第一篇:小学六年级奥数教案1318课件
小学六年级奥数教案—13立体图形
我们学过的立体图形有长方体、正方体、圆柱体、圆锥体等。这一讲将通过长方体、正方体及其组合图形,讲解有关的计数问题。例1 左下图中共有多少个面?多少条棱?
例2 右图是由18个边长为1厘米的小正方体拼成的,求它的表面积。
例3 右图是由22个小正方体组成的立体图形,其中共有多少个大大小小的正方体?由两个小正方体组成的长方体有多少个?
例4 有一个棱长为5厘米的正方体木块,从它的每个面看都有一个穿透的完全相同的孔(见下页左上图),求这个立体图形的表面积。
例5 右图是由120块小立方体构成的4×5×6的立方体,如果将其表面涂成红色,那么其中一面、二面三面被涂成红色的小立方体各有多少块?
例6 给一个立方体的每个面分别涂上红、黄、蓝三种颜色中的一种,每种颜色涂两个面,共有多少种不同涂法?(两种涂法,经过翻动能使各种颜色的位置相同,认为是相同的涂法。)
练习13 1.下页左上图中共有多少个面?多少条棱?
2.有30个边长为1米的正方体,在地面上摆成右上图的形式,然后把露出的表面涂成红色。求被涂成红色的表面积。
3.有一个正方体,红、黄、蓝色的面各有两面。在这个正方体中,有一些顶点是三种颜色都不同的面的交点,这种顶点最多有几个?最少有几个?
4.将一个表面涂有红色的长方体分割成若干个体积为1厘米3 的小正方体,其中一点红色都没有的小立方体只有3块。求原来长方体的体积。
5.将一个5×5×5的立方体表面全部涂上红色,再将其分割成1×1×1的小立方体,取出全部至少有一个面是红色的小立方体,组成表面全部是红色的长方体。那么,可组成的长方体的体积最大是多少?
6.在边长为3分米的立方体木块的每个面的中心打一个直穿木块的洞,洞口呈边长为1分米的正方形(见左下图)。求挖洞后木块的体积及表面积。
7.把正方体的六个表面都划分成9个相等的正方形(右上图)。用红、黄、蓝三种颜色去染这些小正方形,要求有公共边的正方形染不同的颜色,那么,用红色染的正方形最多有多少个?
小学六年级奥数教案—14立体图形二
本讲主要讲长方体和立方体的展开图,各个面的相对位置,提高同学们的看图能力和空间想象能力。
例1 在下面的三个图中,有一个不是右面正四面体的展开图,请将它找出来。
例2 在下面的四个展开图中,哪一个是右图所示立方体的展开图?
例3 右图是一个立方体纸盒的展开图,当折叠成纸盒时,1 点与哪些点重合?
例4 有两块六个面上分别写着1~6的相同的数字积木,摆放如下图。在这两块积木中,相对两个面上的数字的乘积最小是多少?
例5 有五颗相同的骰子放成一排(如下图),五颗骰子底面的点数之和是多少?
例6 用一平面去截一个立方体,把立方体截成两个部分,截口是一个矩形的。问:这两个部分各是几个面围成的?
练习14
1.在下列各图中,哪些是正方体的展开图?
2.将左下图沿虚线折成一个立方体,它的相交于一个顶点处的三个面上的数字之和的最大值是多少?最小值是多少?
3.有四枚相同的骰子,展开图如右上图(1)。问:在右上图(2)中,从上往下数第二、三、四枚骰子的上顶面的点数之和是多少?
4.将一个立方体纸盒沿棱剪开,使之展开成右图所示的图形,一共要剪开几条棱?
5.左下图是图(1)(2)(3)中哪个正方体的展开图?
6.在一个立方体的六个面上分别写有A,B,C,D,E五个字母,其中两个面写有相同的字母。下图是它的三个视图。问:哪个字母被写了两遍?
7.右图中第1格内放着一个立方体木块,木块六个面上分别写着A,B,C,D,E,F六个字母,其中A与D,B与E,C与F相对。如果将木块沿着图中方格滚动,那么当木块滚动到第21个格时,木块向上的面写的是哪个字母?
小学六年级奥数教案—15棋盘的覆盖
同学们会下棋吗?下棋就要有棋盘,下面是中国象棋的棋盘(图1),围棋棋盘(图2)和国际象棋棋盘(图3)。
用某种形状的卡片,按一定要求将棋盘覆盖住,就是棋盘的覆盖问题。实际上,这里并不要求一定是某种棋盘,只要是有关覆盖若干行、若干列的方格网的问题,就是棋盘的覆盖问题。
棋盘的覆盖问题可以分为两类:一是能不能覆盖的问题,二是有多少种不同的覆盖方法问题。
例1 要不重叠地刚好覆盖住一个正方形,最少要用多少个右图所示的图形?
例3 下图的七种图形都是由4个相同的小方格组成的。现在要用这些图形拼成一个4×7的长方形(可以重复使用某些图形),那么,最多可以用上几种不同的图形?
例4 用1×1,2×2,3×3的小正方形拼成一个11×11的大正方形,最少要用1×1的正方形多少个?
例5 用七个1×2的小长方形覆盖下图,共有多少种不同的覆盖方法?
例6 有许多边长为1厘米、2厘米、3厘米的正方形硬纸片。用这些硬纸片拼成一个长5厘米、宽3厘米的长方形的纸板,共有多少种不同的拼法?(通过旋转及翻转能相互得到的拼法认为是相同的拼法)
练习15
在不重叠的情形下,不能再在正方形中多放一个这样的卡片?(要求卡片的边缘与格线重合)
4.小明有8张连在一起的电影票(如右图),他自己要留下4张连在一起的票,其余的送给别人。他留下的四张票可以有多少种不同情况?
5.有若干个边长为
1、边长为
2、边长为3的小正方形,从中选出一些拼成一个边长为4的大正方形,共有多少种不同拼法?(只要选择的各种小正方形的数目相同就算相同的拼法)
7.能不能用9个1×4的长方形卡片拼成一个6×6的正方形?
