第一篇:数学思想方法研究综述
“数学思想方法研究”综述 连云港市新海实验中学孙朝仁
自93年《九年义务教育全日制初级中学数学教学大纲》明确提出数学思想方法是数学基础知识的重要组成部分以来,数学教学中如何挖掘课本中所蕴含的数学思想方法、如何有效地进行数学思想方法教学、如何培养和发展学生的数学思想在近10中已经成为数学教育工作者普遍关注和潜心探索的一项重要课题。笔者从93年初就参与了江苏省教育科学规划课题“发展学生数学思想,提高学生数学素养”(简称为“MA”课题,“MA”是Mathematical Accomplishment的缩写)的教学实验研究工作,与课题组的老师们一道“抗战”了8年,进行了两轮的实验,取得了预期的成果,于2000年12月顺利通过省级结题鉴定。现笔者结合“MA”课题组的研究所得,以及笔者所收集到的从1996年至2001年数学期刊上所刊载的160余篇直接谈数学思想方法的文章,对中学数学思想方法的研究作粗浅综述。数学思想方法概念的界定
要想进行数学思想方法的教学研究,作为一线教师必须先搞清数学思想与数学方法以及它们之间的区别与联系。
1.1 文[1]说数学思想是“指现实世界的空间形式和数量关系反映在人的意识中经过思维活动而产生的结果。它是对数学知识和方法的本质认识,是对数学规律的理性认识。”文[2]一说数学思想是“人们对数学科学研究的本质及规律的深刻认识。它是指导学习数学、解决数学问题的思维方式、观点、策略、指导原则。”应该说,这两种说法是一致的。从狭义来理解,中学数学思想往往是指“数学思想中最常见、最基本、较浅显的内容”、“这些最常见、最基本的数学思想也是从某些具体的数学认识过程中提升出来的认识结果或观点,并在后继的认识活动中被反复运用和证实”(文[3]),而从广义来说数学思想泛指“某些有重大意义的、内容比较丰富、体系相当完整的的数学成果”(文[4]),对“数学思想”这一术语,目前还未形成精确的定义,综上所述比较一致的认识是,数学思想就是人们对数学知识和方法形成的规律性的理性认识、基本看法。
1.2 数学方法是指“人们解决数学问题的步骤、程序和格式,是实施有关数学思想的技术手段。”(文[1]),而与之相一致的说法是“数学方法是指某一数学活动过程的途径、程序、手段。”(文[2])由此可以看出,数学思想方法具有过程性、层次性、可操作性特点。
1.3 数学思想与数学方法的区别与联系。数学思想与数学方法既有差异性,又有同一性,其差异性表现在“数学方法是数学思想的表现形式和得以实现的手段,‘方法’指向‘实践’;而数学思想是数学方法的灵魂,它指导方法的运用”,“数学思想具有概括性和普遍性,而数学方法则具有操作性和具体性;数学思想是内隐的,而数学方法是外显的;数学思想比数学方法更深刻、更抽象地反映数学对象间的内在关系,是数学方法的进一步的概括和升华”(文[1])。可以这样理解,数学思想相当于建筑的一张图纸,而数学方法则相当于建筑施工的手段,数学思想比数学方法在抽象程度上处于更高的层次,难怪说“数学思想是一般哲学思想在教学中的体现,是在对数学知识做进一步认识和概括的基础上形成的观念”(文[5]);其同一性表现在“数学思想与数学方法同属方法论的范畴”,它们有时是等同的,人们往往把某一数学成果笼统地称之为数学思想方法,而当“用它去解决某些具体数学问题时,又可具体称之为数学方法”(文[3]),因而,在中学数学教学中一般将数学思想与数学方法统称为数学思想方法。
2.数学思想方法的分类以及在教材中的呈现方式
