学习数学思想方法心得体会(五篇范例)

时间:2021-08-30 16:40:08下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《学习数学思想方法心得体会》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《学习数学思想方法心得体会》。

第一篇:学习数学思想方法心得体会

多思考主要是指养成思考的习惯,学习思考的方法。独立思考是学习数学的必要能力。学习时,您应该听(上课)并思考,阅读(书本)并思考,并在思考时做(问题)。通过自己的积极思考,您对数学知识有了深刻的理解,总结了数学定律,并灵活地解决了数学题,以便我们可以将老师所说的内容和教科书中的内容转化为我们自己的知识。下面是由小编为大家整理的“学习数学思想方法心得体会精选模板”,仅供参考,欢迎大家阅读。

学习数学思想方法心得体会精选模板【一】

我参加了这次的小学数学国培网络学习,在这段时间的学习中,虽然有点累,有点忙,但我却很充实,快乐。我认真聆听了专家们的讲座,与同行在互动平台进行了热情洋溢的交流,及时写了研修日志,总结、发帖、回帖,和上交作业。经过培训,我收获颇多,进步不小,有以下几点心得体会:

一、倾听讲座,更新观念。

各位专家在专题讲座中,阐述了自己对小学数学教学的独见解,对新课程的各种看法,对数学思想的探讨,在专家们的引领下,我对新课程有了全新的理解和完整清晰的认识。

课堂教学要体现学生的主体地位,学生是学习的主人,教师起主导作用,要引导学生动起来,教师提出问题,要让学生去分析,去探讨,去解决问题;教师“一桶水”的理念已不能满足职业要求,教师要树立“终身学习”的新教育教学理念,努力使自己向“学者型,钻研型”的教师靠拢。

通过集中理论学习,使我们逐步更新了教育教学观念,明晰了新一轮基础教育课程改革,在优化课程改革、调整课程门类,更新课程内容、改革课程管理体制和考试评价制度等方面,都取得了突破性进展。教师要经常反思,让反思成为一种习惯,而且更重要的是引领学生经常反思,让学生也养成反思的好习惯。

二、活到老、学到老。

这次网络培训,找到了自己的不足,明确了今后努力的方向,我要以这次培训作为起点,活到老,学到老,博览群书,不断进取,不断创新,探索,提高自己的教学教研能力,养成终身学习的习惯,和学生共同成长,与时俱进。以高度的责任心对待自己的工作,大胆尝试,以爱育人,零距离,多角度、全方位地与学生互动,以自己的努力,让我的每一个学生都拥有一个属于自己的舞台,以至于对他们的一身产生积极的影响。

总之,这次培训,我的收获比任何一次继续教育的收获还多,我决心以这次难得的培训为契机,通过自己的不懈努力和学习,尽快地提高自己的专业知识和教学水平,与时俱进,尽职尽责,使自己成为一名新时期合格乃至优秀的小学数学教师,为我国的教育事业贡献出应有的光和热。新课程将改变教师与学生的传统角色、教学方式和学习方式,积极倡导学生主动学习和主动探究的精神,教师要不断地实现自我更新。新课改强调教师是学习活动的组织者和引导者,同时认为学生才是课堂的主体,老师应尽可能地把课堂还给学生,让尽可能多的学生参与课堂,力争把课堂还给学生,让学生成为学习的主人。

学习数学思想方法心得体会精选模板【二】

小学数学新课程标准中指出:数学课程其基本出发点是促进学生全面、持续、和谐的发展。它不仅要考虑数学自身的特点,更应遵循学生学习数学的心理规律,强调从学生已有的生活经验出发,让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程,进而使学生获得对数学理解的同时,在思维能力、情感态度与价值观等方面得到发展。根据这一指导思想,我们在数学的教学过程中,必须从学生熟悉的生活情境和感兴趣的事物出发,使他们体会到数学就在身边,进一步感受到学习数学的趣味和作用,体验到数学的魅力。

苏霍姆林斯基说:“当知识与积极的活动紧密联系在一起的时候,学习才能成为孩子们精神生活的一部分。”体验学习是在新课改理念下产生的一种教育思想,它充分展现了以人为本的教育理念:通过让学生参与知识的获得过程、参与思维的形成过程、参与问题的解决过程;使学生在体验中思考,在思考中创造,在创造中发展;使他们的情感、态度和价值观得到充分的发展。在教学中,使学生体验到数学的精彩、探究的快乐、成功的喜悦,是每一位课改教师义不容辞的责任。

“让学生在学习活动中体验和理解数学”是《数学课程标准》给我们的第一条建议,可见体验的过程对孩子成长的重要性。体验学习能使学生的学习进入生命领域,调用各种器官去体验、去感受,能为学生的认知结构与知识结构之间架起一道无形的桥梁,是知情合一的学习。这就告诉我们:在教育教学中我们应该提倡体验学习。

学习必须讲究方法,而改进学习方法的本质目的,就是为了提高学习效率。可以这样认为,学习效率很高的人,必定是学习成绩好的学生(言外之意,学习成绩好未必学习效率高)。因此,对大部分学生而言,提高学习效率就是提高学习成绩的直接途径。

下面是几条我搜集的提高学习效率的经验:

