公路隧道工程的地质勘探技术研究论文[共5篇]

时间:2019-11-06 22:40:08下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《公路隧道工程的地质勘探技术研究论文》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《公路隧道工程的地质勘探技术研究论文》。

第一篇:公路隧道工程的地质勘探技术研究论文

引言

公路工程的建设需要跨越自然地质条件不同的区域,若公路经过山区或者河流区域时,需要开挖山岭隧道或河底隧道。隧道的开挖技术与该地区的地质环境具有密切联系,为保障隧道工程的安全性,应对需要开挖隧道的地区进行科学的地质勘探,为公路工程的规划、设计及施工提供必要的依据和指导。

一、公路工程隧道地质勘探

(一)隧道工程地质勘探必要性

地质勘探是通过钻探、电探、震探等一系列方法对构成地质条件的各个要素进行测试的一种技术,为煤田开采、石油开采、地下工程的建设等各项工作提供必要的技术参数。隧道是在天然地层中修建的建筑物,隧道工程建设的各个环节,如位置选择、工程设计、施工技术等均与地质条件有紧密关系。以山岭隧道为例,修建山岭隧道时应对岩层地质构造、产状、裂隙发育、风化程度、地层含水量、地层温度、有害气体等各个要素进行地质勘测,以决定隧道的深度、施工工艺及施工技术。对重点隧道工程,除常规的地质勘测外,还应进行区域性的工程地质调查、测绘及试验;若地下水对隧道具有重大影响时,还应进行地下水动态观测,计算隧道涌水量。隧道工程地质勘探工作主要关注的内容为隧道围岩的稳定性、地下水对隧道的影响、地层温度的影响、有害气体的组份、隧道位置及洞口位置的确定等。

(二)隧道工程地质勘探的主要内容

1.可行性研究阶段的勘探

隧道工程的可行性勘探主要目的是了解项目所在地的地质特征、各工程方案的地质条件及其控制工程方案需要的主要地质参数,为工程的路线设计、桥位设计、方案的选择、编制可行性研究报告提供准确的数据支持。这一阶段的探测工作主要是踏勘,对多个可能方案沿路线进行实地调差,对重要工点进行必要的勘探,大致探明地质情况即可。一般需要进行勘探的工点有大桥、隧道、不良地段等。

2.初步勘探阶段

初勘阶段一般以物探为主,物探的测区一般在测绘范围以内,当对物探解释有重要的对比价值或参考价值时,可进行勘测追踪,扩大测绘范围。在测量范围内,应按照物探方法,结合地形条件,对测线的方向、间距、测点的疏密、激发点与接收点的距离及布置形式进行设定。物探方法较多,对隧道工程进行物探时,可根据隧道深埋和下伏岩体特性,选择合适的物探方法。电火花法、声脉冲轰震器、旁侧扫描声纳可用于水下隧道地质勘探;高分辨率反射法可用于深埋隧道的勘探;磁力、重力测量法则适用于矿体、煤层、采空区、溶洞、断裂等特殊构造的勘探。分离式隧道一般沿隧道轴线纵向布置2-3条物探测线,两洞口横向测线可布置2条,根据隧道长度、地质条件确定测线长度和测点间距;整体式隧道可适当增加纵向和横向测线。地质体或构造类型不同时,应设计2-3条物探测线穿过,每条测线的测点应在3各以上,若地质条件复杂时,可酌情增加测点数目。

3.详细勘探阶段

详细勘探主要是进一步探测初步勘探阶段未查明的地质问题,为后续工程的设计及施工提供必要的补充和校核,这一阶段探测技术仍以物探为主,具体选择方法可根据隧道所在地区的地形、地质条件决定。对山区岩质隧道进行探测时,应先进行地震勘探。进行地震勘探时,可沿隧道轴线布置一条以上的地震测线,以10-20m为间距设置测试点;若在测试过程中发现地质构造,可将测试点数据布置密度增加;两洞口布置横测线,测点距离设置为5m;若在洞口或洞身发现溶洞或其他构造破碎带,可根据具体情况适当增加横测线或测试点。公路为上下行时,对于地质条件简单、岩性单一、无地质构造的短小隧道可作为一条隧道,组织勘探工作外,其余均应作为两条隧道进行单独勘探。勘探方法如下:用声波法对岩体的弹性纵波波速和横向波速进行同时测定,用于计算岩体的弹性特征值;测试岩石试件的弹性波速,以计算岩体的完整性,从而判定围岩的破碎程度;在进行地震勘探时,若发现明显的地质构造或溶洞时,可利用其他方法进行再次勘探,以供验证;采用电探时,可沿隧道轴线设三条测试线,其中两侧的测试线与主测线的间隔距离为20m,测点间距为20m;洞口设置横测线,间距为10-30m;对水下地质进行物探时,应根据水域的水底地形、水体流苏、水体深度等情况决定物探方法的选取,一般可采用多种方法进行综合探测,勘探主线至少为2条,横测线可根据水流方向布设,至少为3天,测点间距应小于陆上物探测点间距。

二、隧道工程地质勘探测试项目

隧道工程地质勘探测试项目主要包括地应力、岩土力学、水文地质、水质分析以及其他综合测试。地应力测试方法多采用水力压裂法,其他方法可作为辅助方法。岩体内部应力状态存在一定的差异性,可利用应力试验,并结合岩体组份的分析及构造分析,对岩体的主应力方向进行确定,岩土的力学试验常用测定标准为《公路工程地质勘察规范》;隧道工程在建设过程中,需要大量的钻探操作,地质勘探孔的设定应考虑水文地质试验孔的设定情况,地质勘探孔终孔可作为后期的水文地质试验的观测孔,若发现钻探孔终孔含有大量地下水,应考虑进行专业的水文地质勘探,以获得水文地质参数。对隧道内的主要含水层取样进行水质分析,看是否满足生活、工程、消防用水的要求,一般测试样品为1-3组。综合测井是配合钻孔,利用声波测井和放射测井的方法,从多个方面获得隧道围岩工程所需的地质、水文等各项参数。