小学六年级奥数教案—16找规律
同学们从三年级开始,就陆续接触过许多“找规律”的题目,例如发现图形、数字或数表的变化规律,发现数列的变化规律,发现周期变化规律等等。这一讲的内容是通过发现某一问题的规律,推导出该问题的计算公式。例1 求99边形的内角和。
例2 四边形内有10个点,以四边形的4个顶点和这10个点为三角形的顶点,最多能剪出多少个小三角形?
例3 n棱柱有多少条棱?如果将不相交的两条棱称为一对,那么n棱柱共有多少对不相交的棱?
例4 用四条直线最多能将一个圆分成几块?用100条直线呢?
例5 用3个三角形最多可以把平面分成几部分?10个三角形呢?
练习16 1.求12边形的内角和。
2.五边形内有8个点。以五边形的5个顶点和这8个点为三角形的顶点,最多能剪出多少个小三角形?
3.已知n棱柱有14个顶点,那么,它有多少条棱?
4.n条直线最多有多少个交点?
5.6条直线与2个圆最多形成多少个交点?
6.两个四边形最多把平面分成几部分?
小学六年级奥数教案—17操作问题
所谓操作问题,实际上是对某个事物按一定要求进行的一种变换,这种变换可以具体执行。例如,对任意一个自然数,是奇数就加1,是偶数就除以2。这就是一次操作,是可以具体执行的。操作问题往往是求连续进行这种操作后可能得到的结果。
例1 对于任意一个自然数 n,当 n为奇数时,加上121;当n为偶数时,除以2。这算一次操作。现在对231连续进行这种操作,在操作过程中是否可能出现100?为什么?
例2 对任意两个不同的自然数,将其中较大的数换成这两数之差,称为一次变换。如对18和42可进行这样的连续变换:
例3 右图是一个圆盘,中心轴固定在黑板上。开始时,圆盘上每个数字所对应的黑板处均写着0。然后转动圆盘,每次可以转动90°的任意整数倍,圆盘上的四个数将分别正对着黑板上写数的位置,将圆盘上的数加到黑板上对应位置的数上。问:经过若干次后,黑板上的四个数是否可能都是999?
例4 在左下图中,对任意相邻的上下或左右两格中的数字同时加1或减1,这算作一次操作。经过若干次操作后,左下图变为右下图。问:右下图中A格中的数字是几?
例5 将1~10十个数随意排成一排。如果相邻两个数中,前面的数大于后面的数,那么就交换它们的位置。如此操作下去,直到前面的数都小于后面的数为止。当1~10十个数如下排列时,需交换多少次?
8,5,2,6,10,7,9,1,4,3。
例6右图是一个5×6的方格盘。先将其中的任意5个方格染黑。然后按以下规则继续染色:
练习17
1.黑板上写着1~15共15个数,每次任意擦去两个数,再写上这两个数的和减1。例如,擦掉5和11,要写上15。经过若干次后,黑板上就会只剩下一个数,这个数是几?
1.在黑板上任意写一个自然数,然后用与这个自然数互质并且大于1的最小自然数替换这个数,称为一次操作。问:最多经过多少次操作,黑板上就会出现2?
3.口袋里装有101张小纸片,上面分别写着1~101。每次从袋中任意摸出5张小纸片,然后算出这5张小纸片上各数的和,再将这个和的后两位数写在一张新纸片上放入袋中。经过若干次这样的操作后,袋中还剩下一张纸片,这张纸片上的数是几?
4.在一个圆上标出一些数:第一次先把圆周二等分,在两个分点分别标上2和4。第二次把两段半圆弧分别二等分,在分点标上相邻两分点两数的平均数3(见右图)。第三次把四段弧再分别二等分,在四个分点分别标上相邻两分点两数的平均数。如此下去,当第8次标完后,圆周上所有标出的数的总和是多少?
5.六个盘子中各放有一块糖,每次从任选的两个盘子中各取一块放入另一个盘子中,这样至少要做多少次,才能把所有的糖都集中到一个盘子中?
6.将1~10十个数随意排成一排。如果相邻两个数中,前面的大于后面的,那么就交换它们的位置。如此操作下去,直到前面的数都小于后面的数为止。已知10在这列数的第4位,那么最少要交换多少次?最多要交换多少次?
7.在右图的方格表中,每次给同一行或同一列的两个数加1,经过若干次后,能否使表中的四个数同时都是5的倍数?为什么?
小学六年级奥数教案—18数值代入法
有一些看起来缺少条件的题目,按常规解法似乎无法求解,但是仔细分析发现,题中只涉及几个存在着倍数或比例关系的数量,而题目中缺少的条件,对于答案并无影响,这时就可以采用“数值代入法”,即对于题目中“缺少”的条件,假设一个数代入进去(当然假设的这个数应尽量方便计算),然后求出解答。例1 足球赛门票15元一张,降价后观众增加一倍,收入增加五分之一。问:一张门票降价多少元?
例2 某幼儿园中班的小朋友平均身高115厘米,其中男孩人数比女孩人
例3 甲、乙分别由A,B两地同时出发,甲、乙两人步行的速度比是7∶5。如果相向而行,那么0.5时后相遇;如果按从A到B的方向同向而行,那么甲追上乙需要多少小时?
例4五年级三个班的人数相等,一班的男生人数与二班女生人数相等,三几?
例5 用绳子测量井深,把绳三折来量,井外余4米;把绳四折来量,井外余1米。求井深和绳长。
例6 甲车从A地到B地需行6时,乙车从B地到A地需行10时。现在甲、乙两车分别从A,B两地同时出发,相向而行,相遇时甲车比乙车多行90千米,求A,B两地的距离。
练习20 1.上山的速度是3千米/时,下山的速度是6千米/时。求上山后又下山的平均速度。
高为132厘米。问:女生平均身高是多少厘米?