2.1关于数学思想方法的分类,近年来的数学期刊上所刊载的相当多,归纳起来,有如下几类:第一类是策略型思想方法,它包括化归、抽象概括、方程与函数、猜想、数形结合、整体与系统等;第二类是逻辑型思想方法,它包括演绎、分类、特殊化、类比、归纳、反证等;第三类是操作型思想方法,它包括构造、换元、待定系数、配方、参数、判别式等。上述三种类型中的各种思想方法的顺序是按在教材中出现频数的高低来排列的。
2.2上述所列的数学思想方法,在教材中多数没有给出具体的名称,只是在知识发生过程中应用了或隐含着这些思想方法。比如,在初中六册数学《教师用书》中,涉及数学思想方法就高达450次之多;再如,化归思想在初中六册教材总共210余节中,出现的总频数约为108次,占总节次数的50%左右。可见,作为中学数学教师善于发现或揭示教材中所隐含的数学思想方法是很有必要的。文[6]给出了数学思想方法在教材中的三种表现形式,其一是“某个知识内容直接反映了某个数学思想方法”;其二是“某个知识内容隐含着某些数学思想方法”;其三是“在某个知识内容中明确提出某一数学方法”。文[7]则从叙述方式或明显程度这两个方面,将数学思想方法呈现方式分为四类,“第一类,实话实说,标明名称;第二类,‘埋伏线’很长、须前后连贯方能领会其义,也须前后照应整体实施的思想方法;第三类,是带提示性的、或启发式或综合性的表述;第四类,采取隐晦的暗示的说法,看似没有却用意尽在其中”。所有这些都可为教师们所借鉴。3.数学思想方法的基本特征及其目标设制
3.1在中学数学教学中,教师们普遍比较重视数学思想方法应用的研究,从1997年被中国人大报刊资料复印中心《中学数学教学》G35复印转载或索引的有关数学思想方法的共76篇文章来看,诸如“浅谈××思想的教学”、“××思想的应用”、“例谈××思想方法在解中(高)题中的应用”等的文章就有60篇,可以看出,大部分教师没有就数学思想方法本身进行深层次的研究,不能很好地把握数学思想的基本特征,因而就不能较好地发挥数学思想的教学功能。文[3]论述了数学思想的四种基本特征,可供学习。这四种特征是“
1、导向性。它是研究数学和解决问题的指导思想,是数学思维的策略。数学思想的导向性表现在它既是数学产生和发展的根源,又是建立数学体系的基础,还是解决具体问题的‘向导’;
2、统摄性。主要表现在两个方面,一是优化数学知识结构,二是发展数学认知结构;
3、概括性。„„数学思想具有较高的概括性,概括性程度的高低决定了数学思想有层次之分,概括化程度高,其‘抽象度’大,对数学对象本质属性揭示的越深刻,对问题的理解也就愈透彻;
4、迁移性。„„这种迁移性表现在数学内部:数学思想是数学知识的精髓,这是数学知识迁移的基础和源泉,是沟通数学各部分、各分支间联系的桥梁和纽带,是构建数学理论的基石”。由此可见,只有了解数学思想的基本特征,才能在教学中有的放矢地渗透数学思想方法教学,不断提升自己的教学素质。
3.2我们知道学生数学思想的形成需要经历一个从模糊到清晰,从理解到应用的较长发展过程。这个过程目前比较一致的看法是从宏观上划分为四个层次,即渗透孕育期、领悟形成期、应用发展期、巩固深化期。数学思想从孕育到形成、发展,一般都需要经历这样一个复杂的“润物细无声”的过程。而这个过程中的教学目标往往不明确,课堂教学中的随意性、盲目性大,缺少计划性、系统性。既然数学思想方法被纳入数学基础知识的范畴,那么课堂教学中就应该有数学思想方法的教学目标。文[8]中设制了如下的数学思想分层教学目标: 层次
数学思想领域
认知领域
教的目标
学的目标
教的目标
教学目标
初期
蕴含
感受
渗透孕育
识记了解
中期
揭示
领悟
领悟形成
理解领会
后期
激活
发展
应用发展
掌握应用
