也是“先面后孔〞原那么的具体应用。

〔2〕中心孔的重要性:中心孔除影响曲轴的质量分布外,它的重要性还在于它是曲轴加工的重要精基准,直接影响曲轴的加工精度,因此中心孔必须满足其质量要求。但工件经过粗加工后,中心孔的精度往往不可防止地受到影响,所以在精加工之前,必须对中心孔进行修研,确保符合其技术要求。可用油石或橡胶砂轮修研。

〔3〕打中心孔是采用找出曲轴的几何中心来代替质量中心,是以毛坯的外表作为基准。毛坯外表光洁圆整,那么打出的中心孔位置误差就小。

〔4〕按照S1-206车床的工装结构,必须先粗车和粗磨主颈四。主颈四是加工长度尺寸的一个基准,其两侧扇板的厚度应分均匀,否那么极易使整根曲轴的轴向尺寸发生偏移,即单边,致使曲轴各扇板厚度不一而致废。

〔5〕因曲轴刚度差,故车主轴颈的工序,采用前后刀架同时横向进给的S1-206一次加工成型的机床,必须注意刀排分布应合理,车刀应常换常磨,进刀量应适中。

〔6〕车小头孔、平端面工序不容无视。因为小头是与起动爪相连的部位,在用人力起动发动机时,小头传递大力矩,所以首先要保证小头的有效深度,其次小头孔倒角应圆整光滑,角度正确,以保证精磨小头时外圆跳动合格,否那么就应重新精修小头孔倒角。

〔7〕钻大头孔工序。孔太深会影响第七主轴颈及法兰的强度,太浅会影响内装黄油的空间和装轴承的轴向位置。

〔8〕铣定位面。为了使车连颈时角度分布均匀,按照铸造毛坯六缸曲轴的角度均布原理去掉铸造余量,故必须铣好定位面。不管定位面向那边有所偏移,都会严重改变铸件曲轴工序余量的均匀分布,严重偏移的致使连颈加工缺乏而致废。

〔9〕车连颈S1-217是成型车床,刀排分布合理、车刀的成型正确、进刀量适中、定位面紧靠都直接影响到产品能否到达工艺技术要求。故中心距、长度、宽度尺寸和圆弧、外圆尺寸等的调整必须在车床进入稳定加工状态后才可进行,防止工艺系统热变形影响太大。

〔10〕粗磨连颈是一道重要工序。粗磨连颈要进行曲轴120°的三等分,保证中心高尺寸。磨床首尾两端偏心夹具的移动会引起主连轴颈中心高的变化,应仔细调整至适宜之处反锁固定。此外假设中心架调整不恰当会引起曲轴变形而致中心高超差,而砂轮进刀太快那么会引起角度偏移,甚至曲轴断裂。

致谢

我本次的毕业设计,得到邹竹青老师的亲切关心和精心指导,使得本设计得以顺利完成,其中无不饱含着老师的汗水和心血。首先要感谢的是我的指导老师邹竹青老师,在整个过程中他给了我很大的帮助。在完成初稿后,老师认真查看了我的设计内容和格式,指出了我存在的很多问题,让后我回去在查看资料,在反复的修改中我学到了不少知识,同时在请教别人的过程中我也增加了和同学老师之间的感情,使我们的友谊更进一步加深了,在此十分感谢邹老师的细心指导,才能让我顺利完成毕业设计。同时感谢所有任课老师三年来对我的培养。如果没有你们的精心培育我不可能有今天的没好时光,是你们在我有困难的时候帮我们解决困难,就包括这次的毕业设计有许多老师都给与了我们很大的帮助,不管是从材料的来源还是格式的指导都非常认真细心地给我们指引。同时也要感谢我的同学和朋友们,在设计过程中也得到了许多朋友的关心,不管是学哥学姐,都给予我们帮助,我将永远记得你们伴我走过的每一个有欢笑有泪水的日子,是你们的关心和帮助,让我感受到了家的温暖。

借此,感谢大学三年中我的班主任和任课老师们给予的教诲,你们的教诲,不仅让我学到了书本的根底知识,更重要的是让我学会了如何做一名优秀的大学生,如果没有你们的辛勤教诲,也不会有我今天的成长。也感谢学院为我们提供了一次这样好的时机,使自己在学习的同时也锻炼了自己的实践能力。

第三篇:球墨铸铁汽车曲轴的加工工艺解读

球墨铸铁汽车曲轴的加工工艺

学 院 机电工程学院 专 业 机械类 年级班别 创新实验班12(1)学 号 3112010453 3112010454 3112010455 3112010462 学生姓名 罗毓健 骆智伟

马欣华 冼文飞

指导教师 王成勇

2014年 6 月

摘 要

球墨铸铁具有优良的机械性能,已经大量用于制造强度、韧性、耐磨性要求较高的零件。球墨铸铁大量地应用于汽车发动机曲轴的加工生产,结合球墨铸铁的特性,本文讲述了球墨铸铁应用于曲轴的切削与磨削加工机理及其加工工艺,介绍了聚晶立方氮化硼(PCBN)刀具切削加工等温淬火球墨铸铁(ADI)时的特征。介绍了奇瑞公司曲轴的加工工艺以及几款相关的曲轴专用加工机床。

关键词:球墨铸铁,曲轴,ADI,PCBN

目 录 球墨铸铁基本性质与应用........................................1 1.1 1.2 1.3 1.4 1.5 球墨铸铁的成分与组织结构......................................................................1 球墨铸铁的机械、物理、力学性能..........................................................1 典型零件、应用场合..................................................................................2 球墨铸铁曲轴加工批量和加工质量要求..................................................2 小结..............................................................................................................2 球墨铸铁切削与磨削加工机理....................................2 2.1 2.2 2.3 2.4 2.5 等温淬火球墨铸铁(ADI)的切削与磨削可加工性简述........................3 铸铁应用于曲轴的主要切削、磨削去除过程..........................................3 球墨铸铁的切削加工过程特征..................................................................4 加工等温淬火球墨铸铁常用刀具..............................................................5 曲轴加工工艺..............................................................................................6 曲轴加工专用机床.............................................12 3.1 3.2 3.3 3.4 曲轴质量定心机........................................................................................13 数控车-车拉机床....................................................................................13 曲轴圆角滚压机床....................................................................................13 绿色粗磨“扒皮”机床............................................................................13 参 考 文 献...................................................14

球墨铸铁汽车曲轴的加工工艺 球墨铸铁基本性质与应用

1.1 球墨铸铁的成分与组织结构

根据铸铁中石墨形态的不同,铸铁可分为以下四类:

(1)普通灰铸铁。石墨呈曲片状存在于铸铁中,简称灰铸铁或灰铁,是目前应用最广的一种铸铁。

(2)可锻铸铁。由一定成分的白口铸铁经过石墨化退火而获得。石墨呈团絮状存在于铸铁中,有较高的韧性和一定的塑性。

(3)蠕墨铸铁。铁水在浇注前经蠕化处理,使析出的石墨成蠕虫状存在于铸铁中,简称蠕铁。

(4)球墨铸铁。铁水在浇注前经过球化处理,使析出的石墨呈球状存在于铸铁中,简称球铁。

球墨铸铁由于通过球化和孕育处理得到球状石墨,有效地提高了铸铁的机械性能,特别是提高了塑性和韧性,从而得到比碳钢还高的强度。球墨铸铁除铁外的化学成分通常为:含碳量3.0~4.0%,含硅量1.8~3.2%,含锰、磷、硫总量不超过3.0%和适量的稀土、镁等球化元素。不同牌号的球墨铸铁的基体组织不同,一般含有铁素体,珠光体随着力学性能的提高铁素体含量减少,出现贝氏体和回火组织。

