专题:高中数学数列校本教材
-
校本教材数列
2.1 数 列 2.1.1数列 大家看这样几列数 2,4,6,8,; ,;2,4,7,11 再看下面的例子. 正整数1, 2, 3, 4, 5的倒数排成一列数 1,,,,. 无穷多个1排成一列数 1,1,1,1, 当n分别为1,2,3,4,时(1)n的值排成一列
-
高中数学-公式-数列
数列
1、等差数列的通项公式是ana1(n1)d,前n项和公式是:Snn(a1an)1=na1n(n1)d。 22.等差数列 {an} anan1d(d为常数)2anan1an1(n2,nN*)ananbSnAn2Bn。
na1(q1)nn12、等比数列的通 -
高中数学数列知识点(5篇)
数列是以正整数集为定义域的函数,是一列有序的数。数列中的每一个数都叫做这个数列的项。下面小编给大家分享一些数学数列知识点,希望能够帮助大家,欢迎阅读!数学数列知识点1等
-
高中数学数列递推定理
定理(二阶线性递推数列)
已知数列{an}的项满足an2pan1qan,a1=a,a2=b,nN+,称方程x2pxq0为数列an的特征方程。若x1,x2是特征方程的两个根,则
n1n1
(1)当x1x2时,数列an的通项为anAx1Bx2, -
普通高中数学关于数列试题
等差数列、等比数列同步练习题 等差数列黎岗 一、选择题 1、等差数列-6,-1,4,9,„„中的第20项为( ) A、89 B、 -101 C、101 D、-89 2. 等差数列{an}中,a15=33, a45=153,则217是这个数
-
高中数学三角函数及数列练习题
一、选择题(每题5分,共35分) 1.若sin θcos θ>0,则θ在. A.第一、二象限 C.第一、四象限 B.第一、三象限 D.第二、四象限 2、已知函数f(x)(1cos2x)sin2x,xR,则f(x)是( ) A、奇函数
-
高中数学数列公式及结论总结(★)
高中数学数列公式及结论总结一、高中数列基本公式:
1、一般数列的通项an与前n项和Sn的关系:an=
2、等差数列的通项公式:an=a1+(n-1)dan=ak+(n-k)d(其中a1为首项、ak为已知的第k -
上海高中数学数列的极限
7.6 数列的极限 课标解读: 1、理解数列极限的意义; 2、掌握数列极限的四则运算法则。 目标分解: 1、数列极限的定义:一般地,如果当项数n无限增大时,无穷数列限地趋近于某个常数
-
新课程高中数学数列题型总结
高中数学数列复习题型总结1.等差等比数列 (n1)S12.Sn与an的关系:an ,已知Sn求an,应分n1时a1n2SnSn1(n1)时,an=两步,最后考虑a1是否满足后面的an.基础题型题型一:求值类的计算题(多关
-
高中数学“数列的基本问题”教学研究
高中数学“数列的基本问题”教学研究 郭洁 北京市东城区教师研修中心 一、对“数列的基本问题”中数学知识的深层次理解 (一)数列内容的知识结构 数列作为一种特殊的函数,是反
-
高中数学教材教法
三、数学教材教法内容
1.了解中学数学教材教法的内容,理解中学数学教材教法的学科特点,掌握中学数学教材教法的重要意义以及中学数学教材教法研究的基本方法。
2.了解确定中学 -
校本教材
校本教材2:三月亮剑“五讲四美三热爱”
------法制教育专栏
三月是一个美丽多彩的季节,和风拂面,大地回春。伴随着春风的吹拂,万物开始复苏,美丽的校园中广、白玉兰将展示出特有 -
校本教材
一、明确开发校本教材的目的。校本教材的开发是因传统教材不适应教学实际这一问题的出现而进行的,通过校本教材的开发就是要针对性的解决这问题。开发校本教材首先要明确目的
-
校本教材
校本教材 责任感的教育 长春市双阳区聋哑学校 一、 编写教材的意图随着社会的发展,教育承担着培养社会好公民的责任,以适应社会发展的需要。对学校办学来说,培养好小学生的学习
-
高中数学《数列的极限》教学设计
高中数学《数列的极限》教学设计 一、教学目标1.知识与能力目标 ①使学生理解数列极限的概念和描述性定义。②使学生会判断一些简单数列的极限,了解数列极限的“e-N"定义,能
-
高中数学选修教材目录
高中数学选修教材目录1-1第一章常用逻辑语 1.1 命题及其关系 1.2 充分条件与必要条件 1.3 简单的逻辑联结词 1.4 全称量词与存在量词 小结第二章 圆锥曲线与方程2.1 椭圆探
-
高中数学新课改教材目录
高中数学新课改目录 第一章 集合与函数概念1.1 集合1.2 函数及其表示1.3 函数的基本性质第二章 基本初等函数(Ⅰ)2.1 指数函数2.2 对数函数2.3 幂函数第三章 函数的应用3.1 函数与方
-
新课标高中数学教材目录大全
新课标高中数学教材目录大全 新课标人教A版 必修一 第一章 集合与函数的概念 1.1 集合 1.2 函数及其表示 1.3 函数的基本性质 本章小结与复习第二章 基本初等函数(I) 2.1 指