篇一:求一个小数的近似数教学设计
教学内容
教科书第73页的例题1。
教学目标
1.使学生能根据要求正确地运用“四舍五入法”求一个小数的近似数.
2.能正确的按需要用“四舍五入法”保留一定的小数数位.
3·使学生理解保留小数数位越多,精确程度越高。
教学重点
篇二:求一个小数的近似数教学设计
四舍五入法
保留两位小数0.984 ≈0.98 142800千米=14.28万千米
保留一位小数0.98 4≈1.0 778330000千米=7.7833亿千米
≈7.8亿千米
保留整数0.9 84≈1
注意:在表示近似数时,小数末尾的0不能去掉
篇三:求一个小数的近似数教学设计
教学内容
五年制小学数学课本第七册第54页,信息窗5。
教学目标
1.结合生活实际,感受近似数的意义。
2.学会用“四舍五,人”法求小数的近似数。
3、能根据需要保留一定的小数位数。
教学重点、难点
教学重点:掌握用“四舍五入”法求小数的近似数的方法:
教学难点:小数近似数末尾的0不能去掉。
教学过程
(一)创设情境,引人课题。
1、谈话:快乐的七天长假,你们都忙什么?
然后引入老师去“易初莲花”购物需付款81.69元,根据温馨提示:本超市对于分币已采用“四舍五入”法,那么,老师实际会付多少元呢?
学生回答后引出课题,我们今天就要来学习求小数的近似数。
2、结合生活实际,感受近似数的意义。
小数的近似数在我们的生活中是无处不在的,比如课桌长1.10米,高0.7米,数学课本封面的面积是5.8平方分米,中国的人口13.1亿等等。小数的近似数与我们的生活息息相关,所以,我们必须要掌握求近似数的方法。
今天我们就继续用“四舍五入”法研究怎样求一个小数的近似数。
[意图:
1、创设生活情境,重组教材。由于学生对教材信息窗出示的情境图——绿毛龟蛋的长径、宽径,以及游标卡尺都比较陌生,不容易引起学生的共鸣,因此,我选择学生身边熟知的、喜闻乐见的购物情境,激起了他们的学习兴趣,同时实现了从“教教材”到“用教材教”的转变。2、结合生活实际,感受近似数的意义,感受生活中的数学。]
(二)探究方法
[1、求小数的近似数的方法。
①师生互动
结合81.69元≈81.7元,81.69元≈82元。在师生交流中使学生明确由于对精确度要求不同,所以就有不同的近似数。
根据刚才的研究,我们得知求一个小数的近似数时,依然运用了“四舍五入”法,关键是要看精确到哪一位。
板书:81.69元≈82元 保留整数,表示精确到个位 十分位
81.69元≈81.7元 保留一位小数,表示精确到十分位 百分位
②举例——归纳
师:你们愿意举几个小数,求它的近似数吗?
通过板书学生的举例,让学生在探究中,教师进一步完善板书。
1、1111≈1、11 保留两位小数,表示精确到百分位……百分位
③学生讨论:求小数的近似数有什么规律?
小结:保留几位小数,就要对它的后一位进行“四舍五入”
[意图:
1、有“扶”到“放”让学生学会探索知识。
2、注重学习方法的指导:举例——归纳,让学生体会到不完全归纳方法的合理性。]
④完成56页的自主练习第一题。
[2、小数近似数末尾的0不能去掉
通过出示转笔刀并测量它的宽为3.02厘米,提出问题:约是多少厘米?(保留一位小数)
质疑:
①近似数3.0的“0”可以去掉吗?为什么?
不能去掉,因为这个“0”表示看这个近似数的精确度。
②想一想:近似数3.0和近似数3分别与3.02比较,哪个数精确些?
[意图:让学生在解决 □.□≈3 与 □.□□≈3.0中,通过对比寻根究底,加深理解。]
③总结:小数近似数末尾的0不能去掉。
④完成56页的自主练习第二题。
订正时,关注学习有困难学生出错的原因并及时指导。
(三)这节课你有什么收获?