1、不妨给自己定一些时间限制。连续长时间的学习很容易使自己产生厌烦情绪,这时可以把功课分成若干个部分,把每一部分限定时间,例如一小时内完成这份练习、八点以前做完那份测试等等,这样不仅有助于提高效率,还不会产生疲劳感。如果可能的话,逐步缩短所用的时间,不久你就会发现,以前一小时都完不成的作业,现在四十分钟就完成了。

2、不要在学习的同时干其他事或想其他事。一心不能二用的道理谁都明白,可还是有许多同学在边学习边听音乐。或许你会说听音乐是放松神经的好办法,那么你尽可以专心的学习一小时后全身放松地听一刻钟音乐,这样比带着耳机做功课的效果好多了。

3、不要整个晚上都复习同一门功课。除了十分重要的内容以外,课堂上不必记很详细的笔记。如果课堂上忙于记笔记,听课的效率一定不高,况且你也不能保证课后一定会去看笔记。课堂上所做的主要工作应当是把老师的讲课消化吸收,适当做一些简要的笔记即可。

4、劳逸结合。学习效率的提高最需要的是清醒敏捷的头脑,所以适当的休息,娱乐不仅仅是有好处的,更是必要的,是提高各项学习效率的基矗课前要有一定的预习,这样课本上讲的内容、听起课来就比较有针对性。预习时,不必搞得太细,如果过细一是浪费时间,二是上课时未免会有些松懈,有时反而忽略了最有用的东西。上课时认真听课当然是必须的.5、作题的效率如何提高呢?最重要的是选“好题”,千万不能见题就作。作题效率的提高,很大程度上还取决于作题之后的过程,对于做错的题,应当认真思考错误的原因,是知识点掌握不清还是因为马虎大意,分析过之后再做一遍以加深印象,这样作题效率就会高得多。

学习数学思想方法心得体会精选模板【三】

通过学习,使我对新课程标准有了进一步的理解,对新教材有了一个新的认识,谈谈自己学习的感受:

《新课标》对于教材的编写特别提出了:

1、选取密切联系学生生活、生动有趣的素材;

2、给学生提供探索与交流的空间;

3、呈现能小方式要丰富多彩;

4、内容设计要有一定的弹性;

5、重要的教学概念与教学思想宜体现螺旋上升的原则;

6、关注各部分内容之间的联系与综合;

7、介绍有关的数学背景知识。

我感受到:新教材特别关注学生的全面发展。由的同时,更加关注学生的情感,态度、价值观。新教材的编写从儿童的现实生活和童真世界出发。图文并茂,版式多样、风格活泼,色彩明丽,能吸引学生阅读,激发学习兴趣。因此,面对耳目一新的教材。我们当教师的就应该理解教材目标,明白把握教材编排的特点,选用恰当的教学手段,努力为学生创造一个良好的有利益学生全面发展的教学情境。从而达到激发学习兴趣,使学生积极主动的参与到教学中来。

总之,面对新课程改革的挑战,我们任重而道远,我们必须正确、深入理解新课标思想,转变教育观念,多动脑筋,多想办法,多学习,让学生在学习数学中享受数学的乐趣。

学习数学思想方法心得体会精选模板【四】

有了一个积极的学习态度,接下来就是方法的问题了。其实,如果肯下工夫,肯钻研,是没有学不会的知识,掌握不了的概念的。课前的预习很重要,预习后心里就有了底。这样听课时就好比是一次复习。关于听课时的状态,我崇拜的著名的数学教师孙维刚曾经说过这样一段话:“一个概念提出来了,不妨试着自己先给它下定义;一个定理或公式写出来了,自己先试着去证明它;一个例题写出来了,自己先试着分析、解出它。让思维跑在老师的面前,这样听课,才会体会到思维的乐趣。”写在这里和大家分享,希望大家能够从中得到一些启示。

数学的学习本身就包含很多的思想和概念,有时候这些思想概念是靠自己感悟获得的,但大多数时候他们是通过和别人的交流中获得的。试着去和身边的同学、老师交流你的感想,利用各种机会和别人交流。一定会有收获的!

学有余力的同学可以看一些数学竞赛方面教程,开阔一下眼界。就算是看不太懂也没有关系。因为通过深层次的学习,你大体可以知道某一个独立的知识点在更高的能力层次上有什么要求。这样反过来再看课本上的内容的时候,你就会恍然大悟——原来这么简单啊!

平时有意识地培养自己对数学的兴趣,当然不能只把知识局限在所学的书本上。我平时就喜欢读一些小册子,有的是讲数学家的故事的,有的是讲数学上的大发现,也有的是讲数学史上的有趣的故事。配合着课本读,会提高你对数学的兴趣的。

当然,最实用的学好数学的方法就是肯下苦功夫。孙维刚老师曾经说过:“要热爱枯燥和痛苦,要耐得住寂寞,要学会享受不是享受的享受。”这其实也正暗示了“学数学如做人”,“不是享受的享受”对那些视数学为拦路虎的人永远不是享受,而只有那些钻进去了,在数学这个领域有了一定程度的“彻悟”的人才会把学习数学当成一种享受,并永远珍藏在心中。