三、总结语

公路隧道工程的施工需要科学的地质勘探,这是为后期工程的设计、施工、运行提供的基础保障。在实际的勘探过程中,应根据具体的地质情况进行勘探方法的选择及变通,确保勘探数据的准确性及有效性。

第二篇:工程地质勘探

工程地质勘察

百科名片

工程地质勘察是为查明影响工程建筑物的地质因素而进行的地质调查研究工作。所需勘察的地质因素包括地质结构或地质构造:地貌、水文地质条件、土和岩石的物理力学性质,自然(物理)地质现象和天然建筑材料等。这些通常称为工程地质条件。查明工程地质条件后,需根据设计建筑物的结构和运行特点,预测工程建筑物与地质环境相互作用(即工程地质作用)的方式、特点和规模,并作出正确的评价,为确定保证建筑物稳定与正常使用的防护措施提供依据。

简介

勘察内容

勘察工作量

勘察阶段

工程地质勘察方法或手段 工程地质测绘

工程地质勘探

实验室试验及现场原位测试

长期观测

展开 编辑本段简介

工程地质勘察 engineering geological investigation研究、评价建设场地的工程地质条件所进行的地质测绘、勘探、室内实验、原位测试等工作的统称。为工程建设的规划、设计、施工提供必要的依据及参数。工程地质条件通常是指建设场地的地形、地貌、地质构造、地层岩性、不良地质现象以及水文地质条件等。工程地质勘察是为查明影响工程建筑物的地质因素而进行的地质调查研究工作。所需勘察的地质因素包括地质结构或地质构造:地貌、水文地质条件、土和岩石的物理力学性质,自然(物理)地质现象和天然建筑材料等。这些通常称为工程地质条件。查明工程地质条件后,需根据设计建筑物的结构和运行特点,预测工程建筑物与地质环境相互作用(即工程地质作用)的方式、特点和规模,并作出正确的评价,为确定保证建筑物稳定与正常使用的防护措施提供依据。

编辑本段勘察内容

主要有以下五项:①搜集研究区域地质、地形地貌、遥感照片、水文、气象、水文地质、地震等已有资料,以及工程经验和已有的勘察报告等;②工程地质调查与测绘;③工程地质勘探见工程地质测绘和勘探;④岩土测试和观测见土工试验和现场原型观测、岩体力学试验和测试;⑤资料整理和编写工程地质勘察报告。工程地质勘察通常按工程设计阶段分步进行。不同类别的工程,有不同的阶段划分。对于工程地质条件简单和有一定工程资料的中小型工程,勘察阶段也可适当合并。

编辑本段勘察工作量

主要根据工程类别与规模、勘察阶段、场地工程地质的复杂程度和研究状况、工程经验、建筑物等级及其结构特点、地基基础设计与施工的特殊要求等六个方面而定。

编辑本段勘察阶段

按工程建设的阶段,工程地质勘察一般分为规划选点至选址的工程地质勘察、初步设计工程地质勘察和施工图设计工程地质勘察。

编辑本段工程地质勘察方法或手段

工程地质勘察方法或手段,包括工程地质测绘、工程地质勘探、实验室或现场试验、长期观测(或监测)等。

工程地质测绘

在一定范围内调查研究与工程建设活动有关的各种工程地质条件,测制成一定比例尺的工程地质图,分析可能产生的工程地质作用及其对设计建筑物的影响,并为勘探、试验、观测等工作的布置提供依据。它是工程地质勘察的一项基础性工作。测绘范围和比例尺的选择,既取决于建筑区地质条件的复杂程度和已有研究程度,也取决于建筑物的类型、规模和设计阶段。规划选点阶段,区域性工程地质测绘用小比例尺(1:10万,1:5万);设计阶段,水库区测绘大多用中比例尺(1:2.5万,1:1万),坝址、厂址则用大比例尺(1:5000,1:2000,1:1000,1:500)。工程地质测绘所需调研的内容有地层岩性、地质构造、地貌及第四纪地质、水文地质条件、天然建筑材料、自然(物理)地质现象及工程地质现象。对所有地质条件的研究,都必须以论证或预测工程活动与地质条件的相互作用或相互制约为目的,紧密结合该项工程活动的特点。当露头不好或这些条件在深部分布不明时,需配合以试坑、探槽、钻孔、平洞、竖井等勘探工作进行必要的揭露。工程地质测绘通常是以一定比例尺的地形图为底图,以仪器测量方法来测制。采用卫星像片、航空像片和陆地摄影像片,通过室内判读调绘成草图,到现场有目的地复查,与进一步的照片判读反复验证,可以测制出更精确的工程地质图。并可提高测绘的精度和效率,减少地面调查的工作量。

工程地质勘探

包括工程地球物理勘探、钻探和坑探工程等内容。①工程地球物理勘探。简称工程物探,其目的是利用专门仪器,测定各类岩、土体或地质体的密度、导电性、弹性、磁性、放射性等物理性质的差别,通过分析解释判断地面下的工程地质条件。它是在测绘工作的基础上探测地下工程地质条件的一种间接勘探方法。按工作条件分为地面物探和井下物探(测井);按被探测的物理性质可分为电法、地震、声波、重力、磁法、放射性等方法。工程地质勘察中最常用的地面物探为电法中的视电阻率法,地震勘探中的浅层折射法,声波勘探等;测井则多采用综合测井。物探的优点在于能经济而迅速地探测较大范围,且通过不同方向的多个剖面获得的资料是三维的。以这些资料为基础,在控制点和异常点上布置勘探、试验工作,既可减少盲目性,又可提高精度。测井则可增补钻探工作所得资料并提高其质量。开展多种方法综合物探,根据综合成果进行对比分析,可以显著提高地质解释的质量,扩大物探解决问题的范围,缩短工程地质勘探周期并降低其成本。由于物探需要间接解释,所以只有地质体之间的物理状态(如破碎程度、含水率、喀斯特化程度)或某种物理性质有显著差异,才能取得良好效果。②钻探和坑探。采用钻探机械钻进或矿山掘进法,直接揭露建筑物布置范围和影响深度内的工程地质条件,为工程设计提供准确的工程地质剖面的勘察方法。其任务是:查明建筑物影响范围内的地质构造,了解岩层的完整性或破坏情况,为建筑物探寻良好的持力层(承受建筑物附加荷载的主要部分的岩土层)和查明对建筑物稳定性有不利影响的岩体结构或结构面(如软弱夹层、断层与裂隙);揭露地下水并观测其动态;采取试验用的岩土试样;为现场测试或长期观测提供钻孔或坑道。钻探比坑探工效高,受地面水、地下水及探测深度的影响较小,故广为采用。但不易取得软弱夹层岩心和河床卵砾石层样品,钻孔也不能用来进行大型现场试验。因此,有时需采用大孔径钻探技术,或在钻孔中运用钻孔摄影,孔内电视或采用综合物探测井以弥补其不足。但在关键部位还需采用便于直接观察和测试目的层的平洞、斜井、竖井等坑探工程。钻探和坑探的工作成本高,故应在工程地质测绘和物探工作的基础上,根据不同工程地质勘探阶段需要查明的问题,合理设计洞、坑、孔的数量、位置、深度、方向和结构,以尽可能少的工作量取得尽可能多的地质资料,并保证必要的精度。