图1

1.2 球墨铸铁的机械、物理、力学性能

兼具优良的综合机械性能以及低廉的制造成本,球墨铸铁已经大量用于制造强度、軔性、耐磨性要求较高的零件。球墨铸铁是铁液凝固时碳以石墨形式呈球状析出的铸铁。由于石墨以球状存在,避免因片状或尖角可能导致的应力集中,降低了石墨对基体的割裂作用,其强 度、塑性、初性均显著优于灰铸铁。球墨铸铁屈强比较高,其强度质量比也优于铸钢。其中,铁素体球墨铸铁具有优良的室温强度和初性,广泛地应用于重要传动部件,如汽车曲轴、凸轮轴、齿轮、及高速铁路结构件等。然而,与结构钢材类似,铁素体球墨铸铁的塑性随着温度降低而下降,在一定温度下发生初性断裂向脆性断裂的转变。

1.3 典型零件、应用场合

一般用于内燃机、机床阀体、车辆轴瓦和机油泵齿轮、柴油机曲轴、凸轮、汽缸体、汽缸套、活塞环以及部分磨床、铣床、车辆的主轴、汽车的螺旋锥齿轮、拖拉机减速齿轮、柴油机凸轮轴等。

表1 各牌号球墨铸铁的用途距离

1.4 球墨铸铁曲轴加工批量和加工质量要求

随着球墨铸铁技术的发展,其性能也在不断提高,优质廉价的球铁已成为制造曲轴的重要材料之一。

曲轴作为柴油机的关键零件, 除了强度和韧性的要求之外,还需要较高的表面硬度, 以保证其耐磨性。球墨铸铁曲轴经各种处理后能满足其服役要求,这也是球墨铸铁被广泛用作曲轴材料的原因之一。热处理工艺有: 正火+ 中频淬火,正火+ 氮化或等温淬火。此外,为了提高曲轴的疲劳强度,广泛采用圆角强化手段,其中应用多且效果好的是圆角滚压,圆角滚压和其他热处理工艺的复合强化更能较大幅度地提高曲轴疲劳强度

1.5 小结

球墨铸铁以其优良的物理和力学性能,在曲轴的生产制造中得到广泛应用。随球墨铸铁熔炼与合金化技术及等温淬火球墨铸铁的发展,球墨铸铁性能不断提高。采用球墨铸铁取代锻钢生产发动机曲轴可节约成本,从而成为曲轴生产的发展趋势。对中小功率发动机曲轴的生产可采用铸态珠光体球墨铸铁,或附加表面强化工艺;而等温淬火球墨铸铁以其优异的力学性能,在大功率发动机曲轴制造中将发挥更大的作用。球墨铸铁切削与磨削加工机理 2.1 等温淬火球墨铸铁(ADI)的切削与磨削可加工性简述

等温淬火球墨铸铁(ADI)是近三十多年发展起来的新一代球墨铸铁材料,被誉为材料领域的高科技,在国内外各工业部门都获得了广泛应用。

等温淬火球墨铸铁作为发动机曲轴材料(如图2.1),具有高强度、高韧度、高耐磨性等综合机械性能可以替代锻钢材料用于轿车及载货车发动机曲轴。然而,高强度、高硬度和高韧性使等温淬火球墨铸铁在切削加工时切削刃口受到更高的应力, 造成一定困难。但是,根据等淬球铁特有的金属基体组织和力学性能,选择合适的刀具,调整和优化刀具及加工参数,等淬球铁完全可以成功地进行切削加工。

图2.1

2.2 铸铁应用于曲轴的主要切削、磨削去除过程

2.2.1 铣曲轴两端面,钻中心孔

本过程在钻铣车组合车床上完成,主要保证曲轴总长及中心孔的质量。若端面不平会导致中心钻上的两切削刃的受力不均匀,钻头可能引偏而折断,因此采用先面后孔的原则。中心孔除影响曲轴质量分布外,还是曲轴加工的重要基准。贯穿整个曲轴加工始终,因而直接影响曲轴加工精度。打中心孔在本次工艺设计中因考虑设备因素,采用找出曲轴的几何中心代替质量中心。打中心孔以毛坯的外表面作为基准,因而毛坯外表面质量好坏直接影响孔的位置误差程度。

2.2.2 曲轴主轴颈的车削

主轴颈加工采用车削,在刚度较强的普通车床上进行。曲轴安装在前、后顶尖上线一端用大盘夹住而另一端用顶尖顶住,用硬质台金车几道工序上完成主轴颈的车削。由于加工余量大且不均匀,旋转不平衡,加工时产生冲击,因此工件要夹牢固。车床、刀具、夹具要有足够的刚性。主轴颈车削顺序是先精车一端主轴颈及轴肩,然后以车好的主轴颈定位。另一侧用顶尖以中心孔定位。车另一端主轴颈、肩及各个轴颈,半精度及精车都按此顺序进行,逐渐提高主轴颈及其他轴颈的加工精度。

2.2.3 曲轴连杆轴颈的车削

主轴颈及其他外圆车好后,以主轴颈作为加工连杆轴颈的基准,采用专用的车夹具、车削连杆轴颈,车削同样在普通车床上进行。车削连杆轴颈需要解决的是角度定位(2个连杆轴颈轴线需要控制在180°+30°或180°-30°)以及曲轴旋转的不平衡问题。这些都由专用夹具来保证,夹具为一对用以定位的“V”形块组成,装在接盘上。接盘与车床过渡接盘靠 中间的定位销定位并连接,接盘在过渡接盘上靠棱形定位销可转180°,依次车削2个连杆轴颈。“V”形块中心与车床主轴线距离一个曲轴半径。车削过程中,一端与曲轴主轴颈定位并夹紧,另一端靠偏中心座夹紧,中心座上钻有中心孔,中心孔偏心距同样为一个曲轴半径。用顶尖顶紧中心孔,这样就能保证连杆轴颈轴线与车床主轴线一致。安装夹具体的接盘上有平衡块,消除曲轴旋转时不平衡力矩的生成。曲轴加工时由于受到离心力和两顶尖的轴向压紧偏心力的作用,容易发生弯曲变形,为了加强工件刚度,用撑杆来撑住另一个曲拐的开移。车削连杆轴颈时为了使切削力不至于太大,每次车削余量控制在1~1.5 mm内,同时车床旋转不能太高,刀具采用高速钢。

2.2.4 键槽加工

这个键槽主要用于飞轮,加工此键槽应安排在主轴颈车工序之后,这样能保证定位精度和控制键槽的深度以及对称度。键槽加工是以两主轴颈定位,同样用专用夹具在普通铣床上进行。