学习数学思想方法心得体会精选模板【五】

寒窗苦读,孜孜不倦;踏破黎明,披星归来。

新一轮期中考,几家欢喜几家愁?时间流向过去,但其中的经验教训仍在进行时,对未来依然受用。

临考前的状态是很重要的,考前的几分钟努力已成定局,再临急抱佛脚,也收效甚微。还不如放松一下,闭目养神,保持清醒头脑,不做低级错误。

考试中做不同题型有不同的应对方法。但还是那一句,适合自己的就是最好的,自己特有的方法是在长期练习中积累并掌握的。

选择题和填空题

做此类题时速度一定要快,遇到纠结与不会的项,先填一个答案上去,并在问卷上标记,在做完所有题后再思考。10道选择题和5道填空题应在20—30分钟内完成。

计算题

计算题不要求思维能力太强,得分容易,应保证是100%得分。建议做完一题,用另一种不同的方式再做一次在草稿纸上或心算,对比答案。8道计算题,直接写出答案和列等式应在5—10分钟内完成。

解答题

审题很重要。边看边可以把给出的条件标出,提醒自己不要遗漏,一般在解答式中每个条件都会用上,所以要思考问卷给出的条件有什么作用,结合实际问题解答。即使你什么都不会,也要把所有条件所对应的解答方式写出来,或许你就能发现了他的解法,其实最终答案占的分值小,主要还是看你的过程对应的分值点。

在解答几何题时,你要谨记,所有图形(这里指只由线段构成)中,都可以看作由几个三角形拼成的,可以利用最少的辅助线分成几个三角形,利用三角形的定义和性质解决,这是解几何的方法之一。考试时,也会把多个公式糅合起来,变一下形,这时就要通过记住不同公式的特点,判断属于哪些公式,再解答。解答题要懂得取舍,一题超过10分钟就不要浪费时间了。

考试后

考试后,注意公式的整理,把它们中相关的联系起来,系统记忆,做到只记一个公式,便能延伸出更多的公式,对现有的知识一定要融会贯通,举一反三,触类旁通。

第二篇:数学思想方法心得体会

数学思想方法心得体会

数学思想方法是从数学内容中提炼出来的数学学科的精髓,是将数学知识转化为数学能力的桥梁。下面是小编帮大家整理的数学思想方法心得体会,希望大家喜欢。

随着素质教育的深入开展,数学思想方法作为数学素质教育的重要内容已引起教育界的普遍关注和高度重视。做为未来高中教师的初等教育系的学生肩负着基础教育的重任,所以更应具有创新意识和创新能力。那么,应当如何认识数学思想方法?数学思想方法与初等数学又有什么样的关系?在初等数学的教学中又如何体现和渗透数学思想方法?

数学关键就在一个悟字,所谓悟,就是开窍,如何开窍,就要求讲师不要只讲题目的做法,而是包括,是怎么想到要这么做的,以引导学生去理解,去悟,对于初等数学,本人的看法是随便怎么做,因为初等数学的试题必然有解,必然是可以通过所给条件经过N多步骤推出来,不信可以试试,拿一道,先什么都不要管,只管把已知条件以全排列方式组合,以推出新的条件,再将所得条件组合,再推,直到最后推无可推,你会发现题目所求就在其中,甚至简单的可能是离最终结论还有N步,复杂的估计也就是最终结论了,所以以高考为目的的初等数学题目是不经做的,因为只要你做,就一定能做出来,而之所以很多学生觉得难,没处着笔,不知道改该怎么做,很大一部分是因为懒,不愿动笔,而只是

呆看,简单的能看出来,复杂的是很难看出来的,如果说那种直接推导的办法太耗时间,那么只能说是因为不熟练,一旦题目做多了,思维形成了,差不多就可以一眼看出来,顶多推两步,就知道后面的怎么推了,从而省略了N多的分支,古往今来的题海战术不是没有依据的,熟能生巧,见得多了,做的多了,自然可以找到某种规律

初数研究课在研究初等数学问题时,大多采用专题讨论的方法,都有一套完整的体系。如果过分强调自身完整的逻辑系统,容易导致不同学科、不同课程的内客及方法有很多重复和交叉。

如数与初等数论中的相关内容,解析式的恒等变形,方程、不等式的解法与证明,几何证题法与证题术排列、组合及数列的一些解题方法等。如果不处理好它们之间的关系,只是简单地追求各门课程自身体系的完整,既不利于学生整体数学思想的建立,又制约了他们数学综合运用能力的提高,同时占用了很多的课时,所以,对于相关课程中己作详尽讨论过的知识及理论,应作为工具来应用,避免一些不必要的重复。

1.知识系统的探究

初数研究课涉及大量的理论,教师讲、学生听的传统教学模式既占用课时多,又难以体现学生的主体性。因此对理论性较强的内容,教师可以先提出一些切题的问题作为一堂

课的锲子,留待后面逐个解决。这些问题将整个教学内容串起来,起到提纲挚领的作用,使学生明确学习目标,集中学习资源有针对性地去探究问题,然后教师组织学生对探究的结果进行归纳整理,形成较完整的知识体系。当然一个问题的解诀并非探究的终结,在探究过程中教师与学生都可以提出一些新问题,延续学生探究的热情,在合作交流的民主和谐的氛围里,尽可能地让学生走向自由探究。

2.解题方法的探究

从学生的认知角度未说,解题过程是独立的发现、探索与积极思考的过程,这种探索过程中所形成的意识和思维,就是真正的创造与发现。应该说,解题教学是中学数学教学的主要任务之一,设置初数研究课程的目的之一,就是结合中学实际对解题作专门的训练。

