专题:绝对值不等式练习题
-
2.4绝对值不等式练习题(五篇模版)
2.4绝对值的不等式练习
1.不等式3x42的整数解的个数为
A0B1C2D大于2
2.已知ab,ab0,那么AabB1
a1
bCabD1
a1
b3.不等式x3x1的解是
A2x5Bx36Cx2D2x3
4.不等式x5x6的解集 -
绝对值不等式学案
绝对值不等式学案(1)
(一)知识点: .
(三)巩固练习: .
(1)|x+4|>9(2)|11
+x|≤ 1.不等式的基本性质:
2.绝对值的定义,即|a|=_____a0
_____a0实数a的绝对值表示在数轴上所对应点A到
原点的距离 -
绝对值不等式教案
绝对值不等式的解法 教学目标: 1.理解并掌握axbc与axbc(c0)型不等式的解法,并能初步地应用它解决问题。 2.培养数形结合的能力,培养通过换元转化的思想方法,培养抽象思维的能力; 3.
-
绝对值不等式的证明
绝对值不等式的证明知识与技能:1. 理解绝对值的三角不等式,2.应用绝对值的三角不等式.过程方法与能力:培养学生的抽象能力和逻辑思维能力;提高分析问题、解决问题的能力.情感态度
-
§2.4含绝对值的不等式(推荐)
§2.4含绝对值的不等式
班级姓名一、学习目标
1、 体会绝对值的几何意义
2、 会用变量代换的思想方法解含绝对值的不等式 二、重点、难点
重点:会用变量代换的思想方法解含绝 -
绝对值不等式题型五
典型例题五例5 求证ab
1aba
1ab
1b.
分析:本题的证法很多,下面给出一种证法:比较要证明的不等式左右两边的形式完全相同,使我们联想利用构造函数的方法,再用单调性去证明.
证明:设f( -
绝对值练习题2
课前导学:
1、距原点一个单位长度的数是_______________距原点2个单位长度的数是____________和__________距原点 个单位长度.________和________距原点4个单位长度距原点最 -
含绝对值不等式的解法习题课
第十一教时
三、补充:
例七、已知函数f (x), g (x)在 R上是增函数,求证:f [g (x)]在 R上也是增函数。例八、函数 f (x)在 [0, 上单调递减,求f(x2)的递减区间。例九、已知函数 f -
含绝对值的不等式解法(总结归纳)
含绝对值的不等式解法、一元二次不等式解法 [教材分析] |x|的几何意义是实数x在数轴上对应的点离开原点O的距离,所以|x|0)的解集是 {x|-a0)的解集是{x|x>a或x0)中的x替换成ax
-
含绝对值的不等式教案---职业高中
学科:数学授课老师:陈莹执教班级:13计2班 授课时间:10月25日(第二节课) 课题:含绝对值的不等式 一 教学目标: (一)知识与技能:1、理解绝对值的几何意义 2、掌握含绝对值的不等式的解法
-
《含绝对值不等式的解法》教案
《含绝对值不等式的解法》教案
本课件依据我校高三数学第一轮复习用书《步步高高考总复习—数学》及另选部分题目制作而成,全部内容都经过了课堂教学的检验,为教学过程的实录 -
含绝对值不等式教学反思(大全五篇)
含绝对值不等式教学反思 “含绝对值不等式的解法”本节课采用目标导向教学法,在整个教学中以实现目标为核心,启发引导学生观察思考、分析,并沿着积极的思维方向,逐步达到即定的
-
绝对值不等式解法的说课稿公开课
包铁一中选修4-5绝对值不等式的解法说课稿讲课人:杜玉荣 各位领导和老师们大家好,我将从教材分析,学情分析,教学教法分析,教学过程,教学设计说明,板书设计几个方面对本节进行阐述。
-
不等式证明练习题
不等式证明练习题(1/a+2/b+4/c)*1=(1/a+2/b+4/c)*(a+b+c)展开,得=1+2a/b+4a/c+b/a+2+4b/c+c/a+2c/b+4=7+2a/b+4a/c+b/a+4b/c+c/a+2c/b基本不等式,得>=19>=18用柯西不等式:(a+b+
-
高一不等式练习题
不等式综合练习题
一、选择题
1.若a,b,c为任意实数,且a>b,则下列不等式恒成立的是 (A)ac>bc(B)|a+c|>|b+c|(C)a2>b2(D)a+c>b+c 2.设a>1>b>-1,则下列不等式中恒成立的是 A.
1a1b
B.1a1
bC.a>b2D -
基本不等式练习题
基本不等式练习题一、选择题,本大题共10小题,每小题4分,满分40分,在每小题给出的四个选项中,只有一项是符合题目要求的.1. 若aR,下列不等式恒成立的是A.a21aB121C.a296aD.lg(a1)lg|2a
-
不等式练习题一
1、设a>1>b>-1,则下列不等式中恒成立的是
A.1111B.C.a>b2D.a2>2b abab
222、二次方程x+(a+1)x+a-2=0,有一个根比1大,另一个根比-1小,则a的取值范围是
A.-3<a<1B.-2<a<0C.-1<a<0D.0<a<2
3、若ab,则下列 -
不等式性质练习题
﹤不等式性质
一、选择题
1、已知ab0,下列不等式恒成立的是
A.a2
b2
B.ab1C.1111
abD.ab2、已知a0,b1,下列不等式恒成立的是
A.a
ababB.aaaaaa
2 b2baC.bb2aD.bab
3、若a,b,c,d