2.2.5 轴颈的磨削

由于主轴颈及连轩轴颈精度较高,尺寸精度为IT6级,表面粗糙度为1.6~0.8 μm,并且具有较高的形状精度及位置精度。因此主轴颈与连杆轴颈精车后要进行磨削,以提高精度表面粗糙度。

在工艺设计中,首先磨主轴颈然后磨连杆轴颈。中间主轴颈磨好后才能磨其余轴颈,磨主轴颈和连杆轴颈的安装方法基本上与车轴颈相同,磨主轴颈是以中心孔定位,在外圆磨床上进行,磨连杆轴颈则以经过精磨的两端主轴颈定位,以保证与主轴颈的轴线距离及平行度要求,磨连杆轴颈是在曲轴磨床上进行的。

由于轴颈宽度不大,采用横向进给磨削法,生产率较高,磨轮的外形需仔细地修整,因为直接影轴颈与圆角的形状,磨削余量根据车削后的精度而定,粗磨余量值每边0.2~0.3mm,精磨余量控制在0.1~0.15mm以内。

2.3 球墨铸铁的切削加工过程特征

2.3.1切削力、切削温度、切削震动分析

切削试验在CA6140 车床上进行,用瑞士Kistler9257B型测力仪、Kist ler 5807A 型电荷放大器、Kist ler 9403型刀架和计算机组成的切削力数据采集系统进行三向切削力的测量。由于切削速度是影响刀具切削性能的最主要因素,故本实验只改变切削速度。具体切削参数分别为进给量f=0.15mm*r-1 ,切削深度ap= 0.2mm,五种切削速度v1-v5 = 164, 129, 102, 82,46m*min-1。

图2.3.1

上图为各刀具在切削过程中切削力的变化。低速切削时切屑为块状,刀具震动较严重,虽然刀尖处存在积屑瘤,但是极不稳定;并且ADI 的硬度较大, 所以切削力较大。随着速度的提高,切削温度升高,工件材料硬度降低而强度增加,切屑形态由块状向带状转变, 切削力趋于稳定,切屑底层抗剪强度减小,使得切削力有减小的趋势;高速切削时刀屑接触表面发生了变化使得切削力有所不同。

在硬态切削加工中,切削速度的变化对切削力的影响主要有两方面:(1)速度增大,切削温度升高,黏结、扩散磨损严重,使刀具与切屑、工件间的摩擦力增大,切削力变大。(2)切削温度随速度增大而升高,发生金属软化效应,工件材料塑性增加,流动应力减小,使切削力降低。

ADI的导热性比球墨铸铁和钢稍低一些,因而与球铁、灰铁和铝相比,其工件与刀具的接触面将会更热一些。利用大剂量的冷却液可以减弱这种作用,如果采用干切削,必须使用耐高温的刀具。ADI的屈服强度高于大部分钢,但是它的杨氏模数比钢低20%,因而在机械加工时易产生振动。故加工时要求有刚性好的工件和刀具夹持装置,以避免切削时产生振动,这会促使刀具加速磨损、降低工件表面光洁度,并使尺寸偏差增大。

2.3.2 切屑形态与处理

ADI在切削时会产生致密、断续的切屑,切屑易碎易断,大多呈崩碎屑。ADI切削加工性能较DI差,刀具磨损较为严重。

图2.3.2

2.4 加工等温淬火球墨铸铁常用刀具

2.4.1 聚晶立方氮化硼刀具加工等温淬火球墨铸铁 等温淬火球墨铸铁(ADI)硬度大、强度高, 在切削加工时会产生大量的热量, 属于铸铁类中最难加工的材料之一。使用硬质合金刀具和陶瓷刀具来加工ADI 时刀具磨损严重, 使用寿命短。而聚晶立方氮化硼(PCBN)材料硬度高、耐磨性好, 用它制成的PCBN 复合刀具用于铸铁类材料的加工范围越来越广。由于切削铸铁类工件时刀具的磨损形式主要为高温条件下引起的化学磨损,因此降低切削时刀具的温度是保证PCBN 复合刀具加工质量和切削性能的必要手段。PCBN 刀具切削过程中刀-屑间的摩擦是切削热产生的主要原因,因此减小刀具的摩擦因数,对减小切削热、降低刀-屑间的摩擦有重要的意义。所以切削铸铁类工件的PCBN 复合刀具不仅要有高的热导率, 还要有低的摩擦因数。

2.4.2 各公司PCBN刀具对比

选用国内外产四种切削铸铁的PCBN 复合刀具,刀具几何角度相同(前角γ0= 0°, 后角α0= 6°,刀尖圆弧γε= 0.8 mm, 负倒棱-15°* 0.20 mm)。

表2 各公司PCBN刀具成分对比

PCBN复合刀具英国Elem ent SixAMBORITE DBA80日本住友BN500韩国日进SB95中国刀具PCBN体积分数/%粒径/μm80659590-956435N6.782.7919.2917.22粘结剂成分(原子分数/%)TiAlCo38.1345.824.113.2727.877.376.976.871.7-36.4532.85W25.51-33.1929.7Hf-43.16--Mg-0.87--

2.5 曲轴加工工艺

2.5.1 曲轴的组成

曲轴由一下结构组成:(1)曲轴前端(小头);(2)由连杆轴颈、曲柄臂及主轴颈组成的曲拐;(3)曲轴后端(法兰)

图2.5.1

2.5.2 有关曲轴定位基准的选择

精基准的选择,曲轴与一般的轴类零件相同,最重要的精基准是中心孔。曲轴轴向的精 基准一般选取止推曲轴径向定位一般选取平衡块的定位平台或法兰上的定位孔。

粗基准的选择,曲轴的毛坯一般呈弯曲状态,为了保证两端中心孔都能钻在两端面的几何中心上,粗基准选择靠近两端的轴颈(1、5主轴颈);轴向定位基准一般选择中间主轴颈两边的曲柄。因为中间主轴颈两边的曲柄处于曲轴的中间部位,用作粗基准可以减小其它曲柄的位置误差。

2.5.3 奇瑞公司发动机曲轴加工工艺

OP10 铣两端面

图2.5.2

OP20 钻质量中心孔

质量中心孔:当物体绕一轴线旋转时,如果对外未表现出力的作用,那么这一轴线称为该物体的质量中心线,再按此质量中心线钻出中心孔,这样的中心孔称为质量中心孔。几何中心孔:中心孔位于几何轴线上,这样的孔称为几何中心孔;比较:质量中心孔先要对曲轴进行动平衡找出曲轴的质量轴线,可以减少曲轴动平衡时的去重工作量,提高动平衡的合格率。但质量定心机床要比普通几何中心孔机床的价格贵得多。

图2.5.3

OP30 铣传送搭子

图2.5.4

OP40车与主轴颈同轴的所有轴颈。

采用中心孔定位,驱动采用第三连杆轴颈上的传送搭子。使用成型刀具,加工效率高,但刀具寿命低。

图2.5.5

OP50车全部连杆轴颈。

1,5 主轴颈定位、夹紧驱动,止推面轴向定位,第一平衡块侧面定角向。靠模车削方式。

图2.5.6

OP60加工所有油孔

图2.5.7

OP70加工小头的螺纹底孔、攻丝;加工法兰上的导向孔,螺纹孔和工艺销孔。

图2.5.8

OP80粗精磨所有主轴颈和法兰

图2.5.9

OP90粗精磨所有连杆轴颈,1,5主轴颈定位夹紧,法兰工艺孔角向定位、驱动

图2.5.10

OP100磨小头(油泵、油封、皮带轮轴颈)