3.条件与结论的探究

对一个问题的条件或结论进行探究是对问题深入研究的重要组成部分,也是初数研究课程中具有挑战性的任务之一,引导学生从不同角度、不同层面来看问题,对学生的发散思维及创造思维的培养,都能起到良好的推动作用。

随着教学改革的深化,教学思想方法不仅要在理论上做研究探讨,更重要的是需要在实践中不断地创造与完善,才能使教学取得较好的效果。

第三篇:小学数学思想方法培训心得体会

感悟思想方法 提高学生素养

——小学数学思想方法培训心得体会

学期末结束之际,县教研室到我镇举行了以“小学数学思想方法分析梳理”为主题的培训活动。

会上,四位专家名师从重要性、定义、内涵、区别与联系、教学策略、现实背景、发展趋势等多个方面对小学数学思想方法做了解读,用理论联系案例分析,或稳重深沉、或生动活泼,都独具特色。这次活动意义非凡,为我镇数学老师们积蓄了知识底蕴,打下了强心剂,更为下学期的数学教学工作夯实了基础。

培训时间仅仅是短短的半天,但“听君一席话,胜读十年书”,专家名师们的解读使我对新课标的新理念有了更深一层的理解,对小学数学思想方法的内涵有了较为深刻的认识,对教材使用、对课堂环节中的渗透策略更明确了,并且了解了中学、小学的教材衔接要点。

原来提到数学思想方法的时候,总是感觉似乎知道一些,总想应用它来指导自己的教学,但是自身对数学思想方法的理解不深透,另外又觉得数学思想方法的渗透教学在课堂教学中短时期难以见成效。所以本人的教学现状中仍然存在一些急功近利的不好现象。

数学名师工作室主持人张富老师一语道破玄机:加强数学思想方法的教学是进一步提高数学教学质量的需要。从数学教材体系看,整个小学数学教材中贯穿着两条主线,一是写进教材的最基础的数学知识,它是明线,一贯很受重视,必须切实保证学生学好。另一条是数学能力培养和数学思想方法的渗透,这是条暗线,较少或没有直接写进教材,但对小学生的成长却十分重要,也越来越引起人们的重视。

在教学中不能只注重数学知识的教学,忽视数学思想方法的教学。两条线应在课堂教学中并进,无形的数学思想将有形的数学知识贯穿始终。重视数学思想方法的教学有利于教师从整体上把握数学教学目的,将数学的本质、知识形成的过程,解决问题的过程展示给学生,教学达到事半功倍。

近年来执教六年级,每每聊到自己的教学,自我感觉还算良好。哪知总是被身在中学的爱人屡屡抨击:“你们这些小学教师很是过分!学生都被你们榨干了油,到中学来怂得不得了!脑筋都不会动动,像根木头!”此话虽不好听,但揭示了某些不良的教学现状:重知识结论、轻知识发生过程;重知识达标评价,轻数学思想形成的评价;重学生眼前的分数利益,轻学生的长远素质发展等。

这个让我很是尴尬的问题在这次培训上得到了镇一中毕老师的解答。他主讲了“中小学教材的衔接问题”,从“中小学数学知识的变化特点”、“中学数学需要什么样的基本功”等方面帮大家揭开了眼前的迷雾。毕老师的幽默调侃中也流露出中学老师们的担忧:中小学教材衔接问题,学生后续力的问题。我不由得想起了一个笑话——中国的家长们总是急:不能让孩子输在起跑线上!于是,不能让孩子输在小学、不能让孩子输在幼儿园、不能让孩子输在胎教上„„言归正传,一开始就催促学生拼命跑的我们是不是该以“人”为本,放缓一些脚步,让孩子们从容领略教育的芳香?是不是“授之以鱼不如授之以渔”?

谈到中、小教材衔接,延伸学生后续力,我想:作为一名六年级教师,研读、通读中小学数学教材是非常有必要的。串点成线,扩线成面,织面成网,构建知识树,方能张弛有度、挥洒自如。我想起数学名家吴正宪老师的故事:她在对数学教学一片空白的情况下,仅用

了一个暑假假期,就把1——12册全套数学教材所有的例题、思考题及有代表性的练习题全部做了一遍。查阅了大量的参考资料,虚心向老师们学习,并根据数学知识的内在联系整理成知识网状图,整理了厚厚的一大本学习笔记。在通读和熟悉全套数学教材的基础上,认真演算发散题、辅导题、竞赛题,草纸摞起来比写字台还要高。另外,能不能让中小学教师也互相听听课?甚至适当地换几天岗?毕竟“他山之石,可以攻玉”。

教材改了多个版本,原来我总是认为作为一名小学教师,只要把自己这本数学书教好就行了,我曾经认为,改来改去也只是“换汤不换药” 而已。县教研室李主任的一番话让我猛如醍醐灌顶!教什么?怎样教?如何评价? 小学数学教学的根本任务是全面提高学生素质!其中最重要的因素是思维素质,而数学思想方法就是增强学生数学观念,形成良好思维素质的关键。如果将学生的数学素质看作一个坐标系,那么数学知识、技能就好比横轴上的因素,而数学思想方法就是纵轴的内容。淡化或忽视数学思想方法的教学,不仅不利于学生从纵横两个维度上把握数学学科的基本结构,也必将影响其能力的发展和数学素质的提高。因此,向学生渗透一些基的数学思想方法,是数学教学改革的新视角,是进行数学素质教育的突破口。