3.一堆糖果,分给大、小幼儿班,每人可得6块;只分给大班,每人可得10块。若只分给小班,则每人可得几块?
那么不及格同学的平均分是多少?
能当选?
6.一个数除以5与除以3的商相差4,余数都是1,求这个数。
7.甲、乙两人搬一堆砖,甲单独搬完需40分钟,乙单独搬完需60分钟。现在两人同时开始搬,搬完时甲比乙多搬72块砖。这堆砖共有多少块?
第二篇:小学六年级奥数教案
小学六年级奥数教案:行程问题
第一讲 行程问题
走路、行车、一个物体的移动,总是要涉及到三个数量: 距离走了多远,行驶多少千米,移动了多少米等等;速度在单位时间内(例如1小时内)行走或移动的距离;时间行走或移动所花时间.这三个数量之间的关系,可以用下面的公式来表示: 距离=速度×时间
很明显,只要知道其中两个数量,就马上可以求出第三个数量.从数学上说,这是一种最基本的数量关系,在小学的应用题中,这样的数量关系也是最常见的,例如
总量=每个人的数量×人数.工作量=工作效率×时间.因此,我们从行程问题入手,掌握一些处理这种数量关系的思路、方法和技巧,就能解其他类似的问题.当然,行程问题有它独自的特点,在小学的应用题中,行程问题的内容最丰富多彩,饶有趣味.它不仅在小学,而且在中学数学、物理的学习中,也是一个重点内容.因此,我们非常希望大家能学好这一讲,特别是学会对一些问题的思考方法和处理技巧.这一讲,用5千米/小时表示速度是每小时5千米,用3米/秒表示速度是每秒3米
一、追及与相遇
有两个人同时在行走,一个走得快,一个走得慢,当走得慢的在前,走得快的过了一些时间就能追上他.这就产生了“追及问题”.实质上,要算走得快的人在某一段时间内,比走得慢的人多走的距离,也就是要计算两人走的距离之差.如果设甲走得快,乙走得慢,在相同时间内,甲走的距离-乙走的距离
= 甲的速度×时间-乙的速度×时间 =(甲的速度-乙的速度)×时间.通常,“追及问题”要考虑速度差.例1 小轿车的速度比面包车速度每小时快6千米,小轿车和面包车同时从学校开出,沿着同一路线行驶,小轿车比面包车早10分钟到达城门,当面包车到达城门时,小轿车已离城门9千米,问学校到城门的距离是多少千米? 解:先计算,从学校开出,到面包车到达城门用了多少时间.此时,小轿车比面包车多走了9千米,而小轿车与面包车的速度差是6千米/小时,因此
所用时间=9÷6=1.5(小时).小轿车比面包车早10分钟到达城门,面包车到达时,小轿车离城门9千米,说明小轿车的速度是
面包车速度是 54-6=48(千米/小时).城门离学校的距离是 48×1.5=72(千米).答:学校到城门的距离是72千米.例2 小张从家到公园,原打算每分种走50米.为了提早10分钟到,他把速度加快,每分钟走75米.问家到公园多远? 解一:可以作为“追及问题”处理.假设另有一人,比小张早10分钟出发.考虑小张以75米/分钟速度去追赶,追上所需时间是
×10÷(75-50)= 20(分钟)? 因此,小张走的距离是 75× 20= 1500(米).答:从家到公园的距离是1500米.还有一种不少人采用的方法.家到公园的距离是
一种解法好不好,首先是“易于思考”,其次是“计算方便”.那么你更喜欢哪一种解法呢?对不同的解法进行比较,能逐渐形成符合你思维习惯的解题思路.例3 一辆自行车在前面以固定的速度行进,有一辆汽车要去追赶.如果速度是30千米/小时,要1小时才能追上;如果速度是 35千米/小时,要 40分钟才能追上.问自行车的速度是多少? 解一:自行车1小时走了 30×1-已超前距离,自行车40分钟走了
自行车多走20分钟,走了
因此,自行车的速度是
答:自行车速度是20千米/小时.解二:因为追上所需时间=追上距离÷速度差
1小时与40分钟是3∶2.所以两者的速度差之比是2∶3.请看下面示意图:
马上可看出前一速度差是15.自行车速度是 35-15= 20(千米/小时).解二的想法与第二讲中年龄问题思路完全类同.这一解法的好处是,想清楚后,非常便于心算.例4 上午8点8分,小明骑自行车从家里出发,8分钟后,爸爸骑摩托车去追他,在离家4千米的地方追上了他.然后爸爸立即回家,到家后又立刻回头去追小明,再追上小明的时候,离家恰好是8千米,这时是几点几分? 解:画一张简单的示意图:
图上可以看出,从爸爸第一次追上到第二次追上,小明走了 8-4=4(千米).而爸爸骑的距离是 4+ 8= 12(千米).这就知道,爸爸骑摩托车的速度是小明骑自行车速度的 12÷4=3(倍).按照这个倍数计算,小明骑8千米,爸爸可以骑行8×3=24(千米).但事实上,爸爸少用了8分钟,骑行了 4+12=16(千米).少骑行24-16=8(千米).摩托车的速度是1千米/分,爸爸骑行16千米需要16分钟.8+8+16=32.答:这时是8点32分.下面讲“相遇问题”.小王从甲地到乙地,小张从乙地到甲地,两人在途中相遇,实质上是小王和小张一起走了甲、乙之间这段距离.如果两人同时出发,那么 甲走的距离+乙走的距离 =甲的速度×时间+乙的速度×时间 =(甲的速度+乙的速度)×时间.“相遇问题”,常常要考虑两人的速度和.例5 小张从甲地到乙地步行需要36分钟,小王骑自行车从乙地到甲地需要12分钟.他们同时出发,几分钟后两人相遇? 解:走同样长的距离,小张花费的时间是小王花费时间的 36÷12=3(倍),因此自行车的速度是步行速度的3倍,也可以说,在同一时间内,小王骑车走的距离是小张步行走的距离的3倍.如果把甲地乙地之间的距离分成相等的4段,小王走了3段,小张走了1段,小张花费的时间是 36÷(3+1)=9(分钟).答:两人在9分钟后相遇.例6 小张从甲地到乙地,每小时步行5千米,小王从乙地到甲地,每小时步行4千米.两人同时出发,然后在离甲、乙两地的中点1千米的地方相遇,求甲、乙两地间的距离.解:画一张示意图