交流后齐读课本紫色块内容。[紫色块内容是学生必须掌握的知识]
篇四:求一个小数的近似数教学设计
教学难点
使学生能够理解保留小数数位越多,精确程度越高.
教学步骤
一、铺垫孕伏.
1.把下面各数省略万后面的尾数,求出它们的近似数.
986534 58741 31200
50047 398010 14870
2.下面的□里可以填上哪些数字?
32□645≈32万 47□05≈47万
学生填完后,说一说是怎么想的.
二、探究新知.
1.导入新课.
我们学过求一个整数的近似数.在实际应用小数时,往往也没有必要说出它的准确数,只要它的近似数就可以了.如:在商店买菜时,电子秤上显示总价是7.53元,而营业员只收我们7元五角钱。平常不需要说得那么精确,只要知道它的'近似数,那么如何求一个小数的近似数呢?今天我们就来学习这一内容.(板书课题:求一个小数的近似数)
2.教学例1:求一个小数的近似数.
(1)教师谈话:出示豆豆测量身高的情境图。量得豆豆的身高是0.984米,在实际应用小数是,往往没有必要说出他的准确数,只要它的近似数就可以了。
教师:豆豆的身高约是0.98米或说约是1米。那是怎样得出豆豆的身高的近似数呢?
(2)学生小组讨论任何求一个数的近似数。思考:整数是任何求近似数的?小数能不能用同样的方法来求近似数?
小结:求一个小数的近似数,同求一个整数的近似数相似,都可以根据“四舍五入”保留一定的小数数位。
(3)教师讲解:0.984保留两位小数,要看哪一位?怎样取近似数?
使学生明确:0.984保留两位小数,就要看千分位,千分位不满5,舍去,求得近似值数0.98.
学生讨论:0.984保留一位小数和整数,要看哪一位?怎样取近似数?
篇五:求一个小数的近似数数学教学设计
教学目标
1.使学生能根据要求正确地运用“四舍五入法”求一个小数的近似数.
2.使学生学会把较大的整数改写成以“万”或“亿”作单位的小数.
教学重点
求一个小数的近似数及把较大的数改写成以“万”或“亿”作单位的小数.
教学难点
使学生能够区别求近似数与改写求准确数的方法.
教学步骤
一、铺垫孕伏.
1.把下面各数省略万后面的尾数,求出它们的近似数.(卡片出示)
986534
58741
31200
50047
398010
14870
2.下面的□里可以填上哪些数字?
32□645≈32万
47□05≈47万
学生填完后,说一说是怎么想的.
二、探究新知.
1.导入新课.
我们学过求一个整数的近似数.在实际应用小数时,往往也没有必要说出它的准确数,只要它的近似数就可以了.如:量得大新的身高是1.625米,平常不需要说得那么精确,只说大约1.6米或1.63米,那么如何求一个小数的近似数呢?今天我们就来学习这一内容.(板书课题:求一个小数的近似数)
2.教学例1:求一个小数的近似数.
(1)教师谈话:求一个小数的近似数,同求整数的近似数相似,根据需要用“四舍五入法”保留一定的小数位数.
(2)出示例1:2.953保留两位小数、一位小数和整数,它的近似数各是多少?
教师提问:保留两位小数,要看哪一位?怎样取近似数?
使学生明确:2.953保留两位小数,就要看千分位,千分位不满5,舍去,求得近似值数2.95.
学生讨论:2.953保留一位小数和整数,要看哪一位?怎样取近似数?
使学生明确:2.953保留一位小数,就要看百分位,百分位满5,向十分位进1,求得近似数3.0.2.953保留整数就要看十分位,十分位上满5,向前一位进一得到3.
分组讨论:保留一位小数3.0十分位上的“0”能不能去掉?为什么?
教师总结说明:保留整数,表示精确到个位;保留一位小数,表示精确到十分位;保留两位小数,表示精确到百分位……
(3)求下面小数的近似数.
3.781(保留一位小数)
0.0726(精确到百分位)
(4)讨论分析:3.0和3数值相等,它们表示精确的程度怎样?
