六年级数学上册比的基本性质教学设计及教学反思
教学目标
1.理解和掌握比的基本性质,初步掌握化简比的方法。
2.在自主探索的过程中,分析比和除法、分数之间的联系,培养观察、比较、推理、概括、合作、交流等数学能力。
3.初步渗透转化的数学思想,并使学生认识知识之间都是存在内在联系的。
重点:理解比的基本性质。
难点:正确应用比的基本性质化简比。
课件、答题纸、实物投影。
教学过程
一、复习旧知
师:同学们先来回忆一下,关于比已经学习了什么知识?
预设:比的意义,比各部分的名称,比与分数以及除法之间的关系等。
师:我们知道,比与除法、分数之间存在着极其密切的联系,而除法具有商不变的性质,分数有分数的基本性质。联想这两个性质想一想,在比中有没有类似的性质呢?
板书:比的基本性质。
学生纷纷猜想比的基本性质。
根据学生的猜想教师板书:比的前项和后项同时乘或除以相同的数(0除外),比值不变。
二探究新知
1.教学比的基本性质。
师:比和除法、分数一样,也具有属于它自己的性质,那么是否和大家猜想的一样呢?这需要我们通过研究证明。接下来,请大家分成四人小组合作学习,共同研究并验证之前的猜想是否正确。
教师说明合作要求。
(1)独立完成:写出一个比,并用自己喜欢的方法进行验证。
(2)小组讨论学习。
①每个同学分别向组内同学展示自己的研究成果,并依次交流。(其他同学表明是否赞同此同学的结论。)
②如果有不同的观点,则举例说明,然后由组内同学再次进行讨论研究。
③选派一个同学代表小组进行发言。
(3)集体交流。(要求小组发言代表结合具体的例子在展台上进行讲解。)
(4)全班验证。
2.完善归纳,概括出比的基本性质。
10∶15=10÷15==
15∶9=15÷9=
16∶20=(16 ○ □)∶(20 ○ □)
上题中○内可以怎样填?□内可以填任意数吗?为什么?
(1)学生发表自己的见解并说明理由,教师完善并板书。
(2)学生打开书本读一读比的基本性质,教师板书课题:比的基本性质。
3.深化认识。
利用比的基本性质做出准确判断:
(1)8∶10=(8+10)∶(10+10)=18∶20()
(2)12∶16=(12÷6)∶(16÷4)=2∶4()
(3)0.8∶1=(0.8×10)∶(1×10)=8∶10()
(4)比的前项乘3,要使比值不变,比的后项应除以3。()
4.比的基本性质的应用。
(1)引导学生自学最简整数比的相关知识。
预设:前项、后项互质的整数比称为最简整数比。
(2)从下列各比中找出最简整数比,并简述理由。
3∶4 18∶12 19∶10 ∶ 0.75∶2
(3)化简前项、后项都是整数的比。(课件出示教材第50页例1(1))
学生独立尝试,化简后交流。
(除以最大公因数和逐步除以公因数两种方法,重点强调除以最大公因数的方法。)
(4)化简前项、后项出现分数、小数的比。(课件出示教材第51页例1(2))
四人小组讨论研究,找到化简的方法。
预设:含有分数和小数的比都要先化成整数比,再进行化简。有分数的先乘分母的最小公倍数;有小数的先把小数化成整数之后,再进行化简。
(5)归纳小结:化简时,如果比的前项和后项都是整数,可以同时除以它们的最大公因数;遇到小数时先转化成整数,再进行化简;遇到分数时,可以同时乘分母的最小公倍数。
5.方法补充,区分化简比和求比值。
还可以用什么方法化简比?(求比值)化简比和求比值有什么不同?
预设:化简比的最后结果是一个比,求比值的最后结果是一个数。
三巩固练习
1.把下面各比化成最简单的整数比。(出示教材第51页“做一做”。)
2.教材第53页“练习十一”第4题。学生口答完成。
四课堂小结
这节课你有什么收获?还有什么疑问?
教学反思
比的基本性质这一内容的学习非常适合培养学生的类比推理能力,学生在掌握商不变性质和分数的基本性质的基础上,很自然地就能联想到比的基本性质,这不仅激发了学生的学习兴趣,同时也很好地培养了学生的语言表达能力。基于猜想的学习必定需要来自学生的自主探究进行验证,而合作探究又是一种良好的学习方式,但合作学习不能流于形式。合作学习首先要让学生独立思考,让学生产生自己的想法,然后再进行合作交流,交流过程中不仅培养了学生的推理概括能力,同时也真正内化了来自猜想的“比的基本性质”,从而大大提高了合作学习的实效性。