数学《椭圆及其标准方程》教学设计(共五篇)

时间:2020-05-12 01:00:07下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《数学《椭圆及其标准方程》教学设计》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《数学《椭圆及其标准方程》教学设计》。

第一篇:数学《椭圆及其标准方程》教学设计

作为一名教职工,通常会被要求编写教学设计,借助教学设计可以促进我们快速成长,使教学工作更加科学化。你知道什么样的教学设计才能切实有效地帮助到我们吗?下面是小编精心整理的数学《椭圆及其标准方程》教学设计,希望能够帮助到大家。

数学《椭圆及其标准方程》教学设计篇1

一、教学内容解析

1.地位与作用:

本章是北师大版选修1—1的第二章《圆锥曲线与方程》,是高中数学解析几何的第二大部分。解析几何是数学中一个重要的分支,它联系了数学中的数与形、代数与几何等最基本对象之间的联系。在北师大版必修2中,学生已掌握了在平面直角坐标系下研究直线和圆的方法,本章教材进一步利用三种基本圆锥曲线深化代数与几何的关系。本章教材内容的顺序是:椭圆→抛物线→双曲线→曲线与方程。这样安排的用意是,先学圆锥曲线,再学曲线与方程,这样的顺序更有利于学生的学习,符合学生从特殊到一般,具体到抽象的认知规律。在圆锥曲线的学习过程中,不断的渗透曲线与方程的思想,为学生理解并掌握“曲线与方程”这一概念奠定了基础。

本节是北师大版选修1—1的第二章《圆锥曲线与方程》第1节的内容,主要学习椭圆的定义、标准方程及其简单的应用,分为两课时,本节课是第1课时,主要学习椭圆的定义及其标准方程。教材以椭圆为基础和重点说明了求方程并利用方程讨论几何性质的一般方法,然后在认知抛物线和双曲线中得到了巩固和应用,因此《椭圆及其标准方程》这一节课起到了承上启下的作用。

2.教材处理顺序

教材在椭圆的定义这个内容的安排上是:先从直观上认识椭圆,再从画法中提炼出椭圆的几何特征,由此抽象概括出椭圆的定义,最后是椭圆定义的简单应用。这样的安排不仅体现出《课程标准》中要求通过丰富的实例展开教学的理念,而且符合学生从具体到抽象的认知规律,有利于学生对概念的学习和理解。教材在本节内容中只研究了中心在原点,焦点在 轴上的椭圆的标准方程,让学生自己去归纳焦点在 轴上的椭圆的标准方程。这样的处理给学生提供了一次探究和交流的机会。有利于学生对抛物线标准方程的理解,有利于学生思维能力的提高和学习兴趣的培养。

3.数学思想方法

本节内容蕴含了:数形结合思想、转化化归思想等。在推导椭圆标准方程过程中让学生体会移项再平方去根号的方法。

二、教学目标和重难点

1.教学目标

(1)知识与技能目标:①理解椭圆的定义;②掌握的椭圆的标准方程。

(2)过程与方法目标:①在椭圆定义的获知和归纳中,进一步渗透数形结合的数学思想方法;②通过椭圆标准方程的推导过程,巩固用坐标化的方法求动点的轨迹方程,同时体会含有两个根式的化简思路。

(3)情感、态度和价值观:①通过椭圆定义的归纳,培养学生发现规律,认识规律并利用规律解决实际问题的能力;②通过师生、生生合作学习,增强学生团队协作能力,增强主动与他人合作交流的意识。

2.教学重点

(1)掌握椭圆的定义与相关概念;

(2)掌握椭圆的标准方程。

3.教学难点

椭圆标准方程的推导。

三、学情分析

1.学生已有的认知基础

授课班级学生为高二年级学生。

椭圆是圆锥曲线中基础且重要的一种图形,在实际生活中经常遇到。学生在高一对解析几何有了初步的了解和认识,对于在平面直角坐标系下的点坐标及长度公式已掌握,具有一定的空间想象能力、抽象概括能力和推理运算的技能,有较好的学习习惯和方法。

2.学生存在的难点

学生在涉及到需要自己建立坐标系,再研究推导出方程仍是一个难点。且之前未接触过一个式子中含两个根式相加的情况,故化简是个问题。

3.突破策略

由教师引领学生观察所绘出的椭圆的特点,定点位置,从而建立合适的直角坐标系。

四、教学策略分析

1.内容突破策略

本节课新知内容分两大板块:一是总结概括出椭圆的定义;二是推导出椭圆的标准方程。针对第一板块内容,主要采取学生先动手画椭圆,在实践的过程中发现一些固定不变的量和量与量之间存在的关系,从而总结出椭圆的定义,并且深刻领悟定义中所说的一些特别要求。针对第二板块内容,主要是采取教师引导,学生动手,通过一般的求动点轨迹的方法推导出椭圆的标准方程,符合学生的认知规律。

2.启迪学生思维策略:

在教学方法的选择上,采用教师组织引导,学生动手实践、自主探究、合作交流的学习方式,力求体现教师的引导者、合作者的作用,突出学生的主体地位。

五、教学过程

教学过程

设计意图

一、创设情景,导入新课

1.让学生观察几张典型图片和行星在太阳系中的运动轨迹,由此看出一个共同的数学图形“椭圆”。

2.大家还能举出生活中你所遇到的椭圆吗?

3.用多媒体演示一个嫦娥三号运行椭圆形轨道的例子。

1.使学生对椭圆有一个感性认识,明白生活实践中有许多数学问题,数学来源于实践,同时培养学生学会用数学的眼光去观察周围事物的能力。

2.通过提问激发学生课堂上的学习兴趣。

二、椭圆的定义(分四个环节)

1.画一画(画椭圆)

①将一条绳子的两端固定在同一个定点上,用笔尖勾起绳子的中点使绳子绷紧,围绕定点旋转,笔尖形成的轨迹是什么?

(由学生动手在黑板上进行演示,提高学生的动手能力,同时激起学生学习本节课的兴趣)

②而将绳子的两端分别固定在两个定点上,笔尖勾直绳子,移动笔尖,得到的是轨迹是什么?

(教师提问,让学生动手,拿出提前准备好的毛线,两组同学上黑板画,其他同学同桌合作在练习本上画)

动画演示作图过程

2.认一认(实验总结)

提出问题:①作图过程中,哪些量没有变?哪些量变了?

提出问题:②为什么要求作图过程中笔尖要绷紧?

提出问题:③笔尖所对应的动点M到定点的距离有什么长度之间的关系?

总结:笔尖对应的动点M到直线两个端点的长度之和固定不变。

3.说一说(总结定义)

提出问题:根据刚才动手实践的过程,能否总结椭圆的定义?(同学自由发言,再由学生进一步补充完善)

我们把平面内到两个定点,的距离之和等于常数(大于)的点的集合叫作椭圆。

问题1:定义中的常数等于,则动点的轨迹是什么?

问题2:定义中的常数小于,则动点的轨迹是什么?

4.椭圆相关概念:两个定点,叫作椭圆的焦点,两个焦点,间的距离叫作椭圆的焦距。

1.给学生提供一个动手、动脑的学习机会;

2.学生可通过动手实践的过程去体会“满足什么样的条件下的点的集合为椭圆”,从而对椭圆定义中的条件有直观深刻的认识。

3.通过三个问题的设置,为学生从画法中发现抛物线的几何特征奠定基础。

4.通过三个典型的问题,让学生更深刻地理解椭圆的定义

5.使学生经历椭圆概念的生成和完善过程,提高其归纳概括能力,加深对椭圆本质的认识,并逐渐养成严谨的科学作风。

三、椭圆的标准方程

1.求一求(推导椭圆的标准方程)

问题3:回顾圆的轨迹方程是如何求的?