①教师出示线路图:(投影出示)
②引导学生小组讨论交流:
使学生明确保留一位小数是3.0,原来的长度在2.95与3.05之间.保留整数为3,原来的准确长度在2.5与3.5之间,所以3.0比3精确的程度高一些.也就是小数保留的位数越多,精确的程度越高.
(5)小结.
教师提出问题:求一个小数的近似数应注意什么?
引导学生讨论知道:求一个小数的近似数要注意两点:
①要根据题目的要求取近似值,如果保留些数,就看十分位是几;要保留一位小数,就看百分位是几……然后按“四舍五入法”决定是合还是人.
②取近似值时,在保留的小数位里,小数末一位或几位是0的,0应当保留,不能丢掉.
(6)分组合作学习,填表.
在下表的空格里按照要求填出近似数.
保留整数
保留一位小数
保留两位小数
保留三位小数
4.3808
3.教学例2:1999年我国生产家用电风扇61581400台.把这个数改写成用“万台”作单位的数.
(1)教师提问:把61581400台改写成用“万台”作单位的数,应该用多少来除?缩小多少倍?小数点应该向哪个方向移动几位?
(根据学生回答教师板书:61581400台=6158.14万台)
教师总结说明:把较大数改写成用“万”作单位的数,只要在万位的右边,点上小数点,在数的后面加写“万”宇.
(2)做一做.
把248000改写成用“万”作单位的数.
4.教学例3:1999年我国生产水泥573000000吨.把这个数改写成用“亿吨”作单位的数.再保留一位小数.
(1)学生讨论:把一个数改写成用“亿吨”作单位的数,应该怎么办?
学生独立改写成573000000吨=5.73亿吨≈5.7亿吨,并说出改写的方法.
教师提问:如果要求保留一位小数怎么办?
启发学生自己得出≈1.4亿吨,并说出保留一位小数的方法.
教师总结说明:把较大数改写成用“亿”作单位的数,只要在亿位的右边,点上小数点,在数的后面加写“亿”字.如果小数位数比较多,可以根据需要保留前几位小数.
(2)“做一做”第2题.
把750000000改写成用“亿”作单位的数.
“做一做”第3题.
把34562800000改写成用“亿”作单位的数后,保留两位小数.
5.区别对比.
例2、例3的学习中,有的数需要把它改写成以“万”或“亿”作单位的数,有的则还需要保留位数求近似数,它们有什么区别?应该注意什么?(引导学生讨论)
三、巩固发展.
1.填空.
求一个小数的近似数,要根据需要用()法保留小数数位.保留整数,表示精确到()位;保留一位小数表示精确到()位;保留两位小数表示精确到()位……
2.填空.
近似数的结果一般地说6.0要比6精确.因为6.0表示精确到了()位,6表示精确到了()位,所以6.0后面的“0”不能丢掉.
3.下面各小数在哪两个相邻的自然数之间?它们各近似于哪个自然数?
5.2812.714.867.05
4.按照四舍五入法写出表中各小数的近似数.
保留整数
保留一位小数
保留两位小数
保留三位小数
9.9564
0.9053
1.4639
5.(1)1999年北京市从事工程技术的人员共120100人,改写成用“万人”作单位的数.
(2)1999年我国出版图书7320000000册(张),改写成用“亿册(张)”作单位的数.
四、全课小结.
今天我们学习了怎样求一个小数的近似数,求小数的近似数的方法与求整数的近似数相似.要用“四合五入”法保留小数位数.要注意保留小数位数越多,精确程度越高.
五、布置作业.
1.把下面各小数四舍五入.
(1)精确到十分位:3.470.2394.08
(2)精确到百分位:5.3446.2680.402
2.把下面各数改写成用“亿”作单位的数.
(1)保留一位小数:***0000
(2)保留两位小数:***0000
板书设计
求一个小数的近似数
例12.95保留二位小数,一位小数和整数,它的近似数各是多少?
2.953≈2.95
2.953≈3.0
2.953≈3
求一个小数的近似数要注意:
①要根据题目的要求取近似值.
②取近似值时,在保留的小数位里,小数末一位或几位是0的,应当保留,不能去掉.
例261581400台=6158.14万台
在万位右边点上小数点,在数的后面加写万字.