离中点1千米的地方是A点,从图上可以看出,小张走了两地距离的一半多1千米,小王走了两地距离的一半少1千米.从出发到相遇,小张比小王多走了2千米
小张比小王每小时多走(5-4)千米,从出发到相遇所用的时间是 2÷(5-4)=2(小时).因此,甲、乙两地的距离是(5+ 4)×2=18(千米).本题表面的现象是“相遇”,实质上却要考虑“小张比小王多走多少?”岂不是有“追及”的特点吗?对小学的应用题,不要简单地说这是什么问题.重要的是抓住题目的本质,究竟考虑速度差,还是考虑速度和,要针对题目中的条件好好想一想.千万不要“两人面对面”就是“相遇”,“两人一前一后”就是“追及”.请再看一个例子.例7 甲、乙两车分别从A,B两地同时出发,相向而行,6小时后相遇于C点.如果甲车速度不变,乙车每小时多行5千米,且两车还从A,B两地同时出发相向而行,则相遇地点距C点12千米;如果乙车速度不变,甲车每小时多行5千米,且两车还从A,B两地同时出发相向而行,则相遇地点距C点16千米.求A,B两地距离.解:先画一张行程示意图如下
设乙加速后与甲相遇于D点,甲加速后与乙相遇于E点.同时出发后的相遇时间,是由速度和决定的.不论甲加速,还是乙加速,它们的速度和比原来都增加5千米,因此,不论在D点相遇,还是在E点相遇,所用时间是一样的,这是解决本题的关键.下面的考虑重点转向速度差.在同样的时间内,甲如果加速,就到E点,而不加速,只能到 D点.这两点距离是 12+ 16= 28(千米),加速与不加速所形成的速度差是5千米/小时.因此,在D点
(或E点)相遇所用时间是 28÷5= 5.6(小时).比C点相遇少用 6-5.6=0.4(小时).甲到达D,和到达C点速度是一样的,少用0.4小时,少走12千米,因此甲的速度是
12÷0.4=30(千米/小时).同样道理,乙的速度是 16÷0.4=40(千米/小时).A到 B距离是(30+ 40)×6= 420(千米).答: A,B两地距离是 420千米.很明显,例7不能简单地说成是“相遇问题”.例8 如图,从A到B是1千米下坡路,从B到C是3千米平路,从C到D是2.5千米上坡路.小张和小王步行,下坡的速度都是6千米/小时,平路速度都是4千米/小时,上坡速度都是2千米/小时.问:(1)小张和小王分别从A,D同时出发,相向而行,问多少时间后他们相遇?(2)相遇后,两人继续向前走,当某一个人达到终点时,另一人离终点还有多少千米? 解:(1)小张从 A到 B需要 1÷6×60= 10(分钟);小王从 D到 C也是下坡,需要 2.5÷6×60= 25(分钟);当小王到达 C点时,小张已在平路上走了 25-10=15(分钟),走了
因此在 B与 C之间平路上留下 3-1= 2(千米)由小张和小王共同相向而行,直到相遇,所需时间是 2 ÷(4+ 4)×60= 15(分钟).从出发到相遇的时间是 25+ 15= 40(分钟).(2)相遇后,小王再走30分钟平路,到达B点,从B点到 A点需要走 1÷2×60=30分钟,即他再走 60分钟到达终点.小张走15分钟平路到达D点,45分钟可走
小张离终点还有2.5-1.5=1(千米).答:40分钟后小张和小王相遇.小王到达终点时,小张离终点还有1千米.二、环形路上的行程问题
人在环形路上行走,计算行程距离常常与环形路的周长有关.例9 小张和小王各以一定速度,在周长为500米的环形跑道上跑步.小王的速度是180米/分.(1)小张和小王同时从同一地点出发,反向跑步,75秒后两人第一次相遇,小张的速度是多少米/分?(2)小张和小王同时从同一点出发,同一方向跑步,小张跑多少圈后才能第一次追上小王? 解:(1)75秒-1.25分.两人相遇,也就是合起来跑了一个周长的行程.小张的速度是 500÷1.25-180=220(米/分).(2)在环形的跑道上,小张要追上小王,就是小张比小王多跑一圈(一个周长),因此需要的时间是
500÷(220-180)=12.5(分).220×12.5÷500=5.5(圈).答:(1)小张的速度是220米/分;(2)小张跑5.5圈后才能追上小王.例10 如图,A、B是圆的直径的两端,小张在A点,小王在B点同时出发反向行走,他们在C点第一次相遇,C离A点80米;在D点第二次相遇,D点离B点6O米.求这个圆的周长.解:第一次相遇,两人合起来走了半个周长;第二次相遇,两个人合起来又走了一圈.从出发开始算,两个人合起来走了一周半.因此,第二次相遇时两人合起来所走的行程是第一次相遇时合起来所走的行程的3倍,那么从A到D的距离,应该是从A到C距离的3倍,即A到D是 80×3=240(米).240-60=180(米).180×2=360(米).答:这个圆的周长是360米.在一条路上往返行走,与环行路上行走,解题思考时极为类似,因此也归入这一节.例11 甲村、乙村相距6千米,小张与小王分别从甲、乙两村同时出发,在两村之间往返行走(到达另一村后就马上返回).在出发后40分钟两人第一次相遇.小王到达甲村后返回,在离甲村2千米的地方两人第二次相遇.问小张和小王的速度各是多少? 解:画示意图如下:
如图,第一次相遇两人共同走了甲、乙两村间距离,第二次相遇两人已共同走了甲、乙两村间距离的3倍,因此所需时间是 40×3÷60=2(小时).从图上可以看出从出发至第二次相遇,小张已走了 6×2-2=10(千米).小王已走了 6+2=8(千米).因此,他们的速度分别是 小张 10÷2=5(千米/小时),小王 8÷2=4(千米/小时).答:小张和小王的速度分别是5千米/小时和4千米/小时.例12 小张与小王分别从甲、乙两村同时出发,在两村之间往返行走(到达另一村后就马上返回),他们在离甲村3.5千米处第一次相遇,在离乙村2千米处第二次相遇.问他们两人第四次相遇的地点离乙村多远(相遇指迎面相遇)? 解:画示意图如下.第二次相遇两人已共同走了甲、乙两村距离的3倍,因此张走了 3.5×3=10.5(千米).从图上可看出,第二次相遇处离乙村2千米.因此,甲、乙两村距离是 10.5-2=8.5(千米).每次要再相遇,两人就要共同再走甲、乙两村距离2倍的路程.第四次相遇时,两人已共同走了两村距离(3+2+2)倍的行程.其中张走了 3.5×7=24.5(千米),24.5=8.5+8.5+7.5(千米).就知道第四次相遇处,离乙村 8.5-7.5=1(千米).答:第四次相遇地点离乙村1千米.下面仍回到环行路上的问题.例13 绕湖一周是24千米,小张和小王从湖边某一地点同时出发反向而行.小王以4千米/小时速度每走1小时后休息5分钟;小张以6千米/小时速度每走50分钟后休息10分钟.问:两人出发多少时间第一次相遇? 解:小张的速度是6千米/小时,50分钟走5千米我们可以把他们出发后时间与行程列出下表:
12+15=27比24大,从表上可以看出,他们相遇在出发后2小时10分至3小时15分之间.出发后2小时10分小张已走了
此时两人相距 24-(8+11)=5(千米).由于从此时到相遇已不会再休息,因此共同走完这5千米所需时间是 5÷(4+6)=0.5(小时).2小时10分再加上半小时是2小时40分.答:他们相遇时是出发后2小时40分.例14 一个圆周长90厘米,3个点把这个圆周分成三等分,3只爬虫A,B,C分别在这3个点上.它们同时出发,按顺时针方向沿着圆周爬行.A的速度是10厘米/秒,B的速度是5厘米/秒,C的速度是3厘米/秒,3只
爬虫出发后多少时间第一次到达同一位置? 解:先考虑B与C这两只爬虫,什么时候能到达同一位置.开始时,它们相差30厘米,每秒钟B能追上C(5-3)厘米0.30÷(5-3)=15(秒).因此15秒后B与C到达同一位置.以后再要到达同一位置,B要追上C一圈,也就是追上90厘米,需要 90÷(5-3)=45(秒).B与C到达同一位置,出发后的秒数是 15,105,150,195,…… 再看看A与B什么时候到达同一位置.第一次是出发后 30÷(10-5)=6(秒),以后再要到达同一位置是A追上B一圈.需要 90÷(10-5)=18(秒),A与B到达同一位置,出发后的秒数是 6,24,42,78,96,…
对照两行列出的秒数,就知道出发后60秒3只爬虫到达同一位置.答:3只爬虫出发后60秒第一次爬到同一位置.请思考,3只爬虫第二次到达同一位置是出发后多少秒? 例15 图上正方形ABCD是一条环形公路.已知汽车在AB上的速度是90千米/小时,在BC上的速度是120千米/小时,在CD上的速度是60千米/小时,在DA上的速度是80千米/小时.从CD上一点P,同时反向各发出一辆汽车,它们将在AB中点相遇.如果从PC中点M,同时反向各发出一辆汽车,它们将在AB上一点N处相遇.求
解:两车同时出发至相遇,两车行驶的时间一样多.题中有两个“相遇”,解题过程就是时间的计算.要计算方便,取什么作计算单位是很重要的.设汽车行驶CD所需时间是1.根据“走同样距离,时间与速度成反比”,可得出
分数计算总不太方便,把这些所需时间都乘以24.这样,汽车行驶CD,BC,AB,AD所需时间分别是24,12,16,18.从P点同时反向各发一辆车,它们在AB中点相遇.P→D→A与 P→C→B所用时间相等.PC上所需时间-PD上所需时间 =DA所需时间-CB所需时间 =18-12 =6.而(PC上所需时间+PD上所需时间)是CD上所需时间24.根据“和差”计算得 PC上所需时间是(24+6)÷2=15,PD上所需时间是24-15=9.现在两辆汽车从M点同时出发反向而行,M→P→D→A→N与M→C→B→N所用时间相等.M是PC中点.P→D→A→N与C→B→N时间相等,就有 BN上所需时间-AN上所需时间 =P→D→A所需时间-CB所需时间 =(9+18)-12 = 15.BN上所需时间+AN上所需时间=AB上所需时间 =16.立即可求BN上所需时间是15.5,AN所需时间是0.5.从这一例子可以看出,对要计算的数作一些准备性处理,会使问题变得简单些.三、稍复杂的问题
在这一节希望读者逐渐掌握以下两个解题技巧:(1)在行程中能设置一个解题需要的点;(2)灵活地运用比例.例16 小王的步行速度是4.8千米/小时,小张的步行速度是5.4千米/小时,他们两人从甲地到乙地去.小李骑自行车的速度是10.8千米/小时,从乙地到甲地去.他们3人同时出发,在小张与小李相遇后5分钟,小王又与小李相遇.问:小李骑车从乙地到甲地需要多少时间? 解:画一张示意图:
图中A点是小张与小李相遇的地点,图中再设置一个B点,它是张、李两人相遇时小王到达的地点.5分钟后小王与小李相遇,也就是5分钟的时间,小王和小李共同走了B与A之间这段距离,它等于
这段距离也是出发后小张比小王多走的距离,小王与小张的速度差是(5.4-4.8)千米/小时.小张比小王多走这段距离,需要的时间是 1.3÷(5.4-4.8)×60=130(分钟).这也是从出发到张、李相遇时已花费的时间.小李的速度10.8千米/小时是小张速度5.4千米/小时的2倍.因此小李从A到甲地需要 130÷2=65(分钟).从乙地到甲地需要的时间是 130+65=195(分钟)=3小时15分.答:小李从乙地到甲地需要3小时15分.上面的问题有3个人,既有“相遇”,又有“追及”,思考时要分几个层次,弄清相互间的关系,问题也就迎刃而解了.在图中设置一个B点,使我们的思考直观简明些.例17 小玲和小华姐弟俩正要从公园门口沿马路向东去某地,而他们的家要从公园门口沿马路往西.小华问姐姐:“是先向西回家取了自行车,再骑车向东去,还是直接从公园门口步行向东去快”?姐姐算了一下说:“如果骑车与步行的速度比是4∶1,那么从公园门口到目的地的距离超过2千米时,回家取车才合算.”请推算一下,从公园到他们家的距离是多少米? 解:先画一张示意图