图2.5.11

OP110精车止推面、油泵传动面,键槽,精镗导向孔

图2.5.12

OP120动平衡去重

(1)动平衡:发动机在稳定工况运转时,如果传给支撑的作用力的大小和方向不随时间而变化,这种状态称为动平衡。

(2)发动机的动平衡包括:惯性力系的平衡性和扭矩的平衡性。

(3)静平衡:旋转质量系统在静平衡器上能够随遇平衡,即系统的质心位于旋转轴线上。曲轴工作时,它的各个质点都有离心惯性力。理想的情况是惯性力都能在曲轴内相互平衡,不传递到支承上。但曲轴的质量分布不是均匀的,旋转时离心力系不能平衡,也就是说曲轴的不平衡现象是以主轴颈轴线为中心的质量分布不对称引起的惯性力所致。

曲轴的不平衡,破坏了发动机的平稳运转,产生振动和噪音,加剧磨损,影响发动机的工作和使用寿命。

曲轴的平衡去重包括两个部分:不平衡量的检测;不平衡量的修整。不平衡量的单位:

F=mrw2,由于mr是物体本身的性质决定的,不随转速的变化而变化,用mr(g.mm)作为不平衡量的单位。

图2.5.13

OP130抛光

图2.5.14

OP140清洗 曲轴加工专用机床

发动机曲轴加工机床的高效专用性是曲轴制造装备的一大典型特征,“高效专用”对机 床的基本要求是高刚度、高速度、大功率。高效专用机床的基本特征是量体裁衣型,即按照用户需求提供个性化产品.3.1 曲轴质量定心机

曲轴属于细长类零件,加工过程中主要定位基准是两端中心孔。按其加工位置可分为两种:几何中心和质量中心。几何中心就是利用双V形块或其他方式找出曲轴支承轴颈的几何中心,在此中心上加出的中心孔称为几何中心孔;质量中心是利用专门的质量定心机测出曲轴的质量中心,在此中心上加工出的中心孔称为质量中心孔。由于毛坯的几何形状误差和质量分布不匀等原因,一般两者并不重合。国外大都采用了质量中心孔,利用专门设计的测试设备来测试质量中心,然后加工出中心孔,全自动曲轴质量定心机的工作原理是:曲轴放置在两端滑动单元法兰盘的支撑上并被夹紧,法兰盘回转中心形成测量中心线。回转过程中,支撑的位置即曲轴的位置不断调整,使质量中心线靠近回转中心线。当曲轴毛坯不平衡量很小,接近设定值时,钻削单元钻中心孔。此中心孔作为后续加工步骤的定位基准。

3.2 数控车-车拉机床

车拉技术是起源于美国的一项技术专利,在曲轴加工中逐渐得到发展。目前应用较为普遍,在国外大量用于半精加工曲轴的主轴颈和连杆轴颈。车拉技术加工形式可分为三种:直线车拉、内环刀具旋转车拉和外环刀具旋转车拉。

1988年发展的车-车位工艺,到目前为止其拉削方法也逐步改为梳刀工艺代替。其主要特点有:一次设定能完成所有同心圆的车削,具有在同一台机床上完成车-车拉加工、高效率、通过使用特殊卡盘和刀具系统实现柔性加工、机床保养简便及维护成本低等优点,特别适用于平衡块侧面不需加工、轴颈有沉割槽的曲轴。其中拉削工艺可用高效的梳刀技术代替,梳刀加工通常放到该工序的最后工步,通过微量的径向进给和纵向车削实现高速精加工。采用梳刀工艺的优点在于精度高、效率高、切屑易清理、轴向进刀量小等。

3.3 曲轴圆角滚压机床

曲轴工作时需承受较大而复杂的冲击载荷,对抗疲劳强度有较高的要求。曲轴轴颈与侧面的连接过渡圆角处为应力集中区,也是曲轴疲劳破坏的敏感区域,是薄弱环节。因此,国外发展了圆角深滚压技术

代替成形磨削方式。曲轴的圆角滚压,就是利用滚轮的压力作用,在曲轴的主轴颈和连杆轴颈过渡圆角处形成一条滚压塑性变形带,这条塑性变形带具有以下特点。

(1)产生残余压应力 可与曲轴在工作时的拉应力抵消或部分抵消,从而提高疲劳强度。(2)硬度提高 滚压使圆角处形成高硬度的致密层,使曲轴的机械强度和疲劳强度得到提高。(3)表面粗糙度值降低 圆角滚压可使圆角表面粗糙度值R a达到0.1 m以下,从而大大减小了圆角处的应力集中,提高了疲劳强度。

国外应用的曲轴圆角滚压技术已相当先进,可一次对所有圆角进行滚压完成,且可做到主轴颈与连杆轴颈圆角的压力不同,同一连杆轴颈圆角在不同方向上的压力也可不同。这样可经济地达到最佳的滚压效果,最大限度地提高曲轴的抗疲劳强度。

3.4 绿色粗磨“扒皮”机床

英国L a n d i s公司生产的C B N数控曲轴粗磨机床,被称作“绿色粗磨”,超越传统的 “扒皮法”磨削,一次装夹从毛坯到磨削完毕,耗时仅4~6m i n。采用电镀C B N砂轮,从锻件或铸件直接粗磨,磨削线速度高达200m/s,磨削效率超过500m m3/s,4m i n磨削余量高达7k g以上,可以取代铣床或车床加工,出现了“以磨代车”的局面。

[1] 董海.铁素体球墨铸铁凝固形貌及力学性能研究[D].西南交通大学,2013.[2] 刘丽霞.球墨铸铁的性能、应用及制造[J].新课程(教育学术),2011,06:174.[3] 王成刚.球墨铸铁曲轴的铸造与发展[J].汽车工艺与材料,2006,03:1-3.[4] 韩志良,丁燕君,马红卫.影响球墨铸铁曲轴质量的因素[J].理化检验(物理分册),2008,05:269-274.[5] 王守河,张东,张林.等温淬火球墨铸铁(ADI)曲轴的开发[J].汽车工艺与材料.2010,5:1-7 [6] 刘金城.等温淬火球墨铸铁(ADI)的机械加工性能[J].现代铸铁.2007,01: 25-32 [7] 陈世通.发动机曲轴加工工艺分析[J].应用技术.2012,06: 69-71 [8] 夏勇.等温淬火球墨铸铁(ADI)机加工指南[J].中国铸造装备与技术.2008,02: 67-68 [9] 张弘弢,李海波,董海,李嫚.不同聚晶立方氮化硼复合刀具加工等温淬火球墨铸铁的切削性能对比[J].机械工程材料,2008,32(8):43-46 [10] 李玉标,李墁,张弘伎,任帅民.PCBN刀具断续干式切削ADI时切削力与寿命的研究[J].金刚石与磨料磨具工程,2010,30(1):75-79 [11] 李专洋.球墨铸铁等温淬火前后切削加工性能研究[J].新课程学习(下),2011 [12] 曾艺成.等温淬火球墨铸铁(ADI)现状及发展前景[J].中国铸造装备与技术,2007,3:60-66 [13] 赵月刚.曲轴加工工艺讲座(奇瑞).http://wenku.baidu.com/link?url=2afa-P7T9Ht5vWXvcL9x5QbaS06vs0E8udFrIpgyu6ukNg39Wpch1cSkQBdvoc5h1KHYqtgeko7-NCue4kRjfIxRgXFEET6dB62fN-8R2t3,2010-4-29/2014-6-1 [14] 李海国,冯延树,徐庆杰,路俊峰,袁树岚.专用机床实现曲轴的高效加工[J].现代零部件,2011,4:40-44 [15] B.V.Kovacs, Sr.Development of Austempered Ductile Iron(ADI)for Automobile Crankshafts[J].Journal of Materials Engineering and Performance,2013,22(10):2759-2800 [16] A.Meena, M.El Mansori.Specific cutting force, tool wear and chip morphology characteristics during dry drilling of austempered ductile iron(ADI)[J].Int J Adv Manuf Technol,2013,69:2833–2841