实验室试验及现场原位测试

获得工程地质设计和施工参数,定量评价工程地质条件和工程地质问题的手段,是工程地质勘察的组成部分。室内试验包括:岩、土体样品的物理性质、水理性质和力学性质参数的测定。现场原位测试包括:触探试验、承压板载荷试验、原位直剪试验以及地应力量测等

(见岩土试验、工程地质力学模拟)。设计建筑物规模较小,或大型建筑物的早期设计阶段,且易于取得岩、土体试样的情况下,往往采用实验室试验。但室内试验试样小,缺乏代表性,且难以保持天然结构。所以,为重要建筑物的初步设计至施工图设计提供上述各种参数,必须在现场对有代表性的天然结构的大型试样或对含水层进行测试。要获取液态软粘土、疏松含水细砂、强裂隙化岩体之类的、不能得到原状结构试样的岩土体的物理力学参数,必须进行现场原位测试。

长期观测

用专门的观测仪器对建筑区工程地质条件各要素或对工程建筑活动有重要影响的自然(物理)地质作用和某些重要的工程地质作用随时间的发展变化,进行长时期的重复测量的工作。观测的主要内容有:岩、土体位移范围、速度、方向;岩、土体内地下水位变化;岩体内破坏面上的压力;爆破引起的质点速度;峰值质点加速度;人工加固系统的载荷变化等。此项工作主要是在论证建筑物的施工设计的详细勘察阶段进行,工程地质作用的观测则往往在施工和建筑物使用期间进行。长期观测取得的资料经整理分析,可直接用于工程地质评价,检验工程地质预测的准确性,对不良地质作用及时采取防治措施,确保工程安全。

第三篇:铁路隧道施工风险管理技术研究论文

摘要:开展铁路隧道风险管理技术及应用研究,有利于施工时进行科学的决策、规范化的管理,最大限度地降低施工风险带来的严重后果。文章以乌岩山铁路隧道施工为例,借鉴国内外先进的风险管理经验,分别从风险识别、风险评估、机制建立、控制措施等方面对铁路隧道施工风险管理进行了研究。

关键词:铁路工程;隧道施工;风险评估;风险控制;施工风险管理技术

自国家进入新世纪以来,在各领域中的技术水平正在不断提升,而细化到铁路隧道施工领域中也呈现出施工技术的不断优化和施工难度不断提高的态势。针对这一局面,在当今的铁路隧道施工过程中使用更为科学的风险管理技术,最大程度降低施工中产生风险的可能性,是工程施工顺利进行的关键,也是施工单位完成工程目标,同时达到最大化经济利益的重要措施。

1工程情况简介

乌岩山隧道位于浙江省温岭市大溪镇境内,隧道总长度为6208m,根据列车行驶速度200km/h的规格开展单洞双线铁路隧道施工。隧道通过的地质情况较为复杂,断层破碎带较多,裂隙水发育,软弱围岩所占比例较大,造成施工的难度及风险巨大。该铁路隧道穿过丘陵低山区,断裂构造十分发育,辅有平缓的褶皱构造,主要岩体有凝灰岩、泥岩和花岗岩等,隧道最大埋深为480m。除断层带外隧道进出口各300m范围围岩等级较差。隧道施工过程中,严格按“新奥法”作业,该方法从岩石力学的观点出发,以维护和利用围岩的自承能力为基点,采用锚杆和喷射混凝土为主要支护手段,及时进行支护,控制围岩的变形和松弛,使围岩成为支护体系的组成部分,并通过对围岩和支护的量测、监控来指导隧道施工的方法和原则。为了保障隧道施工过程的安全,施工方建立了一套较为全面的安全生产管理办法,并指派相关人员开展了安全管理工作,最大限度地降低该隧道工程在施工过程中可能出现的风险。

2该铁路隧道工程施工中使用的风险管理办法

2.1铁路隧道工程风险的识别导致风险发生的原因是促使风险事件发生概率和损失幅度增加的因素,风险识别是对工程项目中的风险进行确认和分类,工作中应以收集各工序的风险作为主要途径,以相关经验及资料整理作为辅助途径。根据工程开工前展开的施工调查揭示,在该工程当中,主要存在以下较突出的问题。

2.1.1该铁路隧道洞身横穿了多条地域性断层岩层并受此影响,在隧道内施工过程中,隧道岩体非常容易发生碎裂现象,并且该种岩层十分易于水的贮存,所以在施工过程中,有发生坍塌和突水突泥事故的可能。

2.1.2因为该工程当中最大深度为480m,按照相关理论公式进行推算,在隧道最深处的温度可能达到34℃以上,在高温高湿的条件下,给技术人员的施工带来了很大的困难。