①建系: ②设点:

③列式: 得: ④化简:

问题4:以怎样的建系方式,哪一种针对求椭圆的标准方程比较好?

(补充说明:椭圆具有一定的对称美,故所求的式子最好简洁工整)

动手演算:让学生动手,求推导焦点在 轴上的椭圆的标准方程

①建系:观察椭圆的几何特征,如何建系能使方程更简洁?(利用椭圆的对称性特征)

以直线 为 轴,以线段 的垂直平分线为 轴,建

立平面直角坐标系.

②设点:设焦距为,则 .设 为椭圆上任意一点,点 与点 的距离之和为 .

③列式:动点 满足的几何约束条件:

坐标化为:

④化简:化简椭圆方程是本节课的难点,突破难点的方法是引导学生思考如何去根号

预案一:移项后两次平方法

两边同时平方、整理得:

将上式两边平方、整理得:

分析 的几何含义,令

得到焦点在 轴上的椭圆的标准方程为

预案二:

用等差数列法:

得4cx=4at,即t=

将t= 代入 式得

将③式两边平方得出结论。以下同预案一

预案三:三角换元法:

即 即

代入 式得

以下同预案一

2.问一问

问题5 :焦点在 轴上的椭圆的标准方程是什么?

(由学生动手列式,引导学生观察焦点在 轴上与焦点在 轴上式子的差异,从而用类比的方法得到焦点在 轴上椭圆的标准方程)

如果椭圆的焦点在 轴上,其焦点坐标为,用同样的方法可以推出它的标准方程

问题6:如何用几何图形解释 ?,在椭圆中分别表示哪些线段的长?

1.让学生由圆的标准方程的推导过程,类比的推导椭圆的标准方程。

2.椭圆方程不止一种,建立的坐标系不同,椭圆方程的表达形式也不同,在高中阶段只掌握焦点在坐标轴上的椭圆的标准方程。

3.进一步熟悉用坐标法求动点轨迹方程的方法,掌握化简含根号等式的方法,提高运算能力,养成不怕困难的钻研精神,感受数学的简洁美、对称美

4.数形结合的思想的灵活应用,进一步深化巩固数学思想方法

做好准备,以备个别学生想到此种方法

四、课堂探究

探究一:判断分别满足下列条件的动点 的轨迹是否为椭圆

(1)到点 和点 的距离之和为6的点的轨迹;(是)

(2)到点 和点 的距离之和为4的点的轨迹;(不是)

(3)到点 和点 的距离之和为3的点的轨迹;(不是)

(4).已知椭圆的标准方程为,请填空:a=_____,b=_____,c=_____,焦点坐标为_________________,焦距等于_________.探究二:判定下列椭圆的标准方程在哪个轴上,并写出焦点的坐标

(1);(在 轴上,焦点为,)

(2);(在 轴上,焦点为,)

(3)。(在 轴上,焦点为,)

1.巩固椭圆的定义

2.通过本题的练习,使学生能加深椭圆的焦距与标准方程之间关系的理解,同时会求标准方程的基本量,教学时应引导学生逐层深入,养成求椭圆标准方程先看焦点位置的良好习惯。

五、课堂小结

问题:这节课你学到了什么?请谈谈你的收获.1.知识内容收获:一个定义(椭圆的定义);两个方程(椭圆的两种标准方程);及椭圆中 之间的关系。

2.学习过程收获:①巩固了动点的轨迹方程的求法;②通过推导椭圆的标准方程的过程,学会了两个根式相加的式子的化简方法,同时提高了自己的运算能力。

3.数学思想和方法:数形结合思想;转化化归思想;分类讨论思想。

目的:培养学生的概括总结能力

六、课后巩固练习

1.课后思考:当把椭圆的两个焦点合二为一了后,得到的图形是什么?你能总结出什么样的规律?

2.书面作业:

课本 练习2: 1, 2, 3

是对本节课新知内容及学习方法的巩固,同时启发学生思考,让学生更有兴趣继续研究椭圆

七、板书设计

椭圆及其标准方程

一、画椭圆

二、定义:

注明:①若,则点的轨迹不存在;

②若,则轨迹为线段

三、椭圆的标准方程

焦点在 轴上时,焦点在 轴上时,八、设计感想

上本节课前本人阅读了大量圆锥曲线的知识,对各种不同的椭圆定义引题进行了分析比较,通过各位同事耐心的指导和多次的讨论,最终采用了以现实生活中椭圆的应用引入,充分展现了知识的形成过程,有利于学生自主探究与创新意识的培养。但在设计过程仍遇到很多我无法解决的问题,比如如何将圆锥曲线背景知识融入到课堂;如何用几何画板将纸张的翻折更形象的演示等等。如何加以改进,这是在后续教学中需要思考的问题。这也反映了我在新课程面前的不足,认识到教师自身专业发展与能力提高的重要性与紧迫感;认识到新课程下的教师不再是静态的蜡烛、明灯抑或是航标,而是一名充满激情的主持人,一名锐意进取的先行者这样一个角色的转换;认识到新课改的成功要从我做起,从现在做起!

数学《椭圆及其标准方程》教学设计篇2

一、教学内容分析(简要说明课题来、学习内容、这节课的价值以及学习内容的重要性)

本节课是高中新课程人教A版数学选修1—1第二章第一单元《椭圆及其标准方程》的第一课时.本节的内容是继学习圆之后运用 “曲线和方程”理论解决具体二次曲线的又一实例.从知识上说,它是对前面所学的运用坐标法研究曲线的又一次实际演练,同时它也是进一步研究椭圆几何性质的基础;从方法上说,推导椭圆的标准方程的方法对双曲线、抛物线方程的推导具有直接的类比作用,因此,这节课有承前启后的作用,是本节乃至本章的重点。

二、教学目标(从知识与技能、过程与方法、情感态度与价值观三个维度对该课题预计要达到的教学目标做出一个整体描述)

基于新课标的要求,结合本节内容的地位,我提出教学目标如下:

(1)知识与技能:

①了解椭圆的实际背景,经历从具体情景中抽象出椭圆模型的过程; ②使学生理解椭圆的定义,掌握椭圆的标准方程及其推导过程.(2)过程与方法:

①让学生亲身经历椭圆定义和标准方程的获取过程,掌握求曲线方程的方法和数形结合的思想; ②学会用运动变化的观点研究问题,提高运用坐标法解决几何问题的能力.(3)情感态度与价值观:

①通过主动探究、合作学习,感受探索的乐趣与成功的喜悦;培养学生认真参与、积极交流的主体意识和乐于探索创新的科学精神.②通过主动探索,合作交流,感受探索的乐趣和成功的体验,体会数学的理性和严谨,③通过椭圆知识的学习,进一步体会到数学知识的和谐美,几何图形的对称美;提高学生的审美情趣.三、学习者特征分析(说明学习者在知识与技能、过程与方法、情感态度等三个方面的学习准备(学习起点),以及学生的学习风格。最好说明教师是以何种方式进行学习者特征分析,比如说是通过平时的观察、了解;或是通过预测题目的编制使用等)

