06
分数、小数和繁分数的混合运算
学习目标:
1.使学生掌握分数、小数及整数四则混合运算的运算顺序及计算方法,并能正确地进行繁分数计算。
2.训练学生认真审题,能够选择合理简便的解题方法。
3.培养学生良好的学习习惯及正确、合理、灵活、迅速的运算能力。
教学重点:
会计算分数、小数及整数的四则混合运算。
教学难点:
根据题目特点化简繁分数并计算。
教学过程:
一、情景体验
1、复习导入
ppt出示练习(1)(2),指名口答。
师:我们已经知道,分数、小数加减混合运算,可以根据已知数的具体情况来确定是先把分数化成小数,还是先把小数化成分数,从而进行计算。
师追问:分数、小数加减混合运算一般情况下化成什么数做比较简便?为什么?
分数和小数乘、除混合运算在一般情况下,化成什么数做比较简便?为什么?我们今天就一起来研究一下分数、小数和繁分数的混合运算。
师板书课题
二、能思维探索(建立知识模型)
展示例题:
例1:计算。
师:根据以往计算整数、小数四则混合运算的经验,想一想,分数四则混合运算的运算顺序是怎样的?
生:分数四则混合运算的运算顺序和整数小数四则混合运算的运算顺序相同。也是先算乘除法,再算加减法,有括号的先算括号里面的。
(让学生结合具体问题情境说说运算顺序。说说先算什么,再算什么。)
师:我们这题中既有分数又有小数,你能想到什么方法计算呢?
生:在每步计算都要统一成一种数。
师:我们是把小数化成分数还是分数化成小数呢?
生:都可以。
生独立完成,指名学生说算理和计算过程,师评价小结
小结:在有分数和小数的混合运算里,可以把分数化成小数,也可以把小数化成分数,怎么简便就怎么转化。要注意的是小数也可以和分数直接约分,就是别忘了约分的结果是个小数。
展示例题:
例2:化简
师:观察算式,你能发现什么特点?
生:整个算式是一个分数,分子分母都是由一个含有分数的算式组成。
师:在分数的分母和分子中还含有分母和分子的分数,我们就称为繁分数我们解决这样的题目一般运用的方法是:先分子做分子计算,分母做分母计算,互不干涉。最后写成“分子部分÷分母部分”的形式,再求出最后结果。大家先观察分子,有什么特点?怎样计算?
生1:改写成分数的连乘形式:××。
生2:3.9也可以直接跟3约分.师:说得很好!你们就用这两种方式求出分子结果。
生完成指名回答
师:那么分母呢?
生:直接计算先算括号里面的,再算括号外的。
生完成指名回答
师:最后再怎么做?
生:分子除以分母。
生自主完成,师评价小结
小结:在分数的分母和分子中还含有分母和分子的分数,我们就称为繁分数。计算方法是:先分子做分子计算,分母做分母计算,互不干涉。最后写成“分子部分÷分母部分”的形式,再求出最后结果。
三、思维拓展(知识模型拓展)
展示例题:
例3:计算。
师:仔细观察题目,你能说说这题的计算顺序吗?
(让学生结合具体问题情境说说运算顺序。说说先算什么,再算什么。)
师:大家自己尝试完成。
生尝试计算,代表说过程算理。
师:看看整个过程中什么时候分数化成小数计算简单?什么时候
小数化成分数计算简单呢?
生:一般情况下乘除法化成分数,加减法化成小数计算较简单。
师:有什么特殊情况?
生:有时小数可以直接跟分数约分。
师:所以我们要根据具体情况灵活运用。
展示例题:
例4:计算。
师:大家观察这个算式的特点有哪些?
生:是一个复杂的分数,分子分母都是三个小数相乘组成的。
师:你们有办法解决这个题吗?
生:跟例2一样把分子分母分别计算出来再用分子除以分母。
师:那我们看看分子分母好计算吗?(不好算)怎么办?
生:化成分数计算。
师:大家试试看。
生尝试发现分开计算很复杂
师:大家把分子分母结合起来观察一下化成分数有什么特点呢?
生:分子分母都含有可以约分的部分。
师:所以我们其实可以将分子分母都扩大成整数约分。大家看看应该扩大多少?为什么?
生:10000倍,分子分母都共有4位小数。
师:接下来大家用这种方法算出结果。
学生尝试独立完成,教师评价小结。
四、融汇贯通(知识模型的运用)
展示例题:
例5:计算。
师:通过我们之前的学习,你能发现分数小数混合计算有什么方法?
生:每一步计算尽量将数类型统一,一般加减法时统一成小数,乘除法时统一成分数。
师:我们第一步要算什么?
生:0.6×。
师:怎么计算呢?把0.6化成分数吗?
生1:可以,等于。
生2:也可以直接用0.6和21约分约分后得到。
师:说得很好!完成这一步后面就容易了,大家自己解决吧。
生自主完成,师评价小结
五、总结
通过这节课学习,你收获了什么?