任何一种数学思想方法的学习和掌握,绝非一朝一夕的事,它需要有目的、有意识地培养,需要经历渗透、反复、逐级递进、螺旋上升、不断深化的过程。数学教学内容始终反映着数学知识和数学思想方法这两方面,数学教材的每一章、每一节乃至每一道题,都体现着这两者的有机结合。只要我们在教学中对常用数学方法和重要的数学思想引起重视,大胆实践,持之以恒,寓数学思想方法于平时的教学中,并有意识地运用一些数学思想方法去解决问题,学生对数学思想

方法的认识一定会日趋成熟,一定可以使学生的数学学习提高到一个新的层次、新的高度,也会使数学教学脱离“题海”之苦,使其更富有朝气和创造性。

第四篇:数学思想方法缩印

数学思想方法:是对数学知识本质认识,对数学规律的理性认识,是从某些具体的数学内容和对数学知识的认识过程中提炼上升的数学观点。

数学方法:是从数学的角度提出问题,解决问题的过程中所采用的方式,手段,途径等。

中学数学涉及的思想方法有:1用字母代替的数的思想方法2集合的思想方法3函数、映射、对应的思想方法4统计思想和数据处理方法5算法思想6数形结合的思想方法7最优化的思想方法8极限思想和逼近方法9分类的思想方法10参数的思想方法 数学思想方法教学的特点:1隐喻性2活动性3主观性4差异性

从学生的认知角度看,数学思想方法的构建有三个阶段:潜意识阶段,明朗和形成阶段,深化阶段 在数学教学的不同阶段,如何进行数学思想方法教学;1在知识形成阶段,可有计划有步骤地选用观察、实验、比较、分析、抽象、概括等抽象化、模型化的思想方法。字母代替数的思想方法、函数的思想方法、方程的思想方法、极限的思想方法、统计的思想方法等2在知识结论推导阶段和解题教学中,可选用分类讨论、化归、等价转换、特殊化与一般化、归纳、类比等思想方法3在知识的总结性阶段,可采用结构化、公理化等思想方法 化归方法的基本思想是什么“化归”是转化和归结的简称。其基本思想是:人们在解决数学问题时,常常是将待解决的问题A,通过某种转化手段,归结为另一个问题B,而问题B是相对交易解决或已有固定解决程式的问题,且通过对问题B的解决可得到原问题A的解答 化归方法的基本原则:1化归目标简单化原则2具体化原则3和谐统一性4形式标准化原则5低层次化原则 RMI原理:通过建立欧式平面到有序实数对集合的映射,将平面几何问题转化为简析几何问题的过程,以及通过建立平面直角坐标系到复数集的映射,将几何问题化归为复数问题的过程。它们有着共同的形式,即通过寻找适当映射实现化归的策略进一步形式化地抽象为关系映射反演原理简称RMI原理

数学抽象的基本原则是逻辑建构形式化原则

数学抽象的主要方法:性质抽象,关系抽象,等置抽象,无限抽象,弱抽象和强抽象

数学模型方法是借用数学模型来研究原型的功能特征及其内在规律,并应用于实际的一种方法

数学建模的一般原则:1简化原则 2可推演,3反映性 必真推理方法包括演绎法和完全归纳法。完全归纳法常会用到穷举和类分的方法

类比法:类比法是根据两个或两类事物在某些属性上都相同或相似,而推出它们在其他属性上也相同或相似的推理方法

人们经常在数与式之间、平面与立体之间、一维与多维之间进行种种类比

类比的一般模式A类事物具有性质a1,a2,a3,a4,B类事物具有性质a1,a2,a3,所以B类事物可能具有性质a4 类比的三个环节:1依据某种相似性寻找适合的类比物2将两个对象的相似性进一步明确化3依据1、2步中明确化的相似性推测相似结论,得到命题或证明方法的猜想 反证法:当证明论题p→q时,不去直接证明它,而是把﹁q作为前提,加进原论题的前提,并根据已知真命题和推理规则推出与另一已知真命题或原论题的前提相矛盾的结论,或者导出自相矛盾的结论,从而确立论题的正确性

计算机技术和数学科学的迅速发展推动了几何定理证明机械化的进程,吴文俊先生研究几何证明的机械化方法 算法是指可以用计算机来解决的某一类问题的程序或步骤,它的主要特征是程序性、明确性和有限性

在向量运算的教学中,特别要重视向量的数乘运算和数量积运算

公理化方法:从尽可能少的一组原始概念和公设和公理出发,运用逻辑推理原则,建立科学体系的方法。具体形态:1实体性公理化方法,形态公理化方法和纯形式公理化方法

公理化方法的逻辑特征:1无矛盾性2独立性3完备性 公理化方法对教学的启示:1启发学生自己去寻找依据2使学生在寻找体验依据的过程中,培养起”说理有据“的习惯和能力3在运用公理化方法解决问题时,要帮助学生将命题的条件和结论联系起来4应让学生在公理化方法中学到从一般到特殊逻辑和直观的教学的基本要素5要帮助学生认识运算是从一个或几个已知判断得到一个新判断思维过程