1.能力分析

①学生已初步掌握用坐标法研究直线和圆的方程,②对含有两个根式方程的化简能力薄弱。

2.认知分析

①学生已初步熟悉求曲线方程的基本步骤,②对曲线的方程的概念有一定的了解。

3.情感分析

学生具有积极的学习态度,强烈的探究欲望,能主动参与研究。

改变学生的学习方式是高中课改追求的基本理念。遵循以学生为主体,教师为主导,发展为主旨的现代教育原则。我采用了通过创设情境,充分调动学生已有的学习经验,以问题的提出、问题的解决为主线,始终在学生知识的“最近发展区”设置问题;以学生主动探索、积极参与、共同交流与协作为主体,在教师的引导下,学生“跳一跳”就能摘得果实;于问题的分析和解决中实现知识的建构和发展。通过不断探究、发现,让学生的学习过程成为心灵愉悦的主动过程,使师生的生命力在课堂上得到充分的发挥。激发学生的学习兴趣和创新能力,帮助学生养成独立思考积极探索的习惯。

四、教学策略选择与设计(说明本课题设计的基本理念、主要采用的教学与活动策略)

椭圆的标准方程共两课时,第一课时所研究的是椭圆标准方程的建立及其简单运用,涉及的数学方法有观察、比较、归纳、猜想、推理验证等,我校学生基础差、底子薄,数学运算能力,分析问题、解决问题的能力,逻辑推理能力,思维能力都比较弱,所以在设计课的时候往往要多作铺垫,扫清他们学习上的障碍,保护他们学习的积极性,增强学习的主动。在教法上,主要采用探究性教学法和启发式教学法。以启发、引导为主,采用设疑的'形式,逐步让学生进行探究性的学习

五、教学重点及难点(说明本课题的重难点)

基于以上分析,我将本课的教学重点、难点确定为: ①重点:椭圆定义和标准方程 ②难点:椭圆的标准方程的推导。

六、教学过程(这一部分是该教学设计方案的关键所在,在这一部分,要说明教学的环节及所需的资源支持、具体的活动及其设计意图以及那些需要特别说明的教师引导语)

一.创设问题情境:

情境1:给出椭圆的一些实物图片:天体运行图(月亮绕地球,地球绕太阳旋转)、汽车油罐的横截面,立体几何中圆的直观图?

实物:圆柱形杯倾斜后杯中水的形状。

情境2:校园内一些椭圆形小花坛

问题 学校准备在一块长3米、宽1米的矩形空地上建造一个椭圆形花园,要尽可能多地利用这块空地,请问:如何画这个花园的边界线?

(学生现在还不能解决,只有通过今天这节课的学习才能解决这个问题)

这是实际生活中图形,数学中我们也遇到这一类图形:归结为到两定点距离之和为定值的点的轨迹问题。如何用现有的工具画出图形?(启发学生用画圆的方法试着画图)

教师与学生一起找出上述问题的解决方案,并一同用给的工具画出图形,与上述图形相似——椭圆

问题情境的创设应有利于激发学生的求知欲。为了学习椭圆的定义,我设计如下两个学生熟悉的情境:

通过情境1,让学生感受到椭圆的存在非常普遍。小到日常生活用品,大到建筑物的外形,天体的运行轨道。

通过情境2,让学生主动思考如何画椭圆及椭圆的定义。

通过问题,要求学生以小组为单位进行实验、观察、猜想,激发学生探索的欲望和浓厚的学习兴趣,使学生的主体地位得到体现。

二.探求椭圆方程

如何选取坐标系?

方案1:以一个定点为原点,两定点的连线为X轴

回顾圆的方程的建立过程,首先是做什么?(提问学生)如何选择适当的坐标系来建立椭圆的方程呢?

学会建立适当的坐标系,构造数与形的桥梁,学会用解析的方法来解决问题,渗透数形结合的数学思想。

方案2:以两定点的连线为X轴,其垂直平分线为Y轴

学生可能有很多种建系方法,根据课堂的实际情况进行处理。不能否定学生的方法,让学生自己讨论那种建系方法更为合适,我想学生通过这些活动能够建立几种常见的坐标系,并列出相应的代数方程。我认为这样有利于培养学生的动手实验,分析比较,相互协作等能力。让学生体验到知识的产生过程。

三.标准方程比较

(让学生讨论,归的标准方程有何异同)(1)相同点纳出这两种形式的标准方程有何异同)

(1)相同点

①方程中x,y表示椭圆上任意一点 ②关于x,y的二元二次方程;

③焦点位置的判定:焦点在较大分坐标;

(2)不同点

①方程形式 ②图形 ③焦点坐标

由于化简两个根式的方程的方法特殊,难度较大,估计学生容易想到直接平方,这时可让学生预测这样化简的难度,从而确定移项平方可以简化计算。为此,我首先启发学生如何去掉根号较好,让学生动手比较,最后得出移项平方化简方程比较简单,这样有利于培养学生的分析比较能力。

七、教学评价设计(创建量规,向学生展示他们将被如何评价(来自教师和小组其他成员的评价)。也可以创建一个自我评价表,这样学生可以用它对自己的学习进行评价)

椭圆方程的化简是学生从未经历的问题,方程的推导过程采用学生分组探究,师生共同研讨方程的化简和方程的特征,可以让学生主体参与椭圆方程建立的具体过程,使学生真正了解椭圆标准方程的来源,并在这种师生尝试探究、合作讨论的活动中,使学生体会成功的快乐,提高学生的数学探究能力,培养学生独立主动获取知识的能力

八、板书设计(本节课的主板书)

一.定义

二.标准方程比较

1)相同点 ①方程中x,y表示椭圆上任意一点的坐标; ②关于x,y的二元二次方程; ③焦点位置的判定:焦点在较大分母对应的变量的坐标轴上

2)不同点 ①方程形式 ②图形 ③焦点坐标

九.教学反思

椭圆是圆锥曲线中重要的一种,本节内容的学习是后继学习其它圆锥曲线的基础,坐标法是解析几何中的重要数学方法,椭圆方程的推导是利用坐标法求曲线方程的很好应用实例。本节课内容的学习能很好地在课堂教学中展现新课程的理念,主要采用学生自主探究学习的方式,使培养学生的探索精神和创新能力的教学思想贯穿于本节课教学设计的始终。

椭圆是生活中常见的图形,通过实验演示,创设生动而直观的情境,使学生亲身体会椭圆与生活联系,有助于激发学生对椭圆知识的学习兴趣;在椭圆概念引入的过程中,改变了直接给出椭圆概念和动画画出椭圆的方式,而采用学生动手画椭圆并合作探究的学习方式,让学生亲身经历椭圆概念形成的数学化过程,有利于培养学生观察分析、抽象概括的能力。

【数学《椭圆及其标准方程》教学设计】相关文章:

1.椭圆及其标准方程的教学设计

2.《椭圆及其标准方程》的说课稿

3.椭圆及其标准方程说课稿设计

4.椭圆及其标准方程教学反思范文

5.《椭圆的定义及其标准方程》教学反思

6.《椭圆及其标准方程》说课稿

7.《椭圆的标准方程的求法》说课稿

8.《椭圆的标准方程》的说课稿

9.《双曲线及其标准方程》说课稿

第二篇:椭圆标准方程教学设计

椭圆标准方程推导教学设计

类比的思想学:新旧知识的类比。

引入:自然界处处存在着椭圆,我们如何用自己的双手精确的画出椭圆呢?