并给出设定数学思想方法课堂教学目标时应注意的几点:“
1、数学思想方法教学目标陈述的主语应是学习活动的主体——学生;
2、数学思想方法教学目标要尽可能用学生的行为学习成果加以表述,即用那些可以外观和测量的行为动词来阐述目标;
3、数学思想方法的课堂教学目标应有多少个目标样本组成,要依据课时内容而定;
4、数学思想方法目标的设定或陈述不能也不可能很具体,要把握好数学思想方法目标的模糊程度,使得目标陈述既能从总体上指导教学,又不过分限制教学活动;
5、数学思想方法的课堂教学目标具有从简单到复杂、从浅层到深层渐增的层次性,这种层次性常常与课堂教学结构的各个重要环节相匹配,形成知识目标与思想目标的有机整合。” 4.数学思想方法教学的原则和教学基本途径
4.1如何进行数学思想方法的教学,笔者认为,文[7]的四点建议“
(一)数学思想方法教学的前提——不断强化教师的意识;
(二)数学思想方法教学的启动——深入钻研教材和教师教学用书;
(三)数学思想方法教学的关键——抓准抓好知识与思想方法的结合点;
(四)数学思想方法教学的实施——‘点线面’教学法”,对我们进行数学思想方法教学很有启发。由于数学思想方法教学是以数学知识教学为载体的,而它又不同于数学知识的教学,它除应遵循通常的数学教学原则外,还应遵循如下原则“目标性原则、渗透性原则、层次性原则、概括性原则、实践性原则”(文[9])、“计划性原则、科学性原则、重复性原则”(文[10])等。4.2关于数学思想方法教学的途径问题,近年来有多篇文章从各个不同的角度进行过阐述,笔者概括一下有以下4条,供教师们参考,“
1、在知识的发生过程中渗透数学思想方法。⑴不简单下定义,⑵定理公式教学中不过早给结论;
2、在思维教学活动过程中,揭示数学思想方法;
3、在问题解决方法的探索过程中,激活数学思想方法;在知识的总结归纳过程中,概括数学思想”(文[11])。5.数学思想方法课堂教学模式
数学思想方法的教学不能游离于提出问题和解决问题的过程之外,不能离开活生生的教学活动。那种把数学思想方法教学变成空洞的说教,变成华丽的名词、术语的堆砌的做法是不足取的。因而,有必要研究数学思想方法课堂教学的模式,依据课型的不同,文[2]给出“观察、猜想——探究式、比较、归纳——探究式、抽象、建模——探究式、化归、转化——探究式”,而文[1]则给出数学思想方法教学设计的“四环节教学结构”理论模式,具体为“概念课:
1、创设问题情景,激发思维动机,蕴含数学思想;
2、揭示概念背景,了解合理性和必要性,渗透数学思想;
3、暴露形成过程,概括本质属性,揭示数学思想;
4、拓展概念教学,深化理解定义,激活数学思想。规律课:„„。问题课:„„。综合课:„„”。没有模式,就没有特色,当然,不能为模式为模式,把本应生动活泼的课堂教学变成僵化的模式操作。
6.新课程理念下的数学思想方法研究 全日制义务教育《数学课程标准》(实验稿)在总体目标的设制中,明确指出“通过义务教育阶段的数学学习,学生能够获得适应未来社会生活和进一步发展所必需的重要数学知识(包括数学事实、数学活动经验)以及基本的数学思想方法和必要的应用技能。”应该说,随着教学理念的更新,数学思想方法仍将是学生数学素养的重要组成部分,数学思想方法教学研究仍是一项长期而艰巨的工作,为了进一步推进数学思想方法教学的研究,完善中学数学思想方法教学中的教学策略、评价检测、育人功能等体系,笔者提出一些选题,愿与有志于进行数学思想方法研究的朋友一同探航。附:数学思想方法研究选题
⑴数学思想方法的概念内涵及外延体系;