2.1.3相关勘察人员分析,在此工程中存在有泥岩地质结构,含硫化氢地层,因此在隧道洞身可能存在有天然气气体的聚集,对施工人员的生命安全构成威胁。

2.2采取的风险评估办法按照《铁路隧道风险判定和管理办法》当中建议使用的风险评估办法,并结合该铁路隧道工程的实际情况,使用了下列风险评估办法:2.2.1风险打分。风险打分是按照铁路隧道设计、施工过程中的实际状况,把铁路隧道在施工过程中可能发生的潜在风险归纳成设计类、地质类、施工方法类等多个部分,对这些部分中可能发生的风险以评分的方式进行风险判定,最后根据总的评分结果,对该隧道的整体风险进行全方位评定。

2.2.2专家分析法。专家分析法是施工方和相关工程方面的专家取得联系,并对该工程中可能发生的安全问题向专家进行询问,并让专家对工程中的风险给出判定的方法。这种方法是使用归纳统计的办法把多数人的意见和少数人的意见全部进行考虑,很好的避免了其他风险评估办法中涵盖面不全的弱点。使用此办法的流程有以下四个方面:(1)把该项目工程的基本状况和施工方所提出的问题提供给专家;(2)以成立调查组的方式提出个人意见,分析时对各方的意见进行整合;(3)将整合的结果返还给专家,专家就所整合的意见再提出自己的看法;(4)重复以上过程多次之后,意见就会趋于统一,这便是施工范围在后续施工作业中进行决策的根据。

2.3铁路隧道的风险评估程序

2.3.1针对起始风险进行判定,相关技术地质勘探人员列出该工程当中的潜在风险表,并在此基础上创建工程层次模型。

2.3.2使用层次分析与专家调查的方式对潜在风险表中可能存在的风险进行分析,并对风险系数进行判定。2.3.3由专家对起始风险中所指出的风险产生的可能性进行评定,并分析这些风险发生后可能出现的后果,最终得出各大起始风险的等级。

2.3.4施工单位根据收集获取的可能发生的风险与后果,商讨出与之匹配的施工方式和解决方法。

2.3.5施工方还需要针对该项工程开展一次再评估,分析可能出现的其他潜在风险。

2.4工程中主要风险等级认定

2.4.1隧道起始阶段的风险。在起始施工阶段,重点要求做好各项检查准备工作,针对此次风险判定的核心内容也正是关于安全风险方面,并将产生安全事故的可能性作为最重要的风险判定目标。在对该工程风险判定的过程中,考虑到岩层极为破碎,岩层自稳能力极差,所以在对周围环境影响的风险判定上,等级为极高风险。

2.4.2隧道入口处的风险。在该铁路隧道的入口处,山体是剥蚀中低山型地质,这种地质存在风蚀断裂的地层,在自然环境中,该地势的坡度大约在50°~60°,并且因为植被的发育,导致这些地区的岩层较为松散,覆盖层薄弱,围岩变形大,施工安全极为不利,所以该段落风险等级定为高度。

2.4.3隧道洞身段的风险。经相关地质人员进行勘察,在该工程铁路隧道洞身当中,岩层因为受到风化现象十分严重,因此不具有较高的完整性,施工环境较差。同时,在隧道中含有水,一旦操作不慎,很有可能造成安全事故。该段落中断层破碎带以及可能的天然气涌出地段定为极高风险,其他段落定为中度风险。因此做好超前地质预报尤为重要,重点做好钻爆施工、支护方式、衬砌类型、通风排水等方面的工作。

2.4.4隧道出口处的风险。该铁路隧道的出口处位置在斜坡之上,地形极为陡峭,并且斜坡之上覆盖有厚度为0.5m左右的粉状黏性土壤,在粉状黏性土壤之下为砂岩性岩层。因此在隧道出口处,地质环境增加了施工难度,整体施工安全形式严峻,该段落风险等级定为高度。

2.5构建完善的风险管理体制

开展铁路隧道施工的前期,建立完善的风险管理体制,是工程管理当中一项十分重要的部分,因此在项目开展前,应建立一套完善的风险管理条例,对该工程开展现代化的风险管理。针对铁路隧道施工过程中的每个部门管理人员,开展对应的责任划分,以求提高管理人员对于风险管理的主动性。

3减少该铁路隧道工程风险采取的控制措施

3.1总体措施

3.1.1在施工过程中,安排相关技术人员对周围环境进行实时监测,并针对之后开展施工的区域进行地质环境的预报工作。对该铁路隧道工程中可能发生坍塌、突水突泥、危险气体过高的区域,施工方在开展施工之前需要进行风险评估,并在此基础上,制定完善的处理预案,以保证工程施工人员的生命安全。

3.1.2工程施工技术人员在开展正式施工前,一定要进行全面的安全教育和发生事故之后的自救应急教育。同时在施工过程中,施工方需要为工程施工人员添置相关的安全设备,保障施工的安全开展。

3.1.3在该工程的高危地段,提高一级支护等级,进行不间断监测,及时调整施工工艺,力求最大程度降低工程施工中可能存在的潜在风险。

3.2具体办法

3.2.1对全体施工及管理人员进行各专业针对性的岗前培训并进行考核,考核合格后才能进入岗位工作,坚持特种作业人员持证上岗,作业设备运行保养良好,建立完备的人员考核、设备登记保养制度。

3.2.2该工程的铁路隧道出口位置由于地理环境较差,施工较为困难。因此在开展施工之前,在该地段的临时边坡处进行了相关防护施工,同时增强坡顶处的排水作业,以求保障施工人员的生命安全。

3.2.3在隧道出口和入口处进行开挖的过程中,为了保证围岩的整体稳定性,并未使用强爆破手段,而是加强管棚支护及预注浆处理,避免了发生隧道坍塌的可能。3.2.4指派了专业勘探人员对施工隧道的地质情况进行全方位预报,全过程建立预警机制,在断层破碎带、节理发育岩体破碎地段进行综合超前地质预报,加强围岩量测,实行信息化施工,通过对数据的分析和处理,及时反馈指导施工,防止坍塌等事故。

3.2.5富水地段采用“以排为主”,“防、排、堵、截”相结合,“因地制宜,综合治理”的原则;裂隙水发育和水环境要求严格的地段,采用“以堵为主、限量排放”的原则组织施工。3.2.6在施工过程中发生事故的先期预兆时,果断采取相应的应急措施,并立即停止施工,将作业人员组织撤出。