回忆圆的画法:一个钉子,一根绳子,钉子固定,绳子的一端系于钉子上,抓住绳子的另一端,固定绳子的长度,绕钉子旋转一圈就得到圆。

下面我们介绍椭圆的画法:找两个钉子和一根绳子,把两个钉子固定,两个钉子的距离小于绳子的长度,把绳子的两端分别系在两个钉子上,绷紧绳子旋转一周就得到椭圆。(以上是画法上的对比)

回忆圆的定义:平面上到顶点的距离等于定长的点的集合。

(根据刚才椭圆的画法及类比圆的定义,归纳得出椭圆的定义。)椭圆的定义:平面上到两个定点F1,F2的距离之和为定值(大于F1F2)的点的集合。

(以上是定义上的对比)

怎样推导椭圆的标准方程呢?(类比圆的标准方程的推导步骤)求动点方程的一般步骤:坐标法

(1)建立适当的直角坐标系,用有序实数对(x,y)表示曲线上任意一点M的坐标;(2)写出适合条件P(M);(3)用坐标表示P(M),列数方程;(4)化方程为最简形式。

y♦探讨建立平面直角坐标系的方案yyyF1OOO设P(x, y)是椭圆上任意一点,yF2P(x , y)xF10F2yMMOF2椭圆的焦距|F1F2|=2c(c>0),则F1、F2的坐标分别是(c,0)、(c,0).xF1xxxOP与F1和F2的距离的和为固定值2a(2a>2c)由椭圆的定义得,限制条件:|PF1||PF2|2a由于得方程|PF1|(xc)2y2,|PF2|(xc)2y2x方案一方案二原则:尽可能使方程的形式简单、运算简单;(一般利用对称轴或已有的互相垂直的线段所在的直线作为坐标轴.)(对称、“简洁”)(xc)2y2(xc)2y22a(问题:下面怎样化简?)移项,再平方(xc)2y24a24a(xc)2y2(xc)2y2a2cxa两边再平方,得刚才我们得到了焦点在x轴上的椭圆方程,如何推导焦点在y轴上的椭圆的标准方程呢?由椭圆的定义得,限制条件:|PF1||PF2|2a由于得方程|PF1|x2(yc)2,|PF2|x2(yc)2(xc)2y2a42a2cxc2x2a2x22a2cxa2c2a2y2整理得(a2c2)x2a2y2a2(a2c2)由椭圆定义可知2a2c,即ac,所以x2(yc)2x2(yc)22aa2c20,设a2c2b2(b0),(问题:下面怎样化简?)b2x2a2y2a2b2两边除以a2b2得x2y21(ab0).a2b2椭圆的标准方程x2y21(ab0).a2b2焦点在x轴(xc)2y2(xc)2y22a♦再认识!♦椭圆的标准方程的特点:YMMF1(-c,0)OF2(c,0)XOF1(0,-c)XYF2(0 , c)标准方程x2y2+=1 a>b>0a2b2yPx2y2+=1 a>b>0b2a2yF2Pxx2y21(ab0)a2b2y2x21(ab0)a2b2不同点图形F1OF2xOF1焦点坐标F1-c , 0,F2c , 0F10,-c,F20,c(1)椭圆标准方程的形式:左边是两个分式的平方和,右边是1(2)椭圆的标准方程中三个参数a、b、c满足a2=b2+c2。(3)由椭圆的标准方程可以求出三个参数a、b、c的值。(4)椭圆的标准方程中,x2与y2的分母哪一个大,则焦点在哪一个轴上。相同点定义a、b、c 的关系焦点位置的判断平面内到两个定点F1,F2的距离的和等于常数(大于F1F2)的点的轨迹a2=b2+c2分母哪个大,焦点就在哪个轴上

第三篇:《 椭圆的标准方程》教学设计

《 椭圆的标准方程》教学设计

1.1本章内容的数学分析

《圆锥曲线与方程》是选修2-1第二章的内容,是高中数学中重要的内容,圆锥曲线的许多几何性质在日常生活、生产和科学技术中都有着广泛的应用。《2.2.1椭圆及其标准方程》是整个解析几何部分的重要基础知识,从知识上说,它是运用坐标法研究曲线的几何性质的一次演练,同时它也是进一步研究椭圆几何性质的基础;从方法上说,它为后面研究双曲线、抛物线提供了基本模式和理论基础.所以说,无论从教材内容,还是从教学方法上都是起着承上启下的作用,它是学好本章内容的关键。因此搞好这一节的教学,具有非常重要的意义。通过对椭圆定义与方程的探究过程,使学生经历了观察、猜测、实验、推理、交流、反思等理性思维过程,培养了学生的思维方式,加强了运算能力,提高了他们提出问题、分析问题、解决问题的能力,为后续知识的学习奠定了基础。1.2学情分析

在学习本节内容以前,通过对必修3《直线与圆》以及选修2-1《2.1曲线与方程》的学习,学生已经学习了直线和圆的方程,初步了解了用坐标法求曲线的方程及其基本步骤,对曲线的方程的概念有一定的了解,这为进一步学习椭圆及其标准方程奠定了基础。同时,经过两年的高中学习,学生的计算能力、分析解决问题的能力、归纳概括能力、建模能力都有了一定的提高,使得进一步探究学习本节内容成为可能。但是,在本节课的学习过程中,椭圆定义的归纳概括、方程的推导化简对学生是一个考验,可能会有一部分学生探究学习受阻,教师要适时予以指导。

1.3 教学对策

有效学习的关键在于学生学习的主动性,而主动性与学习的动机、所学内容的价值性、趣味性和学习任务是否具体清楚等都有非常密切的关系,这些相关的积极因素越多,学习的主动性就会越强。这就需要教师在教学中,充分挖掘积极因素,促进学生主动地学习。

本节作为圆锥曲线的起始课,在激发学生学习主动性上应给予更多的关注。本课在设计上先动员学生查找圆锥曲线的资料,促使学生了解数学在人类文明发展中的作用。在《椭圆》的教学活动中,通过让学生展示圆锥曲线在实际中的应用的资料以及折纸活动,使学生感受数学的文化背景,增加用数学的意识。对椭圆定义与方程的探究过程,使学生经历了观察、猜测、实验、推理、交流、反思等理性思维过程,培养了学生的思维方式,加强了运算能力,提高了他们提出问题、分析问题、解决问题的能力。2 教学过程 2.1课前准备 发给学生的如下资料:

1、同学们,你们能告诉我什么是圆锥曲线吗?它们为什么叫圆锥曲线呢?圆锥曲线的发现确实是一个伟大的发现.德国天文学家开普勒(公元1571年~1630年)在长期的天文观察及对记录的数据分析中,发现了著名的“开普勒三定律”,其中第一条是:“行星是绕着太阳沿着椭圆轨道运行的,太阳处在这个椭圆的一个焦点上”,后来哈雷又利用圆锥曲线理论及计算方法准确地预测到哈雷慧星与地球最近点的时刻,1758年在哈雷逝世16年之后,哈雷慧星与地球如期而遇,这引起了全欧洲、乃至全世界的轰动,也进一步推动人们对圆锥曲线研究兴趣的提升。在我们的实际生活中处处都有圆锥曲线.你能举出一些例子吗?椭圆、双曲线、抛物线的有些性质,在生产或生活中被广泛应用。比如电影放映机的聚光灯泡的反射面是椭圆面,灯丝在一个焦点上,影片门在另一个焦点上;探照灯、聚光灯、太阳灶、雷达天线、卫星的天线、射电望远镜等都是利用抛物线的原理制成的。这些应用的原理和性质是什么呢?又比如圆形纸片被垂直光线照射随着纸片角度的变化得到的影子,它是什么图形呢?结合本章卷首语,请你查找圆锥曲线的相关资料。

2、同学们愿意做一个折纸的游戏吗?用一张纸剪一个圆,在圆内选一个异于圆心C的点F,在圆上取点M1,折纸使得M1与F重合,再打开纸,就得到一条折痕,画出折痕与相应半径的交点,再在圆上取点M2,折纸使得M2与F重合,再打开纸,又得到一条折痕及相应交点,„„如此进行下去,折痕越多越好,并且圆上各个位置都要有选取的点,然后,用平滑的曲线连接,你会发现,所得的这些交点构成的曲线是什么?