在数学和数学学习中,分析和综合的二种意义:1分析与综合可以理解为证明定理和解题的思维方法2分析与综合可以理解为研究数学概念和性质的方法

数学方法在实际应用中往往具有过程性和层次性的特点 涉及到无限概念的抽象为无限抽象,它分为潜无限抽象和实无限抽象

等置抽象是按某种等价关系,抽取一类对象共同性质特征的抽象

性质抽象是考察被研究对象某一方面的性质或属性,而抽取向量性方面的性质或属性的抽象方法

关系抽象是指根据认识目的,从研究对象中抽取或建构若干构成要素之间的数量关系或空间位置关系,而舍弃其他无关特征或物理现实意义的抽象方法

强抽象是指通过强化对象的特征,即增加对象的性特征来完成抽象建构,已形成新概念或模式的抽象方式 弱抽象是指由原型中抽取其某一方面的特征或侧面加以概括,从而形成比原对象更为一般的概念或理论的一种抽象方式

数学抽象是一种特殊的抽象,具体表现为它的抽象的内容,程度和方法上

数学中的三种母结构为代数结构,序结构,拓扑结构 数学推理:是从一个或几个已知判断得到一个新的判断的思维形式

推理的种类:安思维的方向性,可分为演绎推理、归纳推理、类比推理

推理有内容和形式两方面。内容指前提和结论的真假性问题,形式是所推理的结构形式问题

数学推理的规则:1三段论推理规则2联言推理规则3选言推理规则4分离规则5否定推理规则5逆推理规则6逆否规则

不完全归纳的理论依据:1共性存在于个性之中2普遍性寓于特殊性之中

为什么说数形结合方法是最基本最常用的方法,如何用?数学是研究数量关系和空间形式的科学。即就是研究数与形的科学,而且数学的高度抽象性,带来了数学的难教、难懂、难学。正是数学科学的研究对象和特点,决定于数形结合是数学思考和研究问题的基本方法,它可以帮助人们将抽象的而难题变得直观、形象,便于思考和研究,也可以帮助人们将直观问题数量化、精确化,促进问题的解决。如何用?1从数到形,以形论数2从形到数,以数论形3数形结合,互相转化,互相补充 公理化方法的意义和作用?1公理化方法有利于在理论上探索事物的发展规律2公理化方法有助于培养学生的逻辑思维能力3公理化方法对数学的发展起的积极作用及其局限性

不完全归纳:不完全归纳法即不完全归纳推理,是根据考察的一类事物的部分对象具有某一属性,向做出该类事物都具有这一属性的一般结论的归纳推理

数学思想方法:是对数学知识的本质认识,对数学规律的理性认识,是从某些具体的数学内容和对数学知识的认识过程中提炼上升的数学观点。

数学方法:是从数学的角度提出问题,解决问题的过程中所采用的方式,手段,途径等。

中学数学涉及的思想方法有:1用字母代替的数的思想方法2集合的思想方法3函数、映射、对应的思想方法4统计思想和数据处理方法5算法思想6数形结合的思想方法7最优化的思想方法8极限思想和逼近方法9分类的思想方法10参数的思想方法 数学思想方法教学的特点:1隐喻性2活动性3主观性4差异性

从学生的认知角度看,数学思想方法的构建有三个阶段:潜意识阶段,明朗和形成阶段,深化阶段 在数学教学的不同阶段,如何进行数学思想方法教学;1在知识形成阶段,可有计划有步骤地选用观察、实验、比较、分析、抽象、概括等抽象化、模型化的思想方法。字母代替数的思想方法、函数的思想方法、方程的思想方法、极限的思想方法、统计的思想方法等2在知识结论推导阶段和解题教学中,可选用分类讨论、化归、等价转换、特殊化与一般化、归纳、类比等思想方法3在知识的总结性阶段,可采用结构化、公理化等思想方法 化归方法的基本思想是什么“化归”是转化和归结的简称。其基本思想是:人们在解决数学问题时,常常是将待解决的问题A,通过某种转化手段,归结为另一个问题B,而问题B是相对交易解决或已有固定解决程式的问题,且通过对问题B的解决可得到原问题A的解答 化归方法的基本原则:1化归目标简单化原则2具体化原则3和谐统一性原则4形式标准化原则5低层次化原则

RMI原理:通过建立欧式平面到有序实数对集合的映射,将平面几何问题转化为简析几何问题的过程,以及通过建立平面直角坐标系到复数集的映射,将几何问题化归为复数问题的过程。它们有着共同的形式,即通过寻找适当映射实现化归的策略进一步形式化地抽象为关系映射反演原理简称RMI原理

数学抽象的基本原则是逻辑建构形式化原则

数学抽象的主要方法:性质抽象,关系抽象,等置抽象,无限抽象,弱抽象和强抽象

数学模型方法是借用数学模型来研究原型的功能特征及其内在规律,并应用于实际的一种方法

数学建模的一般原则:简化原则,可推演原则,反映性原则

必真推理方法包括演绎法和完全归纳法。完全归纳法常会用到穷举和类分的方法

类比法:类比法是根据两个或两类事物在某些属性上都相同或相似,而推出它们在其他属性上也相同或相似的推理方法

人们经常在数与式之间、平面与立体之间、一维与多维之间进行种种类比

类比的一般模式为:A类事物具有性质a1,a2,a3,a4,B类事物具有性质a1,a2,a3,所以B类事物可能具有性质a4

类比的三个环节:1依据某种相似性寻找适合的类比物2将两个对象的相似性进一步明确化3依据1、2步中明确化了的相似性,推测相似结论,得到命题或证明方法的猜想

反证法:当证明论题p→q时,不去直接证明它,而是把﹁q作为前提,加进原论题的前提,并根据已知真命题和推理规则推出与另一已知真命题或原论题的前提相矛盾的结论,或者导出自相矛盾的结论,从而确立论题的正确性