4结语

综上所述,在铁路隧道施工的过程中,进行安全风险管理对于保证施工人员的生命安全,保障建设各方的综合利益有着显著的意义。因此铁路隧道施工时,应准确地分析与评估出各类风险问题,编制切实有效的防控计划,并将风险监测、监督管控、查漏纠偏等工作进行循环改进,以完善的管理机制作为保证,并始终贯穿于隧道施工的整个过程,才能使工程安全质量得到较好的保障。

参考文献:

[1]夏润禾,边玉良.山岭地区铁路隧道施工安全风险评估及管理研究——以贵广铁路客运专线金宝顶隧道为例[J].中国安全生产科学技术,2012,(10).[2]贺志军.山岭铁路隧道工程施工风险评估及其应用研究[D].中南大学,2009.[3]李明,王占龙.高速铁路隧道施工风险管理技术探索[J].铁道标准设计,2010,(S1).[4]李明.高速铁路隧道施工风险管理技术探索[J].隧道建设,2010,(2).

第四篇:瓦斯隧道运营通风技术研究

瓦斯隧道运营通风技术研究

王明年,钟新樵,张开鑫,滕兆民

摘 要:

由于瓦斯隧道混凝土衬砌本体中的细小孔隙和“三缝”等缺陷的存在,建成后的瓦斯隧道必然受瓦斯侵袭,这对运营安全危害极大,为此,本文对瓦斯隧道运营通风技术进行了认真研究,提出了经济、安全、有效的通风方案,为未来瓦斯隧道的通风设计提供了理论依据。

关键词: 瓦斯隧道;运营通风;通风设计

分类号: U4

51文献标识码: A

Study on Operation Ventilation Technology in Gas Tunnel

WANG Mingnian1,ZHONG Xiqiao1,ZHANG Kaixing2,TENG Zhaomin2

(1Dept.of Underground Eng.and Geotechnical Eng.,Southwest Jiaotong

University,Chengdu 610031,China;

2The Second Survey and Design Institute,Chengdu 610031,China)

Abstract: Because there are small openings and the “three cracks”in the

concrete lining of gas tunnel,the gas should intrude into the gas tunnel

built.This effect will endanger the transport safety.The authors study on

the operation ventilation technology in the gas tunnel and put forward an

economical,safety and effective ventilation plan,and therefore furnish a

theoretical basis for the gas tunnel ventilation design in the future.Keywords: gas tunnel;operation ventilation;ventilation design

0 前言

穿过煤层(或含瓦斯气体地层)的隧道常常受到瓦斯的侵袭,因此,通常称这类隧道为瓦斯隧道。瓦斯隧道在开挖时,瓦斯压力被释放,但建成后,瓦斯被隧道支护结构所封闭,使原来已卸压的瓦斯压力又得以回升,这样瓦斯在渗透压力的作用下将向隧道内渗透。瓦斯渗入隧道后,对隧道的运营安全危害极大,它不但容易使人窒息,给司乘人员和维修人员带来危险,而且在电气和机械明火下容易发生爆炸,因此,“铁路瓦斯隧道技术暂行规定”要求[1]:“瓦斯隧道运营期间,隧道内的瓦斯浓度不得大于0.3%”。要达到这一控制指标,有两种措施:一是减少瓦斯的渗入量;二是加强机械通风。目前,减少瓦斯的渗入量有两种方法:一是使用气密性混凝土衬砌,二是增加衬砌厚度,而增加衬砌厚度就是增加投资,为此,使用气密性混凝土衬砌将是投资所希望的。但即使使用了气密性混凝土衬砌,也不能完全隔断瓦斯的渗透,因此,瓦斯隧道必需设置机械通风。本文结合家竹箐隧道,对瓦斯隧道的运营通风技术进行了研究。家竹箐高瓦斯隧道情况

家竹箐隧道在南昆线南宁到红果段,长4 980 m,其中瓦斯段长1 084 m(图1),占隧道总长的21.8%,现场实测瓦斯压力0.2

MPa~1.34 MPa。瓦斯段隧道支护体系采用全封闭(带仰拱)复合式衬砌,初期支护有0.04 m厚的喷射混凝土和0.15 m~0.20

m厚的模注混凝土组成;二次衬砌采用0.25 m~0.35 m厚模注混凝土,因此,家竹箐隧道总的模注混凝土衬砌厚度为0.40 m~0.55

m。为了封闭瓦斯,支护结构材料选用掺有硅灰和粉煤灰的双掺气密性混凝土,并在二次模注混凝土与初期支护间设置了HDPE板,以减少瓦斯渗漏。

图1 家竹箐隧道概况

家竹箐隧道断面积F=31.15 m2,断面湿周S=21.51 m,断面当量直径d=5.79 m。隧道接缝宽度按每缝宽0.005

m计,每8m设一道横向接缝,则瓦斯段内接缝总的长度为0.685 m。

为了运营通风,家竹箐隧道在距进口2 785 m处设有一个斜井(图1),斜井断面形式为直墙圆拱型,长度为383.83

m,断面积F=8.51 m2,断面湿周S=11.27 m,断面当量直径d=3.02 m。

隧道内运行列车长度LT=350

m,列车断面积fT=12.6 m2,列车车速v上T=43.26 km/h(12.02 m/s),v下T=44.55 km/h(12.38 m/s)。家竹箐隧道瓦斯渗入量确定

2.1 瓦斯渗入量的计算方法

地层中的瓦斯主要通过衬砌本体的细微裂隙和“三缝”等缺陷渗入隧道内。瓦斯渗入量不仅与煤层(或地层)中瓦斯含量、压差(即瓦斯压力和隧道内空气压力之差)有关,而且与衬砌材料、接缝材料的渗透性质有关,同时也与隧道内空气的流动速度等因素有关。因此,对于瓦斯隧道,常用渗透系数法来确定瓦斯渗入量[2],即

qCH4=[kA(P21-P22)]105/(2hγP2)

(m3/s)(1)

式中,k为衬砌或接缝的渗透系数,由试验测定(m/s);P1为渗透压力,封闭后地层内的瓦斯压力值(MPa);P2为隧道内空气压力(MPa),因隧道内气流与外界大气相通,故取P2=0.1 MPa;h为渗透厚度,取衬砌厚度(m);γ为瓦斯的容重(kg/m3);A为透气面积(m2),其值为