设计意图:①动员学生查找圆锥曲线的资料,充分挖掘积极因素,促进学生主动地学习。促使学生了解数学在人类文明发展中的作用,逐步形成正确的数学观。②折纸问题可以激发学生学习的兴趣以及求知欲。2.2问题引入

问题1:同学们,你们能告诉我什么是圆锥曲线吗?它们为什么叫圆锥曲线呢?

说明:教师需要课前先收集同学的资料,让学生展示什么是圆锥曲线,它们为什么叫圆锥曲线。以及介绍圆锥曲线的产生及应用。

设计意图:通过帮助学生了解数学在人类文明发展中的作用,逐步形成正确的数学观。使学生意识到在我们的实际生活中处处都有圆锥曲线,本章的学习是研究这些问题的基础。2.3学生活动

活动1:准备一根绳子,把它对折,一端固定在一个定点上,把粉笔插在另一端,拉紧绳子,得到的曲线是什么?(圆)。如果变为两个定点,把绳子拉紧,得到的曲线会是什么呢?在黑板上给出两个定点F1,F2,使它们之间的距离均大于绳长,请两个同学合作,一个同学将绳的两端固定在定点处,另一个同学拉紧细绳画图。通过作图,由学生得出椭圆的定义。

问题2:请学生观察曲线上的点满足的几何特征,并类比圆的定义给椭圆下定义。

说明:用“以上定义是否有不严谨之处?若有,请做出补充”等问题,引导学生逐步完善定义。

设计意图:从学生的思维特点和学习规律出发,展示知识形成的过程,使学生经历了观察、猜测、类比、交流、反思等理性思维过程,培养了学生的严谨思维习惯。

问题3:同学们,课前希望大家做一个折纸的游戏,用一张纸剪一个圆,在圆内选一个异于圆心C的点F,在圆上取点M1,折纸使得M1与F重合,再打开纸,就得到一条折痕,画出折痕与相应半径的交点,再在圆上取点M2,折纸使得M2与F重合,再打开纸,又得到一条折痕及相应交点,„„如此进行下去,折痕越多越好,并且圆上各个位置都要有选取的点,然后,用平滑的曲线连接,你会发现,所得的这些个交点构成的曲线是什么?

学生回答:他的边界是椭圆。

教师提问:为什么会是椭圆?(几何画板演示)适时用如下问题引导学生:

(1)我们将M1与F重合,得到的折痕是什么?(2)CP+PF= r,说明什么?

设计意图:加深学生对椭圆定义的理解,尤其是对a、c的几何意义的理解。2.4推导椭圆的标准方程

问题4:要研究椭圆更多的性质,就要建立坐标系,得到椭圆的方程,利用方程研究它们的性质,如何建立坐标系呢? 说明:由学生建立坐标系,求椭圆的方程,过程中提醒学生注意要适当建系,坐标系建立应使题中关键点的坐标、曲线的方程要尽量简单,让学生观察椭圆的图形,发现椭圆应该有两条互相垂直的对称轴,以这两条对称轴作为坐标系的两轴,不但可以使方程的推导过程变得简单,而且也可以使最终得出的方程形式整齐和简洁.

问题5 :我们设点并且得到方程,如何化简?

说明:由于学生对坐标法解决几何问题掌握还不够,对含有两个根式之和(差)等式化简的运算生疏,去根式的策略选择不当等是导致“标准方程的推导”成为学习难点的直接原因。

但同时,这也是培养学生的思维方式,加强了运算能力的时机,这里可以让学生充分展示化简方法,直接平方,移项平方,根式有理化等等,从中选择一个大家都认可的方法课上完成,其他留作课下完成。在化简过程中,教师要以“是否保证变形等价,如何使方程更加完美简捷”等等问题,不断激发学生做更深入的思考。2.5课堂练习

说明:课堂例题应该以课本例题为主,目的在于巩固椭圆的定义,使学生熟练掌握椭圆的标准方程,会根据所给的条件确定椭圆的标准方程。2.6课后作业

(1)课本练习,进一步巩固学生对椭圆定义及其标准方程的认识.(2)完成其他方法的椭圆标准方程的推导.(3)对于折纸问题,如果将“在圆内选一个异于圆心C的点F”改为“在圆外选一个异于圆心C的点F”得到的曲线会是什么?曲线上的点有什么几何特征呢? 3教学反思

数学概念是构建数学理论大厦的基石,是导出数学定理和数学法则的逻辑基础,是提高解题能力的前提,是数学学科的灵魂和精髓。3.1在体验数学概念产生的过程中认识概念

数学概念的引入,应从实际出发,创设情境,提出问题。通过与概念有明显联系、直观性的例子,使学生在对具体问题的体验中感知概念,形成感性认识.本节课首先把一根绳子对折,一端固定在一个定点上,把粉笔插在另一端,拉紧绳子,得到了学生熟悉的曲线--圆,然后提出“如果变为两个定点,把绳子拉紧,得到的曲线会是什么呢?”这个问题,通过让学生观察曲线上的点满足的几何特征,类比圆的定义给椭圆下定义;之后,再用“以上定义是否有不严谨之处?若有,请做出补充”等问题,引导学生逐步完善定义。挖掘概念的内涵与外延,有利于学生对概念的理解。3.2在运用数学概念解决问题的过程中巩固概念

数学概念形成之后,通过具体例子,进一步认识概念,引导学生利用概念解决数学问题和发现概念在解决问题中的作用,是数学概念教学的一个重要环节,此环节操作的成功与否,将直接影响学生对数学概念的巩固,以及解题能力的形成。本节课设计的折纸问题是课前留给学生的问题,它的起点低但延展性好,它的特点是具有“活动性”,学生必须实际操作,在折纸过程中观察、思考,使学生尽快地投入到新概念的探索中去,从而激发了学生的好奇心以及探索和创造的欲望,使学生在参与的过程中产生内心的体验和创造。各种水平的学生都可以得到自己的发现。这个问题今后还可以深入研究,(从轨迹问题到包络线问题)安排在这里的作用限于加深学生对椭圆的定义以及a、c的几何意义的理解。此外,这个问题结合几何画板,得到圆锥曲线形成的动态过程,使学生得到数学发现的乐趣和美的愉悦。

此外,椭圆的标准方程的推导,可使学生进一步掌握求曲线方程的一般方法,渗透数形结合和等价转化的思想方法,提高运用坐标法解决几何问题的能力.也是这节课的难点,此处的处理方式以学生为活动主体,给学生较多的思考问题的时间和空间,教师的作用在于帮助学生不断的发现问题(比如:如何化简无理式,是否保证变形等价,如何使方程更加完美简捷等等)从而使学生通过主动的思考形成自己独立的观点,而不是成为一个被动接受的容器。

第四篇:《椭圆及其标准方程》教学设计

《椭圆及其标准方程》教学设计

山西省太原师范学院附属中学 薛翠萍

一、教学内容解析

椭圆的定义是一种发生性定义,教学内容属概念性知识,是通过描述椭圆形成过程进行定义的作为椭圆本质属性的揭示和椭圆方程建立的基石,理应作为本堂课的教学重点 同时,椭圆的标准方程作为今后研究椭圆性质的根本依据,自然成为本节课的另一教学重点