设A是离公园2千米处,设置一个B点,公园离B与公园离家一样远.如果从公园往西走到家,那么用同样多的时间,就能往东走到B点.现在问题就转变成: 骑车从家开始,步行从B点开始,骑车追步行,能在A点或更远处追上步行.具体计算如下:
不妨设B到A的距离为1个单位,因为骑车速度是步行速度的4倍,所以从家到A的距离是4个单位,从家到B的距离是3个单位.公园到B是1.5个单位.从公园到A是 1+1.5=2.5(单位).每个单位是 2000÷2.5=800(米).因此,从公园到家的距离是 800×1.5=1200(米).答:从公园门口到他们家的距离是1200米.这一例子中,取计算单位给计算带来方便,是值得读者仿照采用的.请再看一例.例18 快车和慢车分别从A,B两地同时开出,相向而行.经过5小时两车相遇.已知慢车从B到A用了12.5小时,慢车到A停留半小时后返回.快车到B停留1小时后返回.问:两车从第一次相遇到再相遇共需多少时间? 解:画一张示意图:
设C点是第一次相遇处.慢车从B到C用了5小时,从C到A用了12.5-5=7.5(小时).我们把慢车半小时行程作为1个单位.B到C10个单位,C到A15个单位.慢车每小时走2个单位,快车每小时走3个单位.有了上面“取单位”准备后,下面很易计算了.慢车从C到A,再加停留半小时,共8小时.此时快车在何处呢?去掉它在B停留1小时.快车行驶7小时,共行驶3×7=21(单位).从B到C再往前一个单位到D点.离A点15-1=14(单位).现在慢车从A,快车从D,同时出发共同行走14单位,相遇所需时间是 14÷(2+3)=2.8(小时).慢车从C到A返回行驶至与快车相遇共用了 7.5+0.5+2.8=10.8(小时).答:从第一相遇到再相遇共需10小时48分.例19 一只小船从A地到B地往返一次共用2小时.回来时顺水,比去时的速度每小时多行驶8千米,因此第二小时比第一小时多行驶6千米.求A至B两地距离.解:1小时是行驶全程的一半时间,因为去时逆水,小船到达不了B地.我们在B之前设置一个C点,是小船逆水行驶1小时到达处.如下图
第二小时比第一小时多行驶的行程,恰好是C至B距离的2倍,它等于6千米,就知C至B是3千米.为了示意小船顺水速度比逆水速度每小时多行驶8千米,在图中再设置D点,D至C是8千米.也就是D至A顺水行驶时间是1小时.现在就一目了然了.D至B是5千米顺水行驶,与C至B逆水行驶3千米时间一样多.因此 顺水速度∶逆水速度=5∶3.由于两者速度差是8千米.立即可得出
A至B距离是 12+3=15(千米).答:A至B两地距离是15千米.例20 从甲市到乙市有一条公路,它分成三段.在第一段上,汽车速度是每小时40千米,在第二段上,汽车速度是每小时90千米,在第三段上,汽车速度是每小时50千米.已知第一段公路的长恰好是第三段的2倍.现有两辆汽车分别从甲、乙两市同时出发,相向而行.1小时20分后,在第二段的
解一:画出如下示意图:
当从乙城出发的汽车走完第三段到C时,从甲城出发的汽车走完第一段的
到达D处,这样,D把第一段分成两部分
时20分相当于
因此就知道,汽车在第一段需要
第二段需要 30×3=90(分钟);
甲、乙两市距离是
答:甲、乙两市相距185千米.把每辆车从出发到相遇所走的行程都分成三段,而两车逐段所用时间都相应地一样.这样通过“所用时间”使各段之间建立了换算关系.这是一种典型的方法.例
8、例13也是类似思路,仅仅是问题简单些.还可以用“比例分配”方法求出各段所用时间.第一段所用时间∶第三段所用时间=5∶2.时间一样.第一段所用时间∶第二段所用时间=5∶9.因此,三段路程所用时间的比是 5∶9∶2.汽车走完全程所用时间是 80×2=160(分种).例21 一辆车从甲地开往乙地.如果车速提高20%,可以比原定时间提前一小时到达;如果以原速行驶120千米后,再将速度提高25%,则可提前40分钟到达.那么甲、乙两地相距多少千米? 解:设原速度是1.%后,所用时间缩短到原时间的
这是具体地反映:距离固定,时间与速度成反比.用原速行驶需要
同样道理,车速提高25%,所用时间缩短到原来的
如果一开始就加速25%,可少时间
现在只少了40分钟,72-40=32(分钟).说明有一段路程未加速而没有少这个32分钟,它应是这段路程所用时间
真巧,320-160=160(分钟),原速的行程与加速的行程所用时间一样.因此全程长
答:甲、乙两地相距270千米.十分有意思,按原速行驶120千米,这一条件只在最后用上.事实上,其他条件已完全确定了“原速”与“加速”两段行程的时间的比例关系,当然也确定了距离的比例关系.全程长还可以用下面比例式求出,设全程长为x,就有 x∶120=72∶32
第三篇:六年级奥数教案
思源学校第二课堂(第六周)
判断与推理 2 授课人:雍尧
教学要求:(1)理解逻辑推理的四条基本规律,学会运用分析、推理方法解决问题。
(2)培养学生逻辑推理能力.教学重点:学会运用分析、推理方法解决问题。
教学难点: 理解、掌握分析、推理方法。
教学方法:讲解法、图表法、练习法。
(一)教学过程:
一、复习。
上节课的习题例2
二、教学新课 教学例3
甲乙丙三人被蒙上眼睛,告诉他们每个人头上都戴了一顶帽子,帽子的颜色不是红的就是绿的。然后,就去掉蒙眼睛的布,要求每个人如果看见别人(一个或两个)戴的是红帽子就举手,并且谁能断定自己头上帽子的颜色,谁就马上离开房间。三人碰巧戴的都是红帽子,因此三个人都举了手,几分钟后,丙首先走开了,他是怎么推导出自己头上帽子的颜色的?