计算机技术和数学科学的迅速发展,推动了几何定理证明机械化的进程,吴文俊先生研究几何证明的机械化方法

算法是指可以用计算机来解决的某一类问题的程序或步骤,它的主要特征是程序性、明确性和有限性

在向量运算的教学中,特别要重视向量的数乘运算和数量积运算

公理化方法:从尽可能少的一组原始概念和公设和公理出发,运用逻辑推理原则,建立科学体系的方法。具体形态:1实体性公理化方法,形态公理化方法和纯形式公理化方法

公理化方法的逻辑特征:1无矛盾性2独立性3完备性 公理化方法对教学的启示:1启发学生自己去寻找依据2使学生在寻找体验依据的过程中,培养起”说理有据“的习惯和能力3在运用公理化方法解决问题时,要帮助学生将命题的条件和结论联系起来4应让学生在公理化方法中学到从一般到特殊逻辑和直观的教学的基本要素5要帮助学生认识运算是从一个或几个已知判断得到一个新判断的思维过程

在数学和数学学习中,分析和综合的二种意义:1分析与综合可以理解为证明定理和解题的思维方法2分析与综合可以理解为研究数学概念和性质的方法

数学方法在实际应用中往往具有过程性和层次性的特点 涉及到无限概念的抽象为无限抽象,它分为潜无限抽象和实无限抽象

等置抽象是按某种等价关系,抽取一类对象共同性质特征的抽象

性质抽象是考察被研究对象某一方面的性质或属性,而抽取向量性方面的性质或属性的抽象方法

关系抽象是指根据认识目的,从研究对象中抽取或建构若干构成要素之间的数量关系或空间位置关系,而舍弃其他无关特征或物理现实意义的抽象方法

强抽象是指通过强化对象的特征,即增加对象的性特征来完成抽象建构,已形成新概念或模式的抽象方式 弱抽象是指由原型中抽取其某一方面的特征或侧面加以概括,从而形成比原对象更为一般的概念或理论的一种抽象方式

数学抽象是一种特殊的抽象,具体表现为它的抽象的内容,程度和方法上

数学中的三种母结构为代数结构,序结构,拓扑结构 数学推理:是从一个或几个已知判断得到一个新的判断的思维形式

推理的种类:安思维的方向性,可分为演绎推理、归纳推理、类比推理

推理有内容和形式两方面。内容指前提和结论的真假性问题,形式是所推理的结构形式问题

数学推理的规则:1三段论推理规则2联言推理规则3选言推理规则4分离规则5否定推理规则5逆推理规则6逆否规则

不完全归纳的理论依据:1共性存在于个性之中2普遍性寓于特殊性之中

为什么说数形结合方法是最基本最常用的方法,如何用?数学是研究数量关系和空间形式的科学。即就是研究数与形的科学,而且数学的高度抽象性,带来了数学的难教、难懂、难学。正是数学科学的研究对象和特点,决定于数形结合是数学思考和研究问题的基本方法,它可以帮助人们将抽象的而难题变得直观、形象,便于思考和研究,也可以帮助人们将直观问题数量化、精确化,促进问题的解决。如何用?1从数到形,以形论数2从形到数,以数论形3数形结合,互相转化,互相补充 公理化方法的意义和作用?1公理化方法有利于在理论上探索事物的发展规律2公理化方法有助于培养学生的逻辑思维能力3公理化方法对数学的发展起的积极作用及其局限性

不完全归纳:不完全归纳法即不完全归纳推理,是根据考察的一类事物的部分对象具有某一属性,向做出该类事物都具有这一属性的一般结论的归纳推理

第五篇:小学数学思想方法学习心得

《小学数学思想方法》学有所得

我们在老师的指导下着重学习了《小学数学教材概说》第二章的小学数学思想方法中的集合思想、对应思想、符号化思想、极限思想、统计思想、数学模型方法,并分析了这些思想方法在小学数学教材中的渗透。

通过在课堂上对小学数学思想方法的学习,我深刻地认识到学习并研究数学思想方法对于数学教学具有重大意义。首先,懂得数学思想方法有利于教师深刻地认识数学教学内容,正确把握教材体系,以较高的观点分析和处理小学教材。小学教材体系就两条主线:

一、数学知识;

二、数学思想。教师会分析教材,就能明确数学知识;而数学思想是必须掌握了它的方法才能明确为什么要这样写,才能从整体上、本质去理解教材,也才能科学、灵活地设计教学方法,提高课堂教学效率。其次,懂得数学思想方法有利于提高学生的数学素养,促进学生思维能力的培养。最后,有利于对学生进行美育渗透和辩证唯物主义的启蒙教育。

正是因为我意识到懂得数学思想方法对数学学习和教学具有重大意义,所以我利用课余时间学习了小学数学的其他思想方法:类比思想、转化思想、分类思想、代换思想、可逆思想、化归思想、整体思想、比较思想、假设思想、数形结合思想。