学生对“曲线与方程”的内在联系(数形结合思想的具体表现)仅在“圆的方程”一节中有过一次感性认识

但由于学生比较了解圆的性质,从“曲线与方程”的内在联系角度来看,学生并未真正有所感受

所以,椭圆定义和椭圆标准方程的联系成为了本堂课的教学难点

圆锥曲线是平面解析几何研究的主要对象

圆锥曲线的有关知识不仅在生产、日常生活和科学技术中有着广泛的应用,而且是今后进一步数学的基础 教科书以椭圆为学习圆锥曲线的开始和重点,并以之来介绍求圆锥曲线方程和利用方程讨论几何性质的一般方法,可见本节内容所处的重要地位

通过本节学习,学生一方面认识到一般椭圆与圆的区别与联系,另一方面也为后面利用方程研究椭圆的几何性质以及为学生类比椭圆的研究过程和方法,学习双曲线、抛物线奠定了基础

学习过程启发学生能够发现问题和提出问题,善于思考,学会分析问题和创造地解决问题;培养学生抽象概括能力和逻辑思维能力

二、教学目标设置:

1.知识与技能目标

(1)学生能掌握椭圆的定义 明确焦点、焦距的概念.

(2)学生能推导并掌握椭圆的标准方程.

(3)学生在学习过程中进一步感受曲线方程的概念,体会建立曲线方程的基本方法,运用数形结合的数学思想方法解决问题.

2.过程与方法目标:

(1)学生通过经历椭圆形成的情境感知椭圆的定义并亲自参与归纳.培养学生发现规律、认识规律的能力.

(2)学生类比圆的方程的推导过程尝试推导椭圆标准方程,培养学生利用已知方法解决实际问题的能力.

(3)在椭圆定义的获得和其标准方程的推导过程中进一步渗透数形结合等价转化等数学思想方法.

3.情感态度与价值观目标:

(1)通过椭圆定义的获得让学生感知数学知识与实际生活的密切联系培养学生探索数学知识的兴趣并感受数学美的熏陶.

(2)通过标准方程的推导培养学生观察,运算能力和求简意识并能懂得欣赏数学的“简洁美”.

(3)通过师生、生生的合作学习,增强学生团队协作能力的培养,增强主动与他人合作交流的意识.

三、学生学情分析

1.能力分析

①学生已初步掌握用坐标法研究直线和圆的方程,②对含有两个根式方程的化简能力薄弱.

2.认知分析

①学生已初步熟悉求曲线方程的基本步骤,②学生已经掌握直线和圆的方程,对曲线的方程的概念有一定的了解,③学生已经初步掌握研究直线和圆的基本方法.

3.情感分析

学生具有积极的学习态度,强烈的探究欲望,能主动参与研究.

四、教学策略分析

教学中通过创设情境,充分调动学生已有的学习经验,让学生经历 “创设情境——总结概括——启发引导——探究完善——实际应用” 的过程,发现新的知识,又通过实际操作,使刚产生的数学知识得到完善,提高了学生动手动脑的能力和增强了研究探索的综合素质.

课堂教学中创设问题的情境,激发学生主动的发现问题解决问题,充分调动学生学习的主动性、积极性;有效地渗透数学思想方法,发展学生思维品质,这是本节课的教学原则.根据这样的原则及所要完成的教学目标,我采用如下的教学方法和手段:

1.引导发现法:用课件演示动点的轨迹,启发学生归纳、概括椭圆定义.

2.探索讨论法:由学生通过联想、归纳把原有的求轨迹方法迁移到新情况中,有利于学生对知识进行主动建构;有利于突出重点,突破难点,发挥其创造性.

这两种方法是适应新课程体系的一种全新教学模式,它能更好地体现学生的主体性,实现师生、生生交流,体现课堂的开放性与公平性.

在教学中适当利用多媒体课件辅助教学,增强动感及直观感,增大教学容量,提高教学质量.

五、教学过程:

(一)复习引入

1.说一说你对生活中椭圆的认识.伴随图片展示使同学们感到椭圆就在我们身边.

意图:(1)、从学生所关心的实际问题引入,使学生了解数学来源于实际.

(2)、使学生更直观、形象地了解后面要学的内容;

2. 手工操作演示椭圆的形成:取一条定长的细绳,把它的两端固定在画图板上同一定点,套上笔拉紧绳子,移动笔尖画出的轨迹是圆.再将这一条定长的细绳的两端固定在画图板上的两定点,当绳长大于两点间的距离时,用铅笔把绳子拉紧,使笔尖在图板上慢慢移动,就可以画出一个椭圆随后动画呈现.

意图:

(1)通过画图给学生提供一个动手操作、合作学习的机会;调动学生学习的积极性

(2)多媒体演示向学生说明椭圆的具体画法,更直观形象.

(二)讲解新课 由学生画图及教师演示椭圆的形成过程,引导学生归纳定义.椭圆定义:

平面内与两个定点的距离之和等于常数2a的点的轨迹叫作椭圆,这两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距

练习1:已知两个定点坐标分别是(-4,0)、(4,0),动点P到两定点的距离

之和等于8,则P点的轨迹是

练习2:已知两个定点坐标分别是(-4,0)、(4,0),动点P到两定点的距离

之和等于6,则P点的轨迹是

通过两个练习思考:椭圆定义需要注意什么(2a大于

意图:让学生通过练习反思画图,归纳定义,理解定义,突破了重点.

(1)、当2a>|F1F2|时,是椭圆;(2)、当2a=|F1F2|时,是线段;(3)、当2a<|F1F2|轨迹不存在.)

2.根据定义推导椭圆标准方程:

要求

(1)学生在画板上建立适当的坐标系,(2)根据定义推导椭圆的标准方程.

同时引导学生类比圆回顾解析几何研究问题的特点及求轨迹方程步骤

意图:让学生自己去建系推导椭圆的标准方程,给学生较多的思考问题的时间和空间,变“被动”为“主动”,变“灌输简洁美”为“发现简洁美”.教师结合猜想加以引导.化简无理方程为难点通过发现问题解决问题突破难点.

正确推导过程如下:

解:取过焦点

则,又设M与

距离之和等于

()(常数)为椭圆上的任意一点,椭圆的焦距是

(). 的直线为轴,线段的垂直平分线为

轴,化简,得

由定义义)

令 代入,得,,(学生通过自己画图建系的过程找到的几何意,两边同除得

此即为椭圆的一个标准方程

它所表示的椭圆的焦点在轴上,焦点是程

学生思考:若坐标系的选取不同,可得到椭圆的不同的方程

如果椭圆的焦点在轴上(选取方式不同,调换

轴)焦点则变成,中心在坐标原点的椭圆方,只要将方程

中的调换,即可得,也是椭圆的标准方程

请学生观察归纳两个方程的特征,从而区别焦点在不同坐标轴上的椭圆标方程;过程中要渗透数学对称美教学.

理解:所谓椭圆标准方程,一定指的是焦点在坐标轴上,且两焦点的中点为坐标原点;在个轴上即看 与这两个标准方程中,都有分母的大小 的要求,因而焦点在哪3.精心设计课堂练习使学生在实际应用中进一步巩固知识,运用知识突破重难点:

(1)判断下列方程是否表上椭圆,若是,求出 的值 ① ;②;③;④

意图:学生感悟椭圆标准方程的结构特点.

(2)椭圆上一点P到一个焦点的距离为5,则P到另一个焦点的距离为)

A.5

B.6 C.4

D.10

意图:学生理解椭圆定义与标准方程关系.