A=L1S(2)

其中,L1为隧道穿过瓦斯地层的长度(m);S为隧道断面周长(m)。

当隧道混凝土衬砌本体和接缝的渗透系数不相同时,要分别计算出衬砌本体和接缝的瓦斯渗入量qCH4,而后相加作为该隧道瓦斯总的渗入量。

2.2 渗透系数k的确定

渗透系数k用压气法测定,实际各种材料的渗透系数可按表1选取。

表1 各种材料的渗透系数

料k体/m*s-1k缝/m*s-1

普通混凝土1.66×10-121.66×10-11

气密性混凝土1.66×10-131.66×10-12

2.3 家竹箐隧道瓦斯渗入量计算

对于家竹箐隧道,取P2=0.1 MPa,γ=0.716 kg/m3,h=0.40 m,k体和k缝按表1选取。衬砌本体的瓦斯渗透总面积:A1=S×L=21.51×(1 084-0.685)=23 302.105 65(m2)

施工缝的瓦斯渗透总面积:A2=S×b=21.51×0.685=14.734 35(m2)

由此得到当衬砌为气密性混凝土时,瓦斯的渗入量 q=q1+q2=0.006 795 755 166(P21-0.01)(m3/s)(3)

当衬砌为普通混凝土时,瓦斯的渗入量

q=q1+q2=0.067 957 551 66(P21-0.01)(m3/s)(4)

由此可计算出在不同瓦斯渗透压力(P1)下渗入隧道的瓦斯量q,见表2。

表2 不同渗透压力(P1)下的瓦斯渗漏量

瓦斯压力

P1/MPa气密性混凝土瓦斯渗漏总量

/m3*s-1普通混凝土瓦斯渗漏总量

/m3*s-1

0.20.000 203 870.002 038 7

0.60.002 378 510.023 785 1

1.00.006 727 800.067 278 0

1.340.012 134 500.121 345 0

由表2可以看出,普通混凝土衬砌的瓦斯渗入量是气密性混凝土衬砌瓦斯渗入量的10倍,所以气密性混凝土衬砌对封闭瓦斯是非常有效的,为此,在家竹箐隧道的施工中采用了气密性混凝土衬砌。同时可以看出,经气密性混凝土衬砌封闭后,隧道内仍有瓦斯渗入,当瓦斯压力为1.34 MPa时,瓦斯渗漏量达0.012

50 m3/s,因此,为安全计,仍需机械通风。家竹箐隧道瓦斯污染模型

3.1 瓦斯污染模型的建立

假设瓦斯浓度沿隧道是一维分布,根据质量守衡原理可得到瓦斯污染模型为[3](5)

式中,C(x,t)为x位置在t时刻的瓦斯浓度;v是隧道风速;Dt综合扩散系数,亦称混合系数,Dt=D1+D2,D1为分子扩散和紊动扩散系数,与隧道内风速分布和浓度分布不均等因素有关,对于层流,D1仅为分子扩散系数Dm;D2为移流离散系数,一般情况下,D2D1Dm,故常忽略D1和Dm,以离散为主时取Dt=D2;q(x,t)是瓦斯源项,即单位时间单位体积里瓦斯的产生量,随时间而变化。上式为一个变源项的对流-扩散方程,一般用数值方法求解,将隧道长度L离散成M个长度为Δx的小段,时间步长取Δt,采用逆风隐式差分格式,将式(5)离散为

(Cn+1j-Cnj)/Δt+v(Cn+1j-Cn+1j-1)/Δx=Dt(Cn+1j+1-2Cn+1j+Cn+1j-1)/(Δx)2+qn+1j()

式中,上标n表示第n时间段,下标表示隧道的第j小段(j=1,M),将式(6)整理成 ACn+1j-1+BCn+1j+ECn+1j+1=Sj(7)

式中,A=-(H1+H2);B=1+H1+2H2;E=-H2;Sj=Cnj+qn+1jΔt。

其中,H1=vΔt/Δx;H2=DtΔt/(Δx)2。

式(7)是一个三对角矩阵,可用追赶法求解。由于斜井左右段隧道的风速不同(图1),因此,计算瓦斯浓度要分别对左右段隧道进行,由于左右段隧道的瓦斯浓度是相关的,所以当气流由左段向右段流动时,左右段的连接点可作为右段计算的瓦斯源点,同样,当气流由右段向左段流动时,左右段的连接点可作为左段计算的瓦斯源点,斜井内瓦斯浓度同理计算。对于隧道的进口和出口以及斜井的出口作为边界点处理,这些点的瓦斯浓度始终为0。

3.2瓦斯源q(x,t)的确定

家竹箐隧道瓦斯压力P1=1.34 MPa,隧道衬砌为气密性混凝土,由表2可得瓦斯总渗入量

q=0.012 134 50 m3/s

由此可得瓦斯段任一点单位时间单位体积里瓦斯的产生量q(x,t)为

q(x,t)=q/(31.15×108 4)=3.593 639 868×10-7

m3/(m3.s)

3.3 单元划分

家竹箐隧道单元划分如下:斜井左段隧道取558个节点,右段取440个节点,斜井取78个节点,单元长度都为5 m。时间划分为每1 s输出一个结果。家竹箐隧道活塞风速计算

家竹箐隧道和斜井组成一个三通系统,因此,斜井左右两侧隧道的活塞风速应按三通系统进行计算[4]。

取自然风速为1.5 m/s,并按自然风与列车运行方向相反、与列车运行方向相同、无自然风三种情况分别计算列车活塞风,同时考虑列车出洞后活塞风的衰减,计算结果列于表3。

