专题:导数与函数单调性习题
-
函数单调性与导数教案(5篇)
3.3.1函数的单调性与导数 【三维目标】 知识与技能:1.探索函数的单调性与导数的关系 2.会利用导数判断函数的单调性并求函数的单调区间 过程与方法:1.通过本节的学习,掌握用导
-
函数的单调性与导数课后反思
课后反思 1. 本节课的亮点: 教学过程中教师指导启发学生以已知的熟悉的二次函数为研究的起点,发现函数的导数的正负与函数单调性的关系,从而到更多的,更复杂的函数,从中发现规律,
-
《函数的单调性与导数》评课稿
《函数的单调性与导数》评课稿
恩平一中谭青华
本节课郑凯老师运用多种教学手段,创设了丰富、生动的教学情境,设计了新颖、活泼的学生活动。成功的地激发了学生的学习兴趣。下 -
函数单调性
函数单调性概念教学的三个关键点 ──兼谈《函数单调性》的教学设计 北京教育学院宣武分院 彭 林 函数单调性是学生进入高中后较早接触到的一个完全形式化的抽象定义,对于仍
-
1.3.1函数的单调性与导数教学反思
一节课下来暴露了许多问题: 1、学生对函数的单调性有所遗忘,不会求单调区间。 2、学生对导数的几何意义不能深入理解。 3、学生对求导公式掌握不够熟练,求导出现错误。 4、教师
-
利用导数求函数的单调性解读
清华园教育网www.xiexiebang.com 利用导数求函数的单调性 例 讨论下列函数的单调性: 1.f(x)axax(a0且a1); 2.f(x)loga(3x25x2)(a0且a1); 3.f(x)bx(1x1,b0). 2x1分析:利用导数可以研究函
-
含参函数单调性
含参数函数单调性 ●基础知识总结和逻辑关系 一、 函数的单调性 求可导函数单调区间的一般步骤和方法: 1) 确定函数的f(x)的定义区间; 2) 求f'(x),令f'(x)0,解此方程,求出它在定
-
函数的单调性
函数的单调性说课稿(市级一等奖) 函数单调性说课稿 《函数的单调性》说课稿(市级一等奖) 旬阳县神河中学 詹进根 我说课的课题是《普通高中课程标准实验教科书 必修1》第二
-
函数单调性教案(简单)
函数单调性 一、教学目标 1、建立增(减)函数及单调性、单调区间的概念 2、掌握如何从函数图象上看出单调区间及单调性 3、掌握如何利用定义证明一段区间上的函数单调性 二、教
-
函数单调性教学与反思
函数单调性教学与反思 教学内容: (一) 引入课题 我国的人口出生率变化曲线(如下图),请同学们观察说出人口出生的大致变化情况。我们可以很方便地从图象观察出人口出生的变化情况
-
浅谈导数在求解与函数单调性有关问题中的应用
浅谈导数在求解与函数单调性有关问题中的应用 函数单调性是高中阶段函数的一个最基本的性质,导数为我们提供了一套新的理论和方法,只通过简单的求导和解相关的不等式就可以判
-
《导数在函数中的应用——单调性》教学反思
本节课是一节新授课,教材所提供的信息很简单,如果直接得出结论学生也能接受。可学生只能进行简单的模仿应用,为了突出知识的发生过程,不把新授课上成习题课。设计思路如下以便教
-
专题:函数单调性的证明
函数单调性的证明 函数的单调性需抓住单调性定义来证明,这是目前高一阶段唯一的方法。 一、证明方法步骤为: ① 在给定区间上任取两个自变量x1、x2且x1<x2 ② 将fx1与fx2作差或
-
函数的单调性证明
函数的单调性证明 一.解答题(共40小题) 1.证明:函数f(x)=在(﹣∞,0)上是减函数. 2.求证:函数f(x)=4x+在(0,)上递减,在[,+∞)上递增. 3.证明f(x)= 在定义域为[0,+∞)内是增函数. 4.应用函数单调性定义证明:函
-
函数单调性定义证明
用函数单调性定义证明例1、用函数单调性定义证明: 为常数)在 上是增函数. 在 上是减函数.分析:虽然两个函数均为含有字母系数的函数,但字母对于函数的单调性并没有影响,
-
高一数学教案:函数单调性
教学目标会运用图象判断单调性;理解函数的单调性,能判断或证明一些简单函数单调性;注意必须在定义域内或其子集内讨论函数的单调性。重 点函数单调性的证明及判断。难 点函数
-
函数的单调性教案
函数的单调性 教学目标 知识目标:初步理解增函数、减函数、函数的单调性、单调区间的概念,并掌握判断一些简单函数单调性的方法。 能力目标:启发学生能够发现问题和提出问题,学
-
函数的单调性(教案)
函数的单调性(教案) 一、 教学目标 1、使学生从形与数两方面理解函数单调性的概念,初步掌握利用函数图象和单调性定义判断、证明函数单调性的方法。 2、通过对函数单调性定义