读书的好处

1、行万里路,读万卷书。

2、书山有路勤为径,学海无涯苦作舟。

3、读书破万卷,下笔如有神。

4、我所学到的任何有价值的知识都是由自学中得来的。——达尔文

5、少壮不努力,老大徒悲伤。

6、黑发不知勤学早,白首方悔读书迟。——颜真卿

7、宝剑锋从磨砺出,梅花香自苦寒来。

8、读书要三到:心到、眼到、口到

9、玉不琢、不成器,人不学、不知义。

10、一日无书,百事荒废。——陈寿

11、书是人类进步的阶梯。

12、一日不读口生,一日不写手生。

13、我扑在书上,就像饥饿的人扑在面包上。——高尔基

14、书到用时方恨少、事非经过不知难。——陆游

15、读一本好书,就如同和一个高尚的人在交谈——歌德

16、读一切好书,就是和许多高尚的人谈话。——笛卡儿

17、学习永远不晚。——高尔基

18、少而好学,如日出之阳;壮而好学,如日中之光;志而好学,如炳烛之光。——刘向

19、学而不思则惘,思而不学则殆。——孔子

20、读书给人以快乐、给人以光彩、给人以才干。——培根

第四篇:曲轴毕业设计(论文)开题报告

一、选题的依据及意义:

曲轴是发动机对外输出动力的核心部件,是驱动车、船等运输工具的重要动力来源。曲轴的功用是把活塞、连杆传来的气体力转变为转矩,用以驱动汽车的传动系统和发动机的配气机构以及其他辅助装置。曲轴的工作情况是极其复杂的,它是在周期变化的燃气作用力、往复运动和旋转运动惯性力及它们的力矩作用下工作的,因此承受着扭转和弯曲的复杂应力。

曲轴是内燃机中承受冲击载荷传递动力的关键零件,也是内燃机五大件(机体、缸盖、曲轴、凸轮轴、连杆)中最难以保证加工质量的零件,发动机曲轴作为重要运动部件,同时因曲轴工况及其恶劣,因而对曲轴材料、曲轴尺寸精度、表面粗糙度、热处理和表面强化、动平衡等要求十分严格。其中任何一个环节的质量对曲轴的寿命和整机的可靠性都有很大的影响。因此世界各国对曲轴的加工都十分重视,不断地改进曲轴加工工艺,最大可能地提高曲轴寿命。在大批量生产的条件下,传统工艺已不能满足当前设计和生产需求,在长时间、高速运转下,曲轴极容易过早出现失效或断裂,严重影响曲轴的寿命和整机可靠性。曲轴的主要失效形式是轴颈磨损和疲劳断裂,内燃机曲轴部分的结构形状和主要尺寸对内燃机曲轴的抗弯疲劳强度和扭转刚度有重要影响,因而在内燃机曲轴设计时,必须对内燃机的结构强度问题予以充分重视。

二、国内外研究现状及发展趋势: 2.1 国内外曲轴加工技术的现状

目前车用发动机曲轴材质主要有球墨铸铁和钢两类。由于球墨铸铁曲轴成本只有调资钢曲轴成本的三分之一左右,且球墨铸铁的切削性能良好,可获得较理想的结构形状,并且和钢质曲轴一样可以进行各种热处理和表面强化处理来提高曲轴的抗疲劳强度,硬度和耐磨性。所以球墨铸铁曲轴在国内外得到了广泛的应用。据统计资料显示,车用发动机曲轴采用球墨铸铁材质的比例在美国为90%,英国为85%,日本为60%,此为,德国比利时等国家也已经大批量采用。国内采用球墨铸铁曲轴的趋势则更加明显,中小型功率柴油机曲轴85%以上采用球墨铸铁,而功率在160KW以上发动机曲轴多采用锻钢曲轴。2.2 国内外曲轴加工技术展望

美国,德国,日本等汽车工业发达国家都致力于开发绿色环保、高性能发动

机,目前各个厂家采用发动机增压、扩缸及提高转速来提高功率的方法,使得曲轴各轴颈要在很高的比压下高速转动,发动机正向增压、增压中冷、大功率、高可靠性、低排放方向发展。曲轴作为发动机的心脏,正面临着安全性和可靠性的严峻挑战,传统材料和制造工业已无法满足其功能要求,市场对曲轴材质以及毛胚加工技术、精度、表面粗糙度、热处理和表面强化、动平衡等都要求都非常严格。

三、本课题研究内容 3.1 曲轴结构设计 3.1.1 曲轴的材料

根据曲轴工作在发动机过程中承受弯曲、扭转、剪切、拉压等交变应力,要求具有较高的抗拉强度、疲劳强度、表面强度及耐磨性,芯部具有一定的韧性。即具有很高的疲劳强度、耐磨性和高淬透性,且进行强化处理时变形小,高温下具有高的蠕变强度。

随着发动机性能的提高,对曲轴的原材料及加工工艺提出新的要求,现代车用发动机曲轴材质主要有球墨铸铁和钢两类。由于球墨铸铁曲轴成本只有调质钢曲轴成本1/3左右,且球墨铸铁的切削性能良好,可获得较理想的结构形状,并且和钢质曲轴一样可以进行各种热处理和表面强化处理来提高曲轴的抗疲劳强度、硬度和耐磨性。所以球墨铸铁曲轴在国内外得到了广泛应用。据统计资料显示,车用发动机曲轴采用球墨铸铁材质的比例在美国为90%,英国为85%,日本为60%,此外,德国、比利时等国家也已经大批量采用。国内采用球墨铸铁曲轴的趋势则更加明显,中小型功率柴油机曲轴85%以上采用球墨铸铁,而功率在 160kW以上的发动机曲轴多采用锻钢曲轴。

我国球铁曲轴的生产继QT600-

2、QT700-2之后,现已能稳定地生产QT800–

2、QT900-2等几种牌号,目前已能大批量生产QT800-6球铁曲轴。但从整体水平来看,存在生产效率低,工艺装备落后,毛坯机械性能不稳定、精度低、废品率高等问题。