其中我对类比思想方法颇感兴趣,对它的了解比较深刻。类比思想是把某一或几个方面彼此一致的新旧事物放在一起相比较, 让学生由旧事物的已知属性推出或猜想新事物也具有相同或类似属性的一种逻辑推理方法, 它包含特殊到特殊, 也包含一般到一般。整个思维过程是以“联想”为前提;以“相似性”为向导;以提出“猜想”为使命;以发现“新规律”为目的。在小学数学课堂教学中渗透类比思想,通过以下几个方面实现:(1)渗透类比思想探究新知(2)渗透类比思想建构知识网络

(3)渗透类比思想激发创新思维(4)渗透类比思想加深对概念的理解。在运用类比方法时应注意以下几点。

(一)类比的结论具有或然性:或者正确,或者不正确,或者不完全正确,对类比的结论能进行辩证的处理。

(二)类比推理需要相当的引导,且学生容易为表面上相似的类比所误导,有位数学家于1992年提出几个克服类比障碍的方法:(1)由学生自己类比。(2)使用多种类比。(3)教师应明确指出类比推理可能失败之处。

(三)要想让学生掌握一些类比思维,作为一名小学数学教师应该做到以下几点:

1、教师应该从自身做起,先要使自己充实起来,这样才能将思想,方法逐渐渗透到学生的思维中,因此教师迫切需要学习和掌握以下知识:(1)补充综合性知识。从今后发展来看,知识也是日趋综合化,很多问题不是只用一门学科知识就能解决和回答的。老师必须在知识上融会贯通,才能更好的在课堂上启发引导学生,实现纵横类比。(2)挖掘教材中的潜在知识。有些知识书本没有明确给出要求,但是必要时要给予补充。例如:苏教版小学数学第六册第94-95页,这部分内容讲的虽是长方形面积,但是从教材中可以发现它隐含了简单的统计思想。教师教学时要注意挖掘这部分知识。

2、老师在教学过程中也要创设一种有培养创造性思维的教学情境。如采用开放式教学。

3、要培养学生的类比思维能力,首先要注意培养学生的归纳总结能力,只有概括出不同知识的相同或相似的性质,才能引导学生进行类比。古代学者韩愈提倡读书学习先要入书,后要出书,要先把书读厚,再把书读薄。这就是说要总结,要概括,要深入认识问题的精神实质。运用类比让学生去发现,去创造,让教学充满创新与活力。懂得了数学思想方法也意识到了它的重要性,那么在教学中,如何将这些方法渗透呢?经过思考我个人有几点看法:(1)提高渗透的自觉性,在知识的形成、发展过程中,渗透数学思想与方法;(2)把握渗透的可行性,在解题思路的探索中,揭示数学思想与方法;(3)丰富数学渗透的人文性,在问题解决方法的探索过程中,激活数学思想与方法;(4)注重渗透的反复性,在知识的总结归纳过程中,概括数学思想与方法。

以上是我在小学数学思想方法这一章学习之后的心得与思考,若有不妥的的地方还请老师指点迷津,谢谢啦!

下载学习数学思想方法心得体会(五篇范例)word格式文档
下载学习数学思想方法心得体会(五篇范例).doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    数学思想方法学习心得(推荐)

    《数学思想方法》心得体会 宁安市东京城镇小学 黄淑伟 我通过对数学思想方法的学习,并结合我在工作中的实际情况,体会到如下心得: 数学的内容、思想、方法和语言广泛渗入自然学......

    数学思想方法(含五篇)

    函数是数学的纲,力和运动的关系是物理的纲。而力和运动的关系是因变量和自变量的关系也就是函数关系,所以数理不分家。最常用到的函数是三角函数,而力学中的力的分解和力的合成......

    数学思想方法与应用

    沈括运粮故事浅析 田小宽 (数学与统计学学院 数学与应用数学 2010212449) 【摘要】:沈括在其著作《梦溪笔谈》中,涉及了军队运粮的有关问题。他把每人背的粮食,每天的食量作为已......

    数学思想方法研究综述

    “数学思想方法研究”综述 连云港市新海实验中学孙朝仁 自93年《九年义务教育全日制初级中学数学教学大纲》明确提出数学思想方法是数学基础知识的重要组成部分以来,数学教......

    初中数学思想方法及其教学.

    初中数学思想方法及其教学 新课程教学大纲提出:初中数学的基础知识主要是初中代数、几何中的要领法规、公式、性质、公理、定理以及其内容所反映出来的数学思想和方法。数......

    数学思想方法学习心得(精选5篇)

    《数学思想在课堂教学中的体现、应用和推广的探究》课题 研究学习心得体会 商丘市第十六中学:韩远征 我通过对《数学思想在课堂教学中的体现、应用和推广的探究》这一课题的......

    数学思想方法教育的理解

    数学思想方法是从数学内容中提炼出来的数学学科的精髓,是将数学知识转化为数学能力的桥梁。初中数学思想方法教育,是培养和提高学生素质的重要内容。新的《课程标准》突出强调......

    初中思想方法与初中数学教学

    《初中思想方法与初中数学教学》――学习心得1 通过参加这次学习,我得到了很多的启发,首先,我了解了什么是数学思想方法,并知道了数学思想是对数学知识和方法本质的认识,是解决数......