⑵数学思想的教学体系(目标体系、操作体系、评价体系); ⑶学生数学思想的形成发展体系研究; ⑷学生数学思想形成的心理机制研究; ⑸数学思想、方法的教学功能探讨; ⑹数学思想、方法的解题功能研究;
⑺试论数学知识、数学能力、数学思想三者之间的关系; ⑻数学思想方法的素质教育意义;
⑼试论数学思想是数学文化的核心要素; ⑽发展学生数学思想,夯实数学文化底蕴。[注] [1] “MA”课题组“发展学生数学思想,提高学生数学素养”教学实验研究报告《课程·教材·教法》1997年第8期。
[2]
李丽娟“中学数学思想方法教学实验研究”综述《中小学数学·教师版》2002年第1—2期。
[3]臧雷试析数学思想的含义及基本特征《中学数学教学参考》1998年第5期。[4]张奠宙《数学方法论稿》。上海:上海教育出版社,1996。[5]朱银坪在数学教学中落实素质教育初探《数学教学研究》(兰州)1997年第3期。[6]汪立爱也谈数学思想方法的教学《中小学数学·初中版》1997年第6期。[7]满小莹初中数学思想方法探微及教学探讨《教学与管理》(太原)1999年第5期。[8] 臧雷试论数学思想方法教学目标的设制《中学数学教学参考》(西安)1997年第4期。[9]孙朝仁初中数学思想方法教学的基本原则《中学数学教学参考》(西安)2000年第3期。[10] 臧雷数学思想方法教学原则刍议《中学数学》1997年第4期。[11] 孙朝仁初中数学思想方法教学的基本途径《中学数学教学参考》(西安)1998年11期。
第二篇:渗透数学思想方法教学的研究
渗透数学思想方法教学的研究
在数学教学中渗透数学思想方法的重要性和必要性大家已有认识。那么在日常的教学中教师怎样做才好呢?
“挖掘”、“统帅” 是前提,“引导”、“参与” 是关键。我们认为:挖掘、统帅、引导、参与这八个字是渗透数学思想方法教学的主题词。
我们认识到:学生的学习过程是一个在已有知识和经验为基础的主动、积极的建构过程。由原有的认知结构,经过 “同化”、“顺应”,产生新的认知结构,而后又经过实践应用,形成更新的认知结构。在这个意义下可以认为:数学是学习自己学会的,不是教师讲会的。这决不是说学生学数学不需要教师了。恰恰相反,教师应是建构活动的深谋远虑的 设计 者、组织者、参与者、指导者和评估者。学生的学习活动应该在教师的的效控制下进行才会获得高效益。
挖掘。数学思想方法是蕴含在数学知识之中的。数学知识是显化的,数学思想方法是潜在的。数学思想方法需要由教师充分挖掘、采用恰当的方法使学生领悟才会见效。
例如,在进行乘法公式教学时有的学生公式会背、语言叙述准确无误,一般的题都会做,就是不会做变式题。问题的原因不是乘法公式这节课,而是字母表示数式。字母(符号)表示变元,学生没有真正理解所致。有相当多的人一直以为 a 就是表示正数,如同 3 就是表示 3。他们不理解 a 可以表示任何实数,表示任何代数式等。由此可见,教师在初一进行字母表示数、代数式的教学时,应站在要渗透符号思想的高度来 设计 自己的教学过程。不能满足于学生会用字母表示数后,将字母等同数字进行运算的结果。应该让学生认识到用数字表示数和用字母表示数的本质区别 —— 数字仅表示某个确定的数,字母表示某个可变的确定的数(即变元)。在后面的教学中教师仍要不断地强调,才会使学生获得正饶认识。进行代数式一节的教学时仍要贯穿这一思想,要向学生指出:一个字母也可以表示一个代数式,使学生的认识更深化一步。
又如,进行概念教学时,学生能把某个定义背得很熟,但就是不会用。如果我们从中挖掘出其中蕴含的转换思想,情况就不会不同。因为数学中定义的概念与被定义兼具性质、判定双重功能。明确向学生指出这一点,会使他们对定义的理解、运用更上一层楼。