3.1.2 曲轴结构设计

曲轴结构设计在过去的几十年中得到了飞速的发展。在曲轴的设计初期一般是按照已有的经验公式计算或者与已有的曲轴进行类比设计,在进行了初步的设

计后造出曲轴样品再进行试验,通过实验数据进行适当的改进。曲轴设计发展到今天已经有了很大的发展。随着内燃机向高可靠性、高紧凑性、高经济性的不断发展,传统的以经验、试凑、定性为主要设计内容的设计方法已经不能满足要求,而随着电子计算机技术的不断发展,内燃机及其零部件的设计已经发展到采用包括有限元法、优化设计、动态设计等现代先进设计技术在内的计算机分析、预测和模拟阶段。有限元法是最有效的数值计算方法之一,它使人们对零部件关键参数的理解和设计更进了一步。

(1)在设计内燃机曲轴时,应根据内燃机的工作条件,选择不同的结构设计方案。内燃机曲轴结构设计方法大致如下:

① 选择确定结构形式:整体锻造曲轴、整体铸造曲轴、组合曲轴。

② 确定润滑油道

曲轴主轴颈和曲柄销一般采用压力润滑。润滑油由主油道送到各主轴承,在经曲轴内润滑油道进去连杆轴承。当主轴承为滚动轴承时,润滑可从假轴承进入曲轴内腔,再分配到各有关轴承。在决定主轴承和曲柄销上的油孔位置时,主要考虑应保证供油压力和油孔对曲轴强度的影响程度。

③ 确定曲轴平衡块形式

平衡块用来平衡曲轴的不平衡惯性力和力矩,减轻主轴承载荷以及减小曲轴和曲轴箱所受的内力矩。但曲轴配置平衡块后重量增加,将使曲轴系统的扭振效率有所降低。因此应根据曲轴结构、转速、曲柄排列等因素来配置平衡块和平衡精度要求。平衡块可与曲轴制成一体,也可与曲轴分开制造后再进行装配。

(2)曲轴结构形式的选择

曲轴结构形式与其制造方法有直接关系,在进行曲轴设计时必须同时进行。曲轴有整体式和组合式曲轴两大类。而摩托车发动机常采用组合式曲轴,这是因为其加工简单,不需要大规模锻模具设备,它由曲轴左半部、曲轴右半部及曲轴销组成。通过液压压入的方法将其结合起来。本设计中采用滚动轴承做主轴承。这是因为使用它具有以下优点:

① 可以采用隧道式曲轴,保证曲轴箱有较高的强度和刚度;

② 可以减少摩擦损失,提高机械效率,因而使燃料消耗下降;

③ 发动机启动较为容易,尤其在气温较低的时候;

④ 采用滚动轴承后,对主轴的润滑较易实现。3.2 曲轴工艺分析

3.2.1 曲轴的机械加工技术

曲轴主轴颈的粗加工、半精加工工艺和精加工工艺,大体分为以下几种:

(1)传统的曲轴主轴颈的多刀车削工艺。生产效率和自动化程度相对较低。粗加工设备多采用多刀车床车削曲轴主轴颈,工序的质量稳定性差,容易产生较大的内应力,难以达到合理的加工余量。一般精加工采用曲轴磨床,通常靠手工操作,加工质量不稳定,尺寸的一致性差。

(2)数控车削工艺。数控车削设备价格相对便宜,不需要复杂的刀具,但只适合小批量生产。

(3)数控内铣铣削工艺。内铣设备价格较高,刀具费用也很高,但适合大批量生产。

(4)数控车—拉、数控车—车拉工艺。其突出优点是可对宽轴径进行分层加工,切削效率高,加工质量好,但车拉刀具结构复杂,技术含量高,并且长期依靠进口,好处是可集车—车拉工艺加工连杆轴颈要两道工序于一起。

(5)CNC高速外铣工艺。数控高速外铣是20世纪90年代新兴起来的一种新型加工工艺,其应用范围广,特别双刀盘数控高速外铣以其加工效率高、加工质量稳定、自动化水平高,已成为当前是曲轴主轴颈粗加工的发展方向。就比较而言,CNC车—车拉工艺加工连杆轴颈要二道工序,CNC高速外铣只要一道工序就能完成,切削速度高(目前最高可达 350m/min)、切削时间较短、工序循环时间较短、切削力较小、工件温升较低、刀具寿命高、换刀次数少、加工精度更高、柔性更好。如德国BOEHRINGER公司专为汽车发动机曲轴设计制造的柔性的高速随动数控外铣床VDF315OM-4型,该设备应用工件回转和铣刀进给伺服连动控制技术,可以一次装夹不改变曲轴回转中心随动跟踪铣削曲轴的轴颈。其采用一体化复合材料结构床身,工件两端电子同步旋转驱动,具有干式切削、加工精度高、切削效率高等特点;使用SIEMENS840D CNC控制系统,设备操作说明书在人机界面上,通过输入零件的基本参数即可自动生成加工程序,可以加工长度450~700mm、回转直径380mm以内的各种曲轴轴颈直径误差仅为±0.02mm。

58(6)数控曲轴磨削工艺。精加工使用数控磨床,采用静压主轴、静压导轨、静压进给丝杠(砂轮头架)和线性光栅闭环控制等控制装置,使各尺寸公差及形位公差得到可靠的保证,精加工还广泛使用数控砂带抛光机进行超精加工,经超精加工后的曲轴轴颈表面粗糙度至少提高一级精度。如GF70M-T曲轴磨床是日本TOYADA公工机开发生产的专用曲轴磨床,是为了满足多品种、低成本、高精度、大批量生产需要而设计的数控曲轴磨床。该磨床应用工件回转和砂轮进给伺服联动控制技术,可以一次装夹而不改变曲轴回转中心即可完成所有轴颈的磨削;采用静压主轴、静压导轨、静压进给丝杠(砂轮头架)和线性光栅闭环控制,使用TOYADA工机生产的GC50CNC控制系统,磨削轴颈圆度精度可达到0.002mm;采用CBN砂轮,磨削线速度高达120m/s,配双砂轮头架,磨削效率极高。3.2.2 曲轴的强化工艺技术

目前国内外曲轴常见的强化工艺大致有如下几种:(1)氮化处理。氮化能提高曲轴疲劳强度的20%~60%。

(2)喷丸处理。曲轴经喷丸处理后能提高疲劳强度20%~40%。

(3)圆角与轴颈同时感应淬火处理。该强化方式应用于球铁曲轴时,能提高疲劳强度 20%,而应用于钢轴时,则能提高l00%以上。

(4)圆角滚压处理。球铁曲轴经圆角该压后寿命可提高 120%~300%,钢轴经圆角液压后寿命可提高 70%~150%。曲轴圆角滚压强化工艺主要包括曲轴圆角滚压和曲轴滚压校正两部分。