(3)椭圆的焦点坐标是()

A.(±5,0)

B.(0,±5)C.(0,±12)

意图:学生感悟椭圆标准方程中焦点位置以及a,b,c的关系.

(4)化简方程:

意图:培养学生运用知识解决问题的能力.

.(±12,0)(D

第五篇:椭圆及其标准方程教学设计

椭圆及其标准方程教学设计

作者:杨宇廷

单位:抚顺市清原县第二高级中学 学科:高中数学

地址:抚顺市清原县第二高级中学 邮政编码:113300 手机号码:*** 电子邮箱:qyegsxz@163.com

椭圆及其标准方程

前言:

新课程改革实施以来,教学模式发生了重大的改变,由以往的“一言堂”形式向多种“开放式”教学模式进行转变,在教育观念的不断转变下,对于我们的一线老师也提出了更高的要求,新形势下,要想成为一名合格的老师,就需要不断的加强自己的业务能力,使自己能够变成一名受学生尊重和喜爱的老师,从而更好的提高学生的教学成绩。

基于以上原因,本人尝试制定出椭圆及其标准方程第一课时的教学设计如下:

一,教材分析

本节课是《全日制普通高中课程标准实验教科书》(选修1-1)(人民教育出版社 课程教材研究所 中学数学教材实验研究组编著)第二章《圆锥曲线与方程》第一节《椭圆》的第一课时。在学习本课之前,我们已经学习了直接和圆的相关内容,使学生对于曲线和方程的概念有了一定的了解,同时,对于利用坐标法来研究几何也有了一定的认识,对于数形结合思想也有了一定的了解,从根本上来讲,本节课也属于曲线方程的一个延伸,也是利用坐标法来研究几何图形的进一步加强,本节课的掌握情况的好坏,将直接影响后面双曲线和抛物线的学习。对于学好圆锥曲线也有重要的意义。

椭圆这一节课体现出来的一些学习方法对于后面双曲线和抛物线的学习有一个重要的引导作用,但是本节课也难度较大,对于缺乏数形结合能力,不爱作图的学生来廛,学习起来是非常困难的,尤其是我所要教授的是一群普通高中的学生,更是难上加难的。

二,学习对象分析

1.学习对象

本节课重点讲解内容是椭圆,经过上一节课的学习,学生有了一些求点的轨迹问题的知识基础和能力,但是由于我们的学生作为普通高中的一名学生,在高中招走700名学生后,才进入到我们学校的学生来讲,他们的起点低,学习习惯不好,导致了我们的教学难度的加大,所以,从研究圆,跨越到椭圆,学生会存在一定学习上的障碍,教学过程中更要注意这方面的教学。对于学生的抽象思维,分析能力都是一个较大的考验。

2.知识基础

上课前,要对学生对于直线和圆的方程,以及曲线和方程部分知识点进行适当的回顾,将学生拉到利用坐标法来解决实际问题的过程中来。对于当初圆的标准方程的得出过程让学生重新整理一下思路。

3.能力基础

对于学生培养起利用坐标法研究几何图形,充分锻炼学生的抽象能力和数形结合思想,使学生能够学以致用,将来更好地应用到学习中去。对于我的学生来讲,这些都是比较难做到的,在教学过程中,更应该有足够的耐心。

三,学习目标

根据新课程标准的要求,以及我们学校学生的实际学习情况,将本节课的教学目标确定为知识与技能目标、过程与方法目标、情感态度与价值观目标,具体如下:

1.知识与能力目标

(1)掌握椭圆的定义(理解椭圆、椭圆的焦点和椭圆的焦距的定义)及其标准方程,教会学生如何在整理过程中准确,快速得到我们所要整理代数式的答案。

(2)通过对于椭圆标准方程的整理过程,进一步加强学生的计算能力,增强学生利用坐标系分析解决问题的能力,体会数形结合思想的应用。

(3)能够根据所给条件,准确快速写出椭圆的标准方程(包括焦点坐标、焦距)

2.过程与方法目标

(1)利用布置给学生需要带的强子,两人合作作出椭圆,使学生带有愉悦的心情,完成椭圆的绘制过程,提高了学生的动手能力和合作学习能力。

(2)通过两名同学的绘制过程,让学生体会到点的运动规律,培养学生将抽象转变为具体,归纳知识等能力的提高。让学生通过椭圆的绘制,给出椭圆的定义,完成教学的第一个难点内容。并通过些种方法,激发学生的学习兴趣,帮助他们重新树立信心,完成本节课的教学。

四、学习重点、难点

根据以上的教学分析,将本节课的重点、难点确定为:

1.学习重点

重点:掌握椭圆的定义及其标准方程。

通过对于教材的分析及本节课的内容,椭圆的的定义是本节课的重点,也是将来做题的时候经常用到的。必须在学生的做图过程中,让学生体会到一个个动点到两个定点距离和等长数(绳长)这一过程,这样才能够加深学生对于椭圆定义的理解,更好的将它们应用的实际问题的解决过程中去。通过对于“定长”的分析,加深学生对于椭圆定义的理解

突破重点的关键:运用多媒体手段,制作椭圆形成过程的动太图,通过图形的形成过程,引导学生给出椭圆的定义。使学生对于椭圆的认识从感觉性认识上升到理性认识。

2.学习难点

难点:椭圆标准方程形式及推导过程

通过对于教材的分析及本节课的实际内容需要,椭圆的标准议程的推导过程(如何建系)是本小节的难点所在,在推导过程中应该注意:(1)如何建系,好的坐标系的建立,可以帮助我们先解决至少一半的难点。

(2)焦点位置的选择,(两种状态)

突破难点的关键:掌握建立坐标系的方法及化简根式的方法(快速而准确)恰当的展示建立坐标系的方法,合理分配根式的化简步骤,引导学生一步步给出正确的整理过程,得出正确的椭圆的标准方程。在此过程中,老师必须要有足够的耐心,给学生充足的时间,适时点拨,也可以让学生进行分组讨论,共同研究出解决问题的方法,这些都有利于我们化解难点、突破难点。

五. 学习目标

(1)师生共同用绳做出椭圆,使学生相信原来他们也可以做出如此优美的曲线,再通过课件展示椭圆的形成过程,使学生认识到科技的重要性,进行适当的科学教育。

(2)进一步加强师生互动,加深学生与老师的感情培养,更好的利用教学相长这一特点。

六.学习思路设计

能过对新课标的学习,在现行教学手段下,结合现代教育技能对于本节课进行教学设计,对于学习目标的确定,具体如下:

1.利用先进的科学技术手段,对学生灌输正能量,转化为动力,更好地投入到学习中去。

2.课件展示椭圆的形成过程,对于学生对于椭圆的理解是有很大的帮助的,也能够更好地帮助学生理解椭圆。

3.教学方法的设计(1)教法

新课标要求以“学生发展为核心”,老师是学生的组织都、促进者、合作者,在教学过程中要注意以学生为主体,让学生真正地动起来,体现出学生的主体作用,让学生动手作图,使学生能够真正地参与到教学中来,激发学生的学习兴趣。学生现阶段对于一切新鲜事物都有好奇心,这样做,使他们能够以极大的热情参与到我们的教学过程中来,才能更好地提高他们的学习成绩,更好地完成我们的教学过程。

(2)学法

在学法方面,增强学生的自主性、互动性、探究性的学习,让学生以一种自主探索、合作交流的方式参与到学习过程中来,会有事半功倍的效果的。只有这样做,才能使他们对于所学的内容有了更深层次的认识,只有学生积极主动的参与到了学习过程中来,我们老师才能更好地完成我们的教学过程。