直线上两个点和它们之间的部分叫做线段,这两个点叫做线段的端点。这是线段的定义,学生学习时一般只作顺向理解,知道什么叫线段。但遇到直线上有三个点,问共有几条线段的时就会答不全。我们认为对于定义再作逆向理解:线段是由直线上两个端点之间的部分构成的。两个端点,在确定一个端点的情况下,再按顺序去确定另一个端点,于是直线上有三个点,共有三条线段的结论就不难得到了。更复杂一点,直线上有四个点,甚至有 99 个
点问共有多少条线段?通过归纳思维训练,学生也会正确解答。
类似地,角的定义也应这样教学,而且可用类比思维作指导,完全可以依照线段概念进行教学。角的顶点在哪里,它是由哪两条射线组成的图形,是我们认识角的基点。有了这样的理念,在今后遇到的复杂图形中,找出所需的角就不会是难事了。
我们认为,教师要有意识地渗透数学思想方法的首要条件,是教师要从数学思维方法的角度对教材进行分析、研究。要善于发现和挖掘教材内容中所隐含的数学思想方法,做到胸中有数。由此再进一步考虑如何 设计 教学过程,使学生逐步领悟、理解、掌握、运用所学的某个数学思想方法。
统帅。我们进行数学教学,不仅要使学生掌握前人的数学成果(即教材中的各个知识点),更重要的是引导学生展开思维,领悟其中的数学思想和精神实质,以便提高学生的数学素质,提高数学能力。为此,教师在备课、讲课、评课、辅导等环节中都要有意识地运用数学思想方法,将其贯穿在整个教学过程之中。这就是我们所说的 “统帅” 的含义。
例如,《有理数的加法》教学,教材先通过 6 个运动求和的实例,得到如下结果:(1)5+3=8 ;(4)5+(-3)=2 ;
(2)(-5)+(-3)=-8 ;(5)3+(-5)=-2 ;
(3)5+(-5)=0 ;(6)(-5)+0=-5。
由此归纳、概括得出有理数的加法法则。如果我们有分类思想作指导,便可引导学生仔细观察上面 6 个等式。便不难看出:(1)和(2),实质上同号两数相加,可分两种情况:即正 + 正 = 正,负 + 负 = 负;(3)、(4)、(5)是异号相加,又可分为三种情况,即按两个加数的绝对值大小分为三类:两加数绝对值相等时和为零,正加数绝对值大于负加数绝对值时和为正,正加数的绝对值小于负加数绝对值时和为负;(6)是有一加数为 0 的情况(由于正数 + 零与零 + 零在小学已学过,未列出)。这样,把两个加数按符号进行了分类,使学生在众多的数学当中分辨清数的各种可能情况,渗透了分类既不重复又不遗漏的原则。
又如,在学了角的比较大小后,对于小于平角的角分为锐角、直角、钝角三类,就是分类思想的体现。再如三角形的分类:如果三角形按照边的长短关系通常分为:
(1)不等边三角形 —— 三边都不相等;
(2)等腰三角形 —— 三边中只有两边相等;
(3)等边三角形 —— 三边都相等。
如果三角形按角的大小关系来分,则可分为:
(1)锐角三角形 —— 各个角都是锐角;
(2)直角三角形 —— 有一个角是直角;
(3)钝角三角形 —— 有一个角是钝角。
由此让学生初步体会:同一类事物按不同的标准可进行不同的分类,但在同一标准下必须做到不重、不漏。
渗透数学思想方法的教学,我们提出挖掘、统帅是前提,还要明确三点:(2)数学思想方法蕴含在教材的各个知识点中,即使是同一种数学思想方法,在不同的章节中,要求的层次也是不同的;
(3)学生对某个数学思想方法的认识、理解、掌握需要有一个 “认同”、“顺应” 的过程。只有当某个数学思想方法真正纳入到他们的认知结构之中了,才会成为他们的自觉行动。因此,渗透数学思想方法的教学是一个长久的渐进的过程。