(1)学生审题,理解题意。(2)同座位讨论。
(3)分析:此题关键:注意到甲乙两人没有立即离开房间这个事实。丙推理,我的帽子如果是绿的,甲根据乙举手立即知道自己的帽子是红的,那他应走出房间,乙会做同样的推理离开房间。甲乙不能很快判断自己帽子的颜色,说明我的帽子不是绿的,而是红的。(4)说说你的推理过程。
3、比较前面例2例3有什么相同不同之处。
三、巩固练习。教学例4 学田小学举行科技知识竞赛,同学们对一贯刻苦学习爱好读书的四名学生的成绩作了如下估计:(1)丙得第一,乙得第二;
(2)丙得第二,丁得第三;(3)甲得第二,丁得第四。
比赛结果一公布,果然是这四名学生获得前四名。但以上三种估计,每一种都对了一半错一半。他们各得第几名?(1)学生审题,理解题意。(2)同座位讨论。(3)分析:利用图表帮助学生去推理判断。
第一种假定“丙第一错,乙第二对”出现矛盾。照此推理“丙第一对,乙第二错”没有出
现矛盾。所以丙第一,甲第二,丁第三,乙第四。(4)每人口述推理过程。
四、小结。
这节课你学会了什么?
第四篇:六年级奥数教案3
第二课堂
牛吃草问题(2)练习课
一、课堂例题:
5.快、中、慢三车同时从A地出发,追赶一辆正在行驶的自行车。三车的速度分别是每小时24千米、20千米、19千米。快车追上自行车用了6小时,中车追上自行车用了10小时,慢车追上自行车用()小时。
注释:12 自行车的速度是:(20×10-24×6)÷(10-6)=14(千米/小时)
三车出发时自行车距A地:(24-14)×6==60(千米)
慢车追上自行车所用的时间为:60÷(19-14)=12(小时)
6.一水池中原有一些水,装有一根进水管,若干根抽水管。进水管不断进水,若用24根抽水管抽水,6小时可以把池中的水抽干,那么用16根抽水管,()小时可将可将水池中的水抽干。
注释:18 设1根抽水管每小时抽水量为1份。(1)进水管每小时卸货量是:(21×8-24×6)÷(8-6)=12(份)(2)水池中原有的水量为:21×8-12×8=72(份)
(3)16根抽水管,要将水池中的水全部抽干需:72÷(16-12)=18(小时)
8.有一片草地,每天都在匀速生长,这片草可供16头牛吃20天,可供80只羊吃12天。如果一头牛的吃草量等于4只羊的吃草量,那么10头牛与60只羊一起吃可以吃多少天?
注释:8天
(1)按牛的吃草量来计算,80只羊相当于80÷4=20(头)牛。(2)设1头牛1天的吃草量为1份。(3)先求出这片草地每天新生长的草量:(16×20-20×12)÷(20-12)=10(份)
(4)再求出草地上原有的草量:16×20-10×20=120(份)(5)最后求出10头牛与60只羊一起吃的天数:120÷(10+60÷4-10)=8(天)
9.某水库建有10个泄洪闸,现在水库的水位已经超过安全警戒线,上游的河水还在按一不变的速度增加。为了防洪,需开闸泄洪。假设每个闸门泄洪的速度相同,经测算,若打开一个泄洪闸,30小时水位降到安全线,若打开两个泄洪闸,10小时水位降到安全线。现在抗洪指挥部要求在5.5小时内使水位降到安全线,问:至少要同时打开几个闸门?
注释:4个 设1个泄洪闸1小时的泄水量为1份。(1)水库中每小时增加的上游河水量:(1×30-2×10)÷(30-10)=0.5(份)
(2)水库中原有的超过安全线的水量为:1×30-0.5×30=15(份)(3)在5.5小时内共要泄出的水量是:15+0.5×5.5=17.75(份)(4)至少要开的闸门个数为:17.75÷5.5≈4(个)(采用“进1”法取值)
二、学生课后练习:
1.一个水池有一根进水管,有若干相同的抽水管,进水管不间断的进水,若用24根抽水管抽水,6小时可以把池中的水抽干;若用21根抽水管抽水,8小时可以将池中的水抽干。用16根抽水管,多少小时可以将池中的水抽干?
2.甲、乙、丙三人同时从同一个地点出发,沿同一路线追赶前面的小明,他们分别用9分钟、15分钟、20分钟追上小明,已知甲每小时行24千米,乙每小时行20千米,丙每小时行多少千米?
第五篇:小学六年级奥数教案—圆柱圆锥(定稿)
小学六年级奥数
圆柱圆锥
圆柱与圆锥
这一讲学习与圆柱体和圆锥体有关的体积、表面积等问题。
例1 如右图所示,圆锥形容器中装有5升水,水面高度正好是圆锥高度的一半,这个容器还能装多少升水?