表3 列车活塞风速计算结果

列车运行方向南宁→红果南宁←红果

列车运行区段A→CC→BA←CC←B

自然反风AC段风速5.273.59-5.23-3.82

vn=-1.5CB段风速3.935.37-3.59-5.26

/m*s-1CD段风速4.90-6.50-6.025.27

自然顺风AC段风速5.594.07-5.46-4.06

vn=1.5CB段风速4.175.63-4.10-5.60

/m*s-1CD段风速5.29-5.70-5.015.61

无自然风AC段风速5.433.83-5.35-3.94

vn=0CB段风速4.055.50-3.84-5.53

/m*s-1CD段风速5.05-6.10-5.535.44 家竹箐隧道通风计算

5.1 通风工况

按自然风方向与列车运行方向的最不利组合,计算了7种工况,即:第一种工况,有列车运行,自然风由南宁→红果,且vn=1.5 m/s;第二种工况,有列车运行,自然风由南宁←红果,且vn=1.5 m/s;第三种工况,有列车运行,自然风始终与列车运行方向相反,且vn=1.5 m/s;第四种工况,有列车运行,无自然风,vn=0 m/s;第五种工况,无列车运行,自然风由南宁→红果,且vn=1.5 m/s;第六种工况,无列车运行,自然风由南宁←红果,且vn=1.5 m/s;第七种工况,无列车运行,无自然风,vn=0 m/s。

5.2 列车运行组织情况

本区段行车对数为:近期6对,远期8.5对;所以列车运行间隔时间为:南宁→红果方向列车出洞后300

s,南宁←红果方向列车进洞,南宁←红果方向列车出洞后300 s,南宁→红果方向列车进洞,„„,如此往复。

5.3 有列车运行时隧道内瓦斯分布情况

有列车运行情况共计算了4种工况,计算结果比较发现自然风始终与列车运行方向相反时最为不利,现以此为例进行分析。

此时列车受逆向自然风作用,每对列车运行情况分为7个阶段,第一阶段,列车由南宁→红果方向,列车在斜井左侧运行,运行时间为232

s。第二阶段,列车由南宁→红果方向,列车在斜井右侧运行,运行时间为183 s。第三阶段,列车出洞,活塞风速衰减,时间为300

s。第四阶段,列车由南宁←红果方向,列车在斜井右侧运行,运行时间为177 s。第五阶段,列车由南宁←红果方向,列车在斜井左侧运行,运行时间为225

s。第六阶段,列车出洞,活塞风速衰减,时间为401 s。第七阶段,自然风由南宁→红果方向,时间为499 s。

每对列车按上述7个阶段组合进行计算,共计算了57对,发现列车运行7对后,隧道内瓦斯总量基本保持不变,每对列车各个阶段的瓦斯浓度分布曲线基本保持不变,这说明,列车运行7对以后,隧道内瓦斯的渗入总量与隧道洞口和斜井口排出的瓦斯总量相当,图2给出了各个阶段下瓦斯分布曲线。

由第一阶段瓦斯分布曲线图可以看出,因为列车由南宁→红果方向运行,所以活塞风速也是南宁→红果方向,因此整个瓦斯分布曲线右移,由于斜井的存在,有一部分瓦斯从斜井排出,因而斜井左侧的瓦斯浓度高于右侧瓦斯浓度。由第二阶段瓦斯分布曲线图显示,随着时间的增加,斜井继续排出瓦斯,斜井右侧瓦斯浓度逐渐高于斜井左侧的瓦斯浓度,斜井右侧瓦斯开始从隧道出口排出。由第三阶段瓦斯分布曲线图可以看出,随着活塞风速的衰减,斜井右侧瓦斯继续从隧道出口排出,且斜井右侧瓦斯浓度仍高于左侧瓦斯浓度。至此,南宁→红果方向运行的列车对隧道瓦斯浓度分布的影响计算结束。

图2 第三种工况各阶段瓦斯分布曲线

由第四阶段瓦斯分布曲线图可以看出,由于活塞风由南宁←红果方向,所以隧道瓦斯浓度分布曲线开始左移,有一部分瓦斯从斜井排出,斜井左侧由于瓦斯不断渗入,瓦斯浓度不断增加。由第五阶段瓦斯分布曲线图可见,斜井左侧瓦斯开始从洞口排出,右侧瓦斯仍有部分从斜井排出。

第六阶段瓦斯分布曲线图显示,随着活塞风速的衰减,斜井右侧瓦斯浓度降至0,斜井左侧瓦斯大量从洞口排出。由第七阶段瓦斯分布曲线图可以看出,在自然风作用下,隧道瓦斯浓度分布曲线开始右移。至此,一对列车运行结束。下一对列车通过隧道,隧道内瓦斯变化又重复图2过程。

由上述分析过程可以看出,隧道内的瓦斯浓度最大值没有超过0.06‟,与控制标准0.3%相差很多。前已述及,此工况为有列车运行情况的4种工况中最为不利工况。所以可得,在自然风速为1.5

m/s,列车运行速度为v上T>43.26 km/h,v下T>44.55 km/h;列车运行组织为:南宁→红果方向列车出洞后300

s,南宁←红果方向列车进洞,南宁←红果方向列车出洞后900 s,南宁→红果方向列车进洞,家竹箐隧道不需要设计机械通风。

5.4 无列车运行时隧道内瓦斯分布情况

无列车运行时共计算了3种工况,计算结果比较发现,无自然风时最为不利。这种工况下,隧道内瓦斯聚积最快,2个半小时,隧道内瓦斯浓度将超过0.3%,即超过控制指标(图3)。

图3 2小时30分钟隧道内瓦斯分布曲线图4 第五种工况隧道内瓦斯分布曲线图5 第六种工况隧道内瓦斯分布曲线

由此可以看出,在无自然风,无列车运行时,家竹箐隧道需要机械通风。

无列车运行时的另外2种工况计算结果见图

4、图5。

由图

4、图5可以看出,无列车运行,且自然风vn=1.5 m/s,不需要机械通风。

5.5 家竹箐隧道通风情况

上述7种工况中,只有无自然风,无列车运行时,需要机械通风,现按此种工况进行通风计算,假定无自然风,无列车运行已有2小时30分钟,计算通风如下:

按斜井吸出式通风,考虑瓦斯不聚积的最小风速为1.5 m/s;按这一风速配风,风机风量为141

m3/s,此时,通风10分钟,15分钟,20分钟,25分钟后,隧道内瓦斯分布见图6~图9。

图6 通风10分钟瓦斯分布曲线图7 通风15分钟瓦斯分布曲线图8 通风20分钟瓦斯分布曲线图9 通风25分钟瓦斯分布曲线

由图6~图9可以看出,按斜井吸出式通风,且风机风量为141 m3/s时,通风25分钟,可基本上将隧道内全部瓦斯排出。结论

由以上分析可得出如下结论:

(1)

对于瓦斯隧道,普通混凝土衬砌的瓦斯渗入量是气密性混凝土衬砌瓦斯渗入量的10倍,所以气密性混凝土衬砌对封闭瓦斯是非常有效的,因此,建议在瓦斯隧道的施工中采用气密性混凝土衬砌。

(2)经气密性混凝土衬砌封闭后,隧道内仍有瓦斯渗入,因此,为安全计,仍需设计机械通风。

(3)

家竹箐隧道,在列车运行速度为v上T>43.26 km/h,v下T>44.55 km/h;列车运行组织为:南宁→红果方向列车出洞后300

s,南宁←红果方向列车进洞,南宁←红果方向列车出洞后900 s,南宁→红果方向列车进洞,不需要机械通风。即列车运行密度大时,不需要机械通风。

(4)家竹箐隧道,无列车运行,但有自然风,且vn>1.5 m/s,不需要设计机械通风。

(5)

家竹箐隧道,在无自然风,无列车运行时最为不利,此时瓦斯积累最快。在2小时30分钟时,隧道内瓦斯浓度将超过0.3%,即超过控制指标,因此,需要设计机械通风。

(6)家竹箐隧道按斜井吸出式通风,当风机风量为141

m3/s时,在无自然风,无列车运行最不利工况下,通风25分钟,可基本上将隧道内瓦斯全部排出。

(7)家竹箐隧道,在无自然风,无列车运行时的最不利工况下,每隔2小时30分钟,需通风25分钟。

基金项目:铁道部重点科研项目资助(铁科工科字N6)

作者简介:王明年(1965—),男,副教授,博士

作者单位:王明年,钟新樵 西南交通大学 地下工程及岩土工程系,四川 成都 610031;

张开鑫,滕兆民 铁道部第二勘测设计院,四川 成都 610031

参考文献

[1] 铁道部铁建函[1994]344号文.铁路瓦斯隧道技术暂行规定[S].北京,1994.[2] 铁道部第二勘测设计院.铁路工程设计技术手册[M].北京:中国铁道出版社,1995.[3] 周雪漪.计算水力学[M].北京:清华大学出版社,1995.[4] 铁道部第二勘测设计院.铁路隧道运营通风[M].北京:中国铁道出版社,1983.

第五篇:隧道工程课程设计及论文

《隧道工程》课程设计及论文

1、以青岛拟建第二条海底隧道为例,对隧道选址、线路走向、长度、埋深,断面及坡道形式及功能进行设计及研究

2、以山东科技大学日益增多的校园汽车所带来的问题为研究背景,拟规划校园交通隧道,对隧道选址、线路走向、长度、埋深,断面及坡道形式及功能进行设计及研究(可以包括地下停车场)

3、以更好的发展西海岸经济新区、加强各地域之间的联系为例,来规划小珠山隧道,对隧道选址、线路走向、长度、埋深,断面及坡道形式及功能进行设计及研究

4、从各个方面比较青岛海底隧道和厦门翔安海底隧道的异同点(包括选址、地质情况、埋深、施工方法、造价、施工工期、断面形式、路面形式、通风形式、照明、内装、以及通车及收费系统情况等),并且要写出你自己的体会,要求:

1、每人一题,可以是一个题目的某一个方面,也可以是多个方面;

2、可以是设计,也可以是研究;

3、字数:3000字以上;

4、格式:以科技论文的格式,具体见附录

下载公路隧道工程的地质勘探技术研究论文[共5篇]word格式文档
下载公路隧道工程的地质勘探技术研究论文[共5篇].doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    公路监理工程师隧道工程试题4

    公路监理工程师隧道工程试题 一、单选题(每题1分,共10分) 1 用中线法进行洞内测量的隧道,中线点间距直线部分不宜短于(B)。 A 50米B 100米 C 150米D 200米 2 浇注拱圈混凝土达......

    公路隧道养护管理制度(共五则)

    公路隧道养护管理制度第一章 总则 第一条为加强和规范公路隧道养护管理,确保公路隧道安全运行,根据《中人民共和国公路法》、《中华人民共和国公路法实施办法》、《公路隧道养......

    工程地质勘探[范文模版]

    工程地质勘探 engineering geological prospecting利用一定的机械工具或开挖作业深入地下了解地质情况的工作。在地面露头较少、岩性变化较大或地质构造复杂的地方,仅靠地面......

    工程地质勘探的方法

    工程地质勘探的方法作者:不详项目管理2006-2-17主要有坑、槽探、钻探、地球物理勘探等方法。坑、槽探就是用人工或机械方式进行挖掘坑、槽、井、洞。以便直接观察岩土层的天......

    隧道工程

    隧道工程实习报告 一、实习目的 通过施工现场操作和参观,了解隧道工程结构和施工的基本工序和施工方法。通过现场操作和学习,掌握监控量测的基本内容和监测方法,以及基本数据的......

    隧道工程

    隧道:不论用什么办法,修筑在地表以下,断面在2m2以上,修建在底层中,为了交通而修建的,接近水平的细长的,具有稳定使用面积的地下结构物。 隧道分类:越岭隧道,傍山隧道,城市隧道,水下隧道......

    隧道“零开挖进洞”施工技术研究

    龙源期刊网 http://.cn 隧道“零开挖进洞”施工技术研究 作者:吴鹏 来源:《建筑与文化》2012年第11期 【摘 要】介绍安徽璜源山隧道“零开挖进洞”施工技术方案,为类似工程提供......

    林业工程树木养护管理技术研究论文

    摘要:做好树木的养护和管理工作,是保证林业工程健康发展的重要条件和前提,文章主要针对现阶段我国林业工程养护过程中存在的问题,进行了分析和研究,探究了相关的养护工作技术要点......