专题:证明函数不等式
-
构造函数证明不等式
在含有两个或两个以上字母的不等式中,若使用其它方法不能解决,可将一边整理为零,而另一边为某个字母的二次式,这时可考虑用判别式法。一般对与一元二次函数有关或能通过等价转化
-
构造函数证明不等式
构造函数证明不等式构造函数证明:>e的(4n-4)/6n+3)次方不等式两边取自然对数(严格递增)有:ln(2^2/2^2-1)+ln(3^2/3^2-1)+...+ln(n^2/n^2-1)>(4n-4)/(6n+3)不等式左边=2ln2-l
-
函数法证明不等式[大全]
函数法证明不等式已知函数f(x)=x-sinx,数列{an}满足0证明0证明an+1g(0)=0,故不等式①成立因此an+1a>b>0,求证:p19第9题:已知三角形三边的长是a,b,c,且m是正数,求证:p12例题2:已知
-
构造函数证明不等式
在含有两个或两个以上字母的不等式中,若使用其它方法不能解决,可将一边整理为零,而另一边为某个字母的二次式,这时可考虑用判别式法。一般对与一元二次函数有关或能通过等价转化
-
构造法证明函数不等式
构造法证明函数不等式 1、利用导数研究函数的单调性极值和最值,再由单调性来证明不等式是函数、导数、不等式综合中的一个难点,也是近几年高考的热点. 2、解题技巧是构造辅助函
-
构造函数法证明不等式
构造函数法证明不等式河北省 赵春祥不等式证明是中学数学的重要内容之一.由于证明不等式没有固定的模式,证法灵活多样,技巧性强,使其成为各种考试命题的热点问题,函数法证明不等
-
数列----利用函数证明数列不等式
数列
1 已知数列{an}的前n项和为Sn,且a2anS2Sn对一切正整数n都成立。 (Ⅰ)求a1,a2的值; (Ⅱ)设a10,数列{lg大值。2已知数列{an}的前n项和Sn
(1)确定常数k,求an;
(2)求数列{3在等差数列an中 -
构造函数证明数列不等式
构造函数证明数列不等式 ln2ln3ln4ln3n5n6n3n(nN*). 例1.求证:23436ln2ln3lnn2n2n1例2.求证:(1)2,(n2) 2(n1)23n例3.求证:例4.求证:(1练习:1求证:(112)(123)[1n(n1)]e2.证明:3
-
利用函数凹凸性质证明不等式
利用函数的凹凸性质证明不等式内蒙古包头市第一中学张巧霞摘要:本文主要利用函数的凹凸性来推导和证明几个不等式.首先介绍了凹凸函数的定义,描述了判定一个函数具有凹凸性质
-
巧用构造函数法证明不等式
构造函数法证明不等式一、构造分式函数,利用分式函数的单调性证明不等式【例1】证明不等式:|a||b||ab|1|a||b|≥1|ab|证明:构造函数f(x)=x1x (x≥0)则f(x)=x1x=1-11x在0,上单调
-
构造函数证明数列不等式答案
构造函数证明数列不等式答案例1.求证:ln22ln33ln44ln33nn3n5n66(nN).*解析:先构造函数有lnxx1lnx11,从而xxln22ln33ln44ln33nn31(n121313n)因为121313n1123111111111nnn21345
-
构造函数,结合导数证明不等式
构造函数,结合导数证明不等式 摘 要:运用导数法证明不等式首先要构建函数,以函数作为载体可以用移项作差,直接构造;合理变形,等价构造;分析(条件)结论,特征构造;定主略从,减元构造;挖掘
-
构造函数证明不等式或比较大小
构造函数比较大小或证明不等式(及二次求导) 1.【2012高考浙江文10】设a>0,b>0,e是自然对数的底数,则() A. 若ea2aeb3b,则ab B. 若ea2aeb3b,则ab C. 若ea2aeb3b,则abD. 若ea2aeb3b,则ab
-
函数解答题-构造函数证明不等式
函数解答题-构造函数证明不等式 例1(2013年高考北京卷(理))设L为曲线C:ylnx在点(1,0)处的切线. x(I)求L的方程;(II)证明:除切点(1,0)之外,曲线C在直线L的下方.【答案】解: (I)设
-
构造函数,利用导数证明不等式
构造函数,利用导数证明不等式湖北省天门中学薛德斌2010年10月例1、设当xa,b时,f/(x)g/(x),求证:当xa,b时,f(x)f(a)g(x)g(a).例2、设f(x)是R上的可导函数,且当x1时(x1)f/(x)0.求证:(1)f(
-
函数背景下的不等式证明(大全5篇)
函数背景下的不等式证明郑文龙(广东汕尾海丰彭湃中学516400)给出一个特定的函数,先研究其单调性、极值或恒成立等问题,以此为基础,最后证明一个不等式,我们不妨把该类问题称为函数
-
构造函数证明不等式的方法探究
龙源期刊网 http://.cn
构造函数证明不等式的方法探究 作者:赵久勇 常国庆
来源:《新高考·高三数学》2012年第02期 -
利用函数的单调性证明不等式
龙源期刊网 http://.cn
利用函数的单调性证明不等式
作者:胡锦秀
来源:《数理化学习·高一二版》2013年第04期
函数的单调性是函数的重要性质之一,在不等式证明中扮演着重要角