分析与解:本题的关键是要找出容器上半部分的体积与下半部分的关系。
这表明容器可以装8份5升水,已经装了1份,还能装水5×(8-1)=35(升)。
例2 用一块长60厘米、宽40厘米的铁皮做圆柱形水桶的侧面,另找一块铁皮做底。这样做成的铁桶的容积最大是多少?(精确到1厘米3)
分析与解:铁桶有以60厘米的边为高和以40厘米的边为高两种做法。
时桶的容积是
桶的容积是
例3 有一种饮料瓶的瓶身呈圆柱形(不包括瓶颈),容积是30分米3。现在瓶中装有一些饮料,正放时饮料高度为20厘米,倒放时空余部分的高度为5厘米(见右图)。问:瓶内现有饮料多少立方分米?
分析与解:瓶子的形状不规则,并且不知道底面的半径,似乎无法计算。比较一下正放与倒放,因为瓶子的容积不变,装的饮料的体积不变,所以空余部分的体积应当相同。将正放与倒放的空余部分变换一下位置,可以看出饮料瓶的容积应当等于底面积不变,高为 20+5=25(厘米)
例4 皮球掉进一个盛有水的圆柱形水桶中。皮球的直径为15厘米,水桶中后,水桶中的水面升高了多少厘米?
解:皮球的体积是
水面升高的高度是450π÷900π=0.5(厘米)。
答:水面升高了0.5厘米。
例5 有一个圆柱体的零件,高10厘米,底面直径是6厘米,零件的一端有一个圆柱形的圆孔,圆孔的直径是4厘米,孔深5厘米(见右图)。如果将这个零件接触空气的部分涂上防锈漆,那么一共要涂多少平方厘米?
分析与解:需要涂漆的面有圆柱体的下底面、外侧面、上面的圆环、圆孔的侧面、圆孔的底面,其中上面的圆环与圆孔的底面可以拼成一个与圆柱体的底面相同的圆。涂漆面积为
例6 将一个底面半径为20厘米、高27厘米的圆锥形铝块,和一个底面半径为30厘米、高20厘米的圆柱形铝块,熔铸成一底面半径为15厘米的圆柱形铝块,求这个圆柱形铝块的高。
解:被熔的圆锥形铝块的体积:
被熔的圆柱形铝块的体积:π×302×20=18000π(厘米3)。
熔成的圆柱形铝块的高:(3600π+18000π)÷(π×152)=21600π÷225π=96(厘米)。
答:熔铸成的圆柱体高96厘米。
练习
1.右图是一顶帽子。帽顶部分是圆柱形,用黑布做;帽沿部分是一个圆环,用白布做。如果帽顶的半径、高与帽沿的宽都是a厘米,那么哪种颜色的布用得多?
2.一个底面直径为20厘米的圆柱形木桶里装有水,水中淹没着一个底面直径为18厘米、高为20厘米的铁质圆锥体。当圆锥体取出后,桶内水面将降低多少?
3.用直径为40厘米的圆钢锻造长300厘米、宽100厘米、厚2厘米的长方形钢板,应截取多长的一段圆钢?
容器高度的几分之几?
5.右上图是一个机器零件,其下部是棱长20厘米的正方体,上部是圆柱形的一半。求它的表面积与体积。
6.有两个盛满水的底面半径为10厘米、高为30厘米的圆锥形容器,将它们盛的水全部倒入一个底面半径为20厘米的圆柱形容器内,求水深。
答案与提示 练习
1.一样多。
2.5.4厘米。
3.47.8厘米。
解:(300×100×2)÷(3.14×202)≈47.8(厘米)。
解:设水面高度是容器高度的x倍,则水面半径也是容器底面半径的x倍。根据题意得到
5.表面积2942厘米2,体积11140厘米3。
6.5厘米。
例1 如右图所示,圆锥形容器中装有5升水,水面高度正好是圆锥高度的一半,这个容器还能装多少升水?
例2 用一块长60厘米、宽40厘米的铁皮做圆柱形水桶的侧面,另找一块铁皮做底。这样做成的铁桶的容积最大是多少?(精确到1厘米3)例3 有一种饮料瓶的瓶身呈圆柱形(不包括瓶颈),容积是30分米3。现在瓶中装有一些饮料,正放时饮料高度为20厘米,倒放时空余部分的高度为5厘米(见右图)。问:瓶内现有饮料多少立方分米?
例4 皮球掉进一个盛有水的圆柱形水桶中。皮球的直径为15厘米,水桶
中后,水桶中的水面升高了多少厘米?
例5 有一个圆柱体的零件,高10厘米,底面直径是6厘米,零件的一端有一个圆柱形的圆孔,圆孔的直径是4厘米,孔深5厘米(见右图)。如果将这个零件接触空气的部分涂上防锈漆,那么一共要涂多少平方厘米?
例6 将一个底面半径为20厘米、高27厘米的圆锥形铝块,和一个底面半径为30厘米、高20厘米的圆柱形铝块,熔铸成一底面半径为15厘米的圆柱形铝块,求这个圆柱形铝块的高。
1.右图是一顶帽子。帽顶部分是圆柱形,用黑布做;帽沿部分是一个圆环,用白布做。如果帽顶的半径、高与帽沿的宽都是a厘米,那么哪种颜色的布用得多?
2.一个底面直径为20厘米的圆柱形木桶里装有水,水中淹没着一个底面直径为18厘米、高为20厘米的铁质圆锥体。当圆锥体取出后,桶内水面将降低多少?
3.用直径为40厘米的圆钢锻造长300厘米、宽100厘米、厚2厘米的长方形钢板,应截取多长的一段圆钢?
容器高度的几分之几?
5.右上图是一个机器零件,其下部是棱长20厘米的正方体,上部是圆柱形的一半。求它的表面积与体积。
6.有两个盛满水的底面半径为10厘米、高为30厘米的圆锥形容器,将它们盛的水全部倒入一个底面半径为20厘米的圆柱形容器内,求水深。