例3573000000吨=5.73亿吨.5.7亿吨
在亿位右边点上小数点,在数的后面加写亿字.
篇六:《求一个小数的近似数》优秀教学设计
《求一个小数的近似数》优秀教学设计
教学内容:
教材第126~127页例1、练一练,练习二十六第1~5题。
教学目标:
1.使学生能根据要求正确地运用“四舍五入法”求一个小数的近似数。
2.使学生初步了解求一个小数的近似数时表示的精确程度,理解求得一个小数的近似数时,小数末尾的“0”不能去掉。
3.进一步培养学生运用旧知和类比推理的能力。
教学重点:求一个小数的近似数。
教学难点:使学生能够区别求近似数与改写求准确数的方法。
教具准备:小黑板,投影。
教学步骤
(一)铺垫孕伏
1.把下面各数省略万后面的尾数,求出它们的近似数.(卡片出示)
986534 58741 31200
50047 398010 14870
2.下面的□里可以填上哪些数字?
32□645≈32万 47□05≈47万
学生填完后,说一说是怎么想的.
(二)探究新知
1.导入新课:
我们学过求一个整数的近似数.在实际应用小数时,往往也没有必要说出它的准确数,只要它的近似数就可以了.如:量得大新的身高是1.625米,平常不需要说得那么精确,只说大约1.6米或1.63米,那么如何求一个小数的近似数呢?今天我们就来学习这一内容.(板书课题:求一个小数的近似数)
2.教学例1:求一个小数的近似数.
(1)教师谈话:求一个小数的近似数,同求整数的近似数相似,根据需要用“四舍五入法”保留一定的小数位数.
(2)出示例1。
4.962保留整数、一位小数和两位小数,它的近似数各是多少?
教师提问:保留整数,要看哪一位?怎样取近似数?
使学生明确:4.962保留整数,就要看十分位,十分位满5,向前一位进一,求得近似值数5.
学生讨论:4.962保留一位小数和两位小数,要看哪一位?怎样取近似数?
使学生明确:4.962保留一位小数,就要看百分位,百分位满5,向十分位进1,求得近似数5.0. 4.962保留两位小数就要看千分位,千分位上不满5,舍去.
分组讨论:保留一位小数5.0十分位上的“0”能不能去掉?为什么?
教师总结说明:保留整数,表示精确到个位;保留一位小数,表示精确到十分位;保留两位小数,表示精确到百分位……
(3)讨论分析:5.0和5数值相等,它们表示精确的程度怎样?
①教师出示线路图:(投影出示)
②引导学生小组讨论交流:
使学生明确保留一位小数是5.0,原来的长度在4.95与5.05之间.保留整数为5,原来的准确长度在4.5与5.5之间,所以5.0比5精确的程度高一些.也就是小数保留的位数越多,精确的程度越高.
(4)小结:
教师提出问题:求一个小数的近似数应注意什么?
引导学生讨论知道:求一个小数的近似数要注意两点:
①要根据题目的'要求取近似值,如果保留些数,就看十分位是几;要保留一位小数,就看百分位是几……然后按“四舍五入法”决定是舍还是入.
②取近似值时,在保留的小数位里,小数末一位或几位是0的,0应当保留,不能丢掉.
(5)“练一练”分组合作学习.
(三)巩固发展
1.填空:
求一个小数的近似数,要根据需要用( )法保留小数数位.保留整数,表示精确到( )位;保留一位小数表示精确到( )位;保留两位小数表示精确到( )位……
2.填空:
近似数的结果一般地说6.0要比6精确.因为6.0表示精确到了( )位,6表示精确到了( )位,所以6.0后面的“0”不能丢掉.
3.练习二十六第1题.
按照四舍五入法写出表中各小数的近似数.
保 留
整 数
保 留
一位小数
保 留
两位小数
保 留
三位小数
3.8251
9.9674
1.0495
4.练习二十六第4、5题
学生口答。
(四)全课小结
今天我们学习了怎样求一个小数的近似数,求小数的近似数的方法与求整数的近似数相似.要用“四合五入”法保留小数位数.要注意保留小数位数越多,精确程度越高.
(五)布置作业
练习二十六第2、3题.