(5)复合强化处理。它是指应用多种强化工艺对曲轴进行强化处理,球墨铸铁曲轴采用圆角该滚压工艺与离子氮化工艺结合使用,可使整个曲轴的抗疲劳强度提高130%以上。

四、本课题研究方案

(1)查阅原始资料,熟悉曲轴结构设计的方法及曲轴工艺技术。

(2)根据曲轴的工作条件和柴油机工作参数对曲轴进行结构设计及强度校核。(3)利用曲轴材料和工况分析曲轴的加工工艺。

五、研究目标、主要特色及工作进度:

六、参考文献:

[1]内燃机科技丛书_高速柴油机概念设计与实践_许道延_2003 [2]汽车发动机现代设计_徐兀_1995 [3]姜洪宇,黄春元.国内外曲轴加工技术的现状及发展.黑龙江科技信息,2008 [4]内燃机学_周龙保_2000 [5]邵立新,段立霞.内燃机曲轴结构设计的方法.农机使用维修,2008

第五篇:制药工艺论文

溶菌酶结晶的制备及活力测定研究 制药工程2011级制药11班 ×××

指导老师 ××

摘要

目的:探讨溶菌酶结晶的制备及活力测定的方法。方法:以蛋清为原料制备溶菌酶结晶,首先将鸡蛋中的蛋清与蛋黄分离,取蛋清,然后用处理好的“724”树脂吸附,接着用蒸馏水洗涤,再经树脂洗脱,将所需物质与鸡蛋清中的其他蛋白质分离,然后再经盐析、纯化处理所得到的溶菌酶即可得结晶。将所得酶和底物分别放入25 OC恒温水浴预热10分钟,吸取底物悬浮液4mL放入比色杯中,在450nm波长读出吸光度,此为零时读数。然后吸取样品液0.2mL(相当于10µg酶),每隔30s读1次吸光度,共计下四个读数。结果:无结晶生成。结论:溶菌酶结晶的制备及活力测定研究实验以失败告终。关键词:溶菌酶 结晶 活力测定

The Preparation Of Lysozyme Crystallization And Activity Assay

Pharmaceutical Engineering2011 ZhenlinWei

Supervisor Weimin

Abstract Gold: to study the lysozyme crystallization method of preparation and activity assay.Methods: with egg white lysozyme crystallization as raw material preparation, first of all, separate the eggs in the egg white and yolk, egg white, a “724” and then use processing resin adsorption, then washing with distilled water, then through resin elution, the required material and other protein separation of egg qing dynasty, and then received by salting out, purification processing of lysozyme crystallization.Put the enzyme and substrate respectively in 25 OC preheat constant temperature water bath for 10 minutes, drain the substrate suspension 4 ml into colorimetric cup, read the absorbance at 450 nm wavelength, this is zero readings.Then absorbs the liquid sample 0.2 mL(equivalent to 10(including g enzyme), every 30 s read 1 absorbance, a total of four readings.Results: no crystallization generated.Conclusion: the preparation of lysozyme crystallization and dynamic measurement experiment ended in failure.Keywords: lysozyme crystallization activity assay

前 言

溶菌酶(Lysozyme, EC 3.2.1.17)是一种专门作用于微生物细胞壁的水解酶 ,又称细胞壁溶解酶(Muramidase),是由英国细菌学家弗莱明(Fleming)在 192年在人的眼泪、唾液中发现的[1]。溶菌酶广泛存在于鸟类和家禽的蛋清中,哺乳动物的泪液、唾液、血浆、尿、乳汁、其它体液(如淋液)中及白细胞和组织(如肝、肾)细胞内,而且部分植物、微生物中也含有此酶[2]。其中人溶菌酶的活性是最高的,大约为鸡蛋清溶菌酶酶活力的 3 倍。但是蛋清中溶菌酶含量最丰富,约为 0.3%-0.4%左右,而且蛋清来源广泛,因此多数商品溶菌酶是从蛋清中提取的[3]。李鹤等在食品研究与开发中提到了溶菌酶已确定的三种作用:1)将溶菌酶固定化在食品包装材料上, 生产出有抗菌功效的食品包装材料, 以达到抗菌保鲜功能。2)将溶菌酶固定化在 HEPA(空气过滤器)上, 作为空调的空气净化系统, 使其具有高效除尘和杀菌两大功能。当空气通过滤网时, 先滤集捕捉尘粒和细菌,然后将捕捉到的细菌杀灭[4]。3)用溶菌酶非专一性地降解海洋生物高分子壳聚糖, 使其成为能被人体吸收的低分子量具有独特生理活性和功能性质的低聚壳聚糖[5]。近几年,溶菌酶被广泛运用于医药、食品行业。溶菌酶作为一种天然蛋白质, 能在胃肠内作用于营养物质被消化和吸收, 对人体无毒性, 也不会在体内残留, 是一种安全性很高的食品保鲜剂、营养保健品和药品[8]。溶菌酶可用于各种加工食品或饮料制作中, 集药理、保健和防腐三种功能于一体[10]。因此, 在倡导绿色食品的今天, 溶菌酶的应用前景是相当广阔的应用前景[6]。

1、材料与方法

1.1实验试剂

鸡蛋清,10%硫酸铵,固体硫酸铵,磷酸二氢钠,磷酸氢二钠,十二水磷酸二氢钠,十二水磷酸氢二钠,EDTA,底物干菌粉,“724”树脂,丙酮。1.2仪器

721型分光光度计,抽滤瓶及布氏漏斗,研钵,恒温水浴,离心机,透析袋,1cm x 35cm层析柱,吸量管:0.1ml、0.2ml、1ml、5ml,真空干燥器。

1.3实验方法及步骤 蛋清的制备

将4~5个新鲜的鸡蛋两端各敲一个小洞,使蛋清流出(鸡蛋清pH值不得小于8),轻轻搅拌5分钟,使鸡蛋清的稠度均匀,用两层纱布过滤除去脐带块,量体积约80~100ml,计量体积,用冰块预冷至0摄氏度备用[7]。树脂吸附 将处理好的“724”树脂用布氏漏斗抽干,取湿树脂20g(约为蛋清量的1/5~1/4),在不断搅拌下加入预冷的蛋清中,再继续搅拌3h使充分吸附,静置过夜(0~5摄氏度)[9]。洗涤

将树脂移入烧杯,取10%硫酸铵溶液30~40ml(树脂量2倍,不可多用!)分3次加入搅拌(15min)洗脱,抽干树脂,合并洗脱液(滤液),树脂保存供再生。

脱盐 沉淀用1ml蒸馏水溶解后转入透析袋,用蒸馏水透析24h(0~5摄氏度冰箱),中途换水3~5次,或流水(搅拌)透析24h。去除碱性杂蛋白

将上述透析液用1mol/LNaOH(最后用0.1mol/LNaOH)溶液调至pH8.0~8.5。如有沉淀,离心除去[14]。结晶

用药勺在搅拌下慢慢向酶液中加入5%(W/V)研细的固体NaCl,注意防止局部过浓。加完后用NaOH溶液慢慢调至pH9.5~10.0,室温下静置48h。结晶观察与收取

肉眼观察有结晶形成后,用滴管吸取结晶液1滴置于载玻片上,在低倍显微镜下观察并画出结晶图形。离心或过滤收集酶晶体,用少量丙酮洗涤晶体2次,以五氧化二磷真空干燥后称重。