(3)本节课时:

一、创设情境,引入课题。

二、实验探究,研究概念。

三、研究探讨,推导程。

四、归纳概括,五、应用举例,变式巩固。

六、课堂小节,布置作业。

七.课堂准备 本课时,需要学生自己动手绘制椭圆,安排学生提前准备好一要细绳(不带弹力)。

八,课时安排(1课时)

椭圆及其标准方程

九、学习设计

(一),创设情境,引入课题

1,创设情境

课件展示行星围绕太阳旋转的gif图,引导学生观察行运行轨迹,通过学生的讲述,得到我们本节课的课题:椭圆及其标准方程。

设计意图:根本图片上绚丽的色彩,及星空的美丽,引发学生的求知遇。也许有一天,他们也会飞向太空,通过这样的方式,使学生明确本节课的学习目标。

2,引入课题

课件展示利用平面去截取对顶圆锥所能到的截面的形状,给出课题,适当回顾前面所学过的圆的知识及圆的标准方程。

设计意图:再次激发出学生的学习兴趣及求知欲。学生活动:对老师提出的问题,进行思考回答。

(二)实验探究,形成概念

1.实验探究

动手实验:以学生为中心,安排两名学生黑板演示椭圆的形成过程,(老师引导学生完成),展示完毕后,让下面的同学,同桌之间相互合作,完成椭圆的制作过程。并在学生实验过程中提出如下问题:(1)椭圆是一些什么样的点所围成的图形?

(2)它们满足什么规律(什么是不变的)?

2、形成概念

老师课件展示椭圆的形成过程,(通过不断的变化引导学生喜欢上椭圆),引导学生给出椭圆的定义:平面内到两个定点的距离的等于常数的点的轨迹叫椭圆。教师给出焦点,焦距的概念。再具体给学生分析定长与两点间距离的关系,加深学生对于椭圆的定义的理解与掌握。

设计意图:通过以上形式,引导学生进入本节课的学习情境,完成本节课的教学。

(三)研讨探究、推导方程

1.研讨探究

老师活动:通过刚才的课件展示,引导学生对于前面所学知识的回顾,并使学生尝试推导椭圆的标准方程:

(1)如何建立平面直角坐标系?

(2)不同的建系方法,哪种形式看起来更为方便?

设计意图:通过回顾前面所学的知识,使学生能更快的理解并掌握椭圆的方程的推导过程。2.推导方程 课件展示椭圆并提问。

师:如何将椭圆放置到平面直角坐标系中? 生:经过讨论给出应该以焦点所有直线做为X轴,以线段中点为坐标原点的建系方法。

师:对于学生的回答给予肯定,夸奖一下,使学生能够乐呵呵地投入到接下来让人头疼的化简过程中来。

课件展示椭圆方程整理过程中的部分重点步骤,起到一个引导作用,并及时纠正学生所出现的错误,使学生能够顺利准备的完成椭圆标准方程的整理过程。

(四)归纳概括

师:通过前面的学习,得到了椭圆的标准方程,那么我们能否转变一下焦点所在的位置,换一种方法,得到焦点在Y轴上的椭圆的标准方程。让学生分组讨论,整理出另一种椭圆的标准方程。课件展示椭圆的两种标准方程。

(五)应用举例,变式巩固

课件展示例题:

例1.根据下列条件,求椭圆的标准方程(1)两个焦点坐标分另是(-3,0),(3,0)。椭圆上一点P与两焦点的距离和等于8;

(2)两个焦点的坐标分别是(0,-4),(0,4),并且椭圆经过点(3,5)。

引导学生独立完成这两道例题,老师适当给予充分和肯定。幻灯展示解题的过程。

变式1.根据下列条件求椭圆的标准方程(1)a=5,b=4,焦点在x轴上;(2)焦点坐标为(-5.0),(5,0),椭圆上一点到两焦点的距离之和是26;(3)a=5,c=17,焦点在y轴上。

设计意图:通过以上例题的讲解与传授,变式训练的强化训练,加深学生对于椭圆的标准方程的理解与掌握。更好的能够理解椭圆,并应该相关知识解决实际应用问题。

例2.示下列方程表示的椭圆的焦点坐标;

x2y21;(1)(2)8x23y224。3624设计意图:加深同学对于椭圆标准方程的理解与掌握,通过具体实例解决实际的应用问题,达到事半功倍的效果。

变式2:求下列方程表示的椭圆的焦点坐标;

x2y24x29y222221,(2)2x4y1,(3)25x16y144,(4)1(1)28122525设计意图:进一步加强椭圆标准方程的理解与掌握。

(六)课堂小结,布置作业 1,课堂小结

(1)椭圆是一种优美的曲线,通过本节学习认识到几何图形的美感。(2)掌握椭圆的定义及其标准方程。熟练掌握曲线方程的整理过程。设计意图:进一步加深学生对于椭圆及其相关的内容的理解与掌握。2,布置作业

教材P43习题2-1A第1题

设计意图:加强学生对于椭圆的理解与掌握

下载数学《椭圆及其标准方程》教学设计(共五篇)word格式文档
下载数学《椭圆及其标准方程》教学设计(共五篇).doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    椭圆的标准方程教学设计

    篇一:椭圆的标准方程教学设计 《椭圆的标准方程》教学设计——桑宏德《椭圆的标准方程》教学设计 篇二:椭圆及其标准方程教学设计椭圆及其标准方程教学设计 青铜峡市高级......

    《2.2.1椭圆及其标准方程》教学设计

    《2.2.1椭圆及其标准方程》说课稿 巨野县第一中学 张福想 各位评委大家上午好!我说课的题目是《椭圆及其标准方程》,我准备从四个方面来介绍我的教学设计思路及理念: (一)、说......

    椭圆及其标准方程教学设计[5篇范例]

    424042955.doc 椭圆及其标准方程教学设计 桐城二中倪向东 【设计理念】: 本节借助多媒体辅助手段,创设问题的情境,充分体现学生的主体地位和教师的主导地位,让学生在思维参与中......

    椭圆及其标准方程教学反思

    椭圆及其标准方程教学反思 椭圆及其标准方程这节分为两课时,第一课时主要讲解椭圆定义及标准方程的推导;第二课时主要介绍椭圆定义及其标准方程的应用。 在第一课时中我从书......

    椭圆的标准方程教学案例

    《椭圆的标准方程》教学案例 一、案例概述: 《椭圆的标准方程》选自数学选修2-1。选这个内容的原因有二:(一)椭圆是一个非常重要的几何模型,具有很多优美的几何性质,这些重要的......

    椭圆及其标准方程教案

    椭圆及其标准方程教案教学目标: (一)知识目标:掌握椭圆的定义及其标准方程,能正确推导椭圆的标准方程,会由标准方程求出椭圆的交点和焦距; (二)能力目标:通过对椭圆概念的引入和......

    椭圆及其标准方程教案

    椭圆及其标准方程教案 湖北郧阳中学 梁学文 教学目标: 使学生理解椭圆的定义,掌握椭圆的标准方程及标准方程的推导过程 培养学生运用坐标解决集合问题的能力 培养学生发现规......

    椭圆及其标准方程(第1课时)教学设计

    椭圆及其标准方程(第1时)教学设计 一、教材内容分析 本节是整个解析几何部分的重要基础知识。这一节是在《直线和圆的方程》的基础上,将研究曲线的方法拓展到椭圆,又是继续学习......