酶活力的测定

底物的制备

将微球菌接种于液体培养基扩大培养(28℃,24h),再接种于固体培养基培养(28℃,48h),用无菌水将菌体洗涤, 4000rpm 离心10min, 弃上清,再洗菌体数次, 最后用少量无菌水制成悬液, 冷冻干燥即得干菌粉[11]。取干菌粉5g,加入少量0.1mol/L的pH6.2磷酸缓冲液置于匀浆器或研钵中研磨2min, 倾出并稀释至20~25mL,悬液的光密度OD450在0.5~0.7范围为宜。

酶液的制备

准确称取干溶菌酶粉5mg,用0.1mol/L的pH6.2磷酸缓冲液溶解成0.05mol/L酶液。

酶活力测定

将酶液与底物悬液分别置于25℃水浴中保温10~15min, 测底物悬液的OD450 值,作为对照。然后加入酶液0.2mL(约10μg酶蛋白)迅速摇匀。从加酶时开始记时, 每30s测1次OD450值,共测3次[17]。

酶活力的计算

以每毫克溶菌酶每分钟使吸光度降低0.001个单位为1个酶活力单位。溶菌酶活力=ΔOD450/(0.001×W)(U/mg)式中, ΔOD450 为450nm 处每分钟吸光度的变化;W为加入的酶量(mg)。1.4数据处理

(1)计算:活力单位定义是:在25摄氏度,pH6.2,波长为450nm时,每分钟引起吸光度下降0.001为一个活力单位。

每1mg酶活力单位数=吸光度×1000/样品(ug)

(2)计算溶菌酶的收率并由其效价计算总活力回收率。收率=干燥的酶重量/蛋清总重量×100% 总活力回收率=(酶重量×效价)/蛋清总重量

2、结果

在溶菌酶结晶制备时无结晶形成,无法进行酶活力测定实验。

3、结论及分析

3.1 可能与实验过程中溶液的pH值有关,酶活性在pH6.0~6.5最强,且在pH5~7范围内较稳定[15]。实验结果无结晶生成,其原因可能是在实验过程中溶液的pH过酸或过碱,导致酶失活了,故无结晶生成。

3.2 可能与实验过程中溶液的温度有关,酶活性在25~65摄氏度范围内随着作用温度的升高酶的活性增强,但温度太高则变性失活[16]。实验结果无结晶生成,其原因可能是在实验过程的溶液的温度过高,导致酶失活,故无结晶生成。

3.3 可能与实验所用的蛋清的量有关,因为是小实验,所以实验所用蛋清的量约80~100ml,本来蛋清中就含有多种蛋白质,溶菌酶的含量也不高,并且在实验的过程中还会造成一定程度的损失,导致达不到结晶时对溶菌酶的浓度要求,故无结晶生成。

参考文献

[1] 宗柱,楚慧民,溶菌酶的应用前景和提取工艺,[J],农牧产品开发,1996,(4),30-31.[2] 楼善贤,溶菌酶的研究进展,[J],浙江肿瘤通讯,1991,(4),48-52.[3] 刘文会,从鸡蛋清中提取溶菌酶的研究,[N],北京化工大学硕士研究生学位论文,2003,(4),1-60.[4] 刘贤明, 马云骏.含溶菌酶的 HEPA 与双重杀菌过滤技术[J].节能 环保,2001(2): 20-21.[5] 周桂, 黄在银, 谭学才, 等.溶菌酶对海洋生物高分子壳聚糖的降 解研究[J].海洋科学, 2002(3): 53-56.[6] 李鹤, 马力 *, 王维香溶菌酶的研究现状[J]食品研究与开发,2008,29(1):182-185.[7] 赵龙飞,徐亚军.鸡蛋清中溶菌酶的应用性研究[J].食品工业,2006,(3):19-20.[8] 李敏.溶菌酶及其应用[M].生物学教学,2006,31(4):2-3.[9] 荣晓花,凌沛学.溶菌酶的研究进展[J].中国生化药物杂志,1999,20(6):319-320.[10]宗柱,楚慧民,溶菌酶的应用前景和提取工艺,[J].农牧产品开发,1996,(4),30-31 [11]楼善贤,溶菌酶的研究进展,[J].浙江肿瘤通讯,1991,(4),48-52 [12] 韩学仁,韩治才,[J].禽产品加工,北京,轻工业出版社,1989,24 [13] 孙占田.蛋清中的溶菌酶,[J].国外畜牧科技.1999,26(6):47.[14] 林亲录,马美湖.鸡蛋卵清中溶菌酶的提取与纯化[J].食品科学.2002,23(2):43-46.[15] 贾向志,李元,马文煜,[J].生物技术通讯,2002,9:374.[16] 中华人民共和国卫生部药典委员会编.中华人民共和国卫生部药品标准,生化药品,第一册,北京:北京科学出版社,1989:103.[17] 马绪荣,苏德模主编.药品微生物学检验手册.北京:北京科学出版社,2000:68.

下载钢质曲轴圆角工艺研究论文[共五篇]word格式文档
下载钢质曲轴圆角工艺研究论文[共五篇].doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    4煤矿综合机械化采煤工艺研究 论文

    煤矿综合机械化采煤工艺研究摘 要:综合机械化采煤就是指采煤工作面的破煤、装煤、运煤、支护、顶板管理等基本工序全面实现机械化作业。煤矿的综合机械化采掘技术是增产增效......

    造纸废水处理工艺研究

    造纸废水处理工艺研究目前,造纸行业是世界六大工业污染源之一,它产生的废水量约占国内工业总废水量的10% 。造纸废水按其产生环节分为制浆废液、中段水和纸机白水。制浆废液通......

    医疗污水处理工艺研究

    医疗污水处理工艺研究 【摘要】随着我国社会市场经济的不断发展,国民生活水平的显著提高,大众对于环境保护、维护国家生态发展的要求也越来越高。由于医疗污水成分较为复杂,水......

    炼焦工艺论文5篇

    捣固炼焦的发展与应用 班级:应用化工093 姓名:陈艳艳 摘要:我国焦炭市场自2006 年底开始转暖,焦化企业已实现扭亏为盈但我国焦炭产能过剩,炼焦煤及运输价格持续走高,炼焦企业利......

    印刷工艺实习论文

    印刷的全过程:印前准备,安装印版,试印刷,正式印刷,印后处理。当然还包括一些:印前接单,印后出厂等等。 1.印刷前准备 平版印刷工艺复杂,印刷前要做好充分的准备。纸张在投入印刷前,尤......

    冷轧轧钢工艺论文

    冷轧轧钢工艺论文 在轧钢(主要是冷轧)过程中,为了减小轧辊与轧材之间的磨擦力,降低轧制力和功率消耗,使轧材易于延伸,控制轧制温度,提高轧制产品质量,必须在轧辊和轧材接触面间加入......

    钳工工艺技师论文

    摘要 .................................................................................. 2 关键词:手工操作,装配,调试,维护,修理前言 ..................... 2 前言 ............

    机械工艺课程设计论文

    常用来指进行各个学术领域的研究和描述学术研究成果的文章,简称之为论文。下面是关于机械工艺课程设计论文的内容,欢迎阅读!前言针对机械制造工艺课程设计的现状及存在的问题,进......