现代认知科学理论认为:知识是无法传授的,传递的只是信息。还认为学生是数学学习活动中的认知主体,是建构活动中的行为主体,而其他则是客体或载体。学生作为主体的作用,体现在认知活动的中参与功能。没有主体参与,老师的任何传授将毫无意义,教师的主导作用也无从发挥。因此,在渗透数学思想方法的教学中,我们提出:引导、参与是关键。
引导。由于任何一种数学思想方法都不能很快地被人掌握,需要经历了解(孕育)、理解(领悟)、掌握(形成)、应用的过程;又由于数学思想方法是蕴含于各个知识点中,在某个知识点的教学时,突出什么数学思想方法,挖掘到什么深度,要求到什么程度,在什么知识点的教学再反复、深入提高 „„ 都要由教师进行系统地研究,作出周密的安排。具体到某节课的教学,教师都要从学生的角度来考虑,创设怎样的情况、提出怎样的问题、讲授怎样的内容、设计 怎样的活动、安排怎样的练习等促使学生积极思维。通过学生自己主动的建构活动,学会他们所要学的知识和技能要由教师来引导。
实践证明,数学思想方法的掌握,需要学生在数学活动中长期地实践、积累,不断地体验才能逐步做到。在这个过程中,教师要适时地点拨与指导。到一定阶段(例如某一个教学段落、学期结束、考前总复习等)教师再作必要的概括提高,从而使学生对数学思想方法的认为、掌握提高到一个新的水平。
参与。指的是教师、学生都要投入到教学活动中来。学生的参与尤其重要,如果没能
学生的积极参与,这样的教学活动决不会是成功的。
例如,有理数的分类可分成正数、零、负数,也可分整数、分数(小数)。在有理数的混合运算
(一)这节课的教学中,教师采用提出问题,让学生自己想,然后相互讨论,再板演的方式进行。允许学生用不同的方法解题,从中发现较简捷的解法。在这节课中,渗透了分类和转化的数学思想,学生运用了运算律,使有理数的混合运算达到正确、简捷的目的。学生通过讨论达到参与、交流的目的。教师在教学中,不断向学生提问、质疑、鼓励,起到了积极引导的作用。(此课例可参看录相看片《认识建构与数学教学 ∧ 第十集中 詹宝玲老师做的课)。又如,定理教学是数学教学的重点。如何使学生发现定理的形成过程,定理证明思履来历,特别是辅助线的添加方法一直是教学中研究的重点。在《三角形中位线定理》一节课的教学中,我们运用计算机辅助教学手段,采用《几何画板》软件,给学生创设了一个理想的情境,所画的三角形可以任意变化,(体现定理对于任意三角形都成立)可测算出一组同位角始终相等,中位线的长是第三边长的一半。学生经过对图形的观察很容易得到定理的结论。(这个过程是一个实验过程,让学生从感性上认识定理的正确性。定理的结论是由学生自己的发现。体现了 “做数学” 的理念。)定理的证明实质是经过平移变换或旋转变换,将三角形图形转化为平行四边形而证明的。《几何画板》能很好地演示上述过程。所以定理的证明思路、辅助线的添加方法都是显得十分自然。在教师的引导下,学生积极地参与,整个教学过程是学生的思维步步深入的过程,达到了理想的教学效果。必须指出,这节课的教学《几何画板》软件发挥了传统教学手段达不到的效果。因此按照教学的需要,采用现代教育技术手段是非常必要的。(此课例可参看录相片《认识建构与数学教学 ∧ 第十一集中场革老师做的课。)
在一单元或一章教学结束后,特别是在期末复习或总复习时,教师更应该用数学思想来统帅教学过程。让学生认识到从数学思想的高度来总结学过的知识,好比用一根线把一串珍珠(知识点)连起来,既有条理,又不易遗忘。
例如,在中考复习时,把初中阶段学过的各种方程(组)解法,在转化思想的指引下,运用消元、降次、换元等方法,最终化为 x=a 的形式,从而求得方程(组)的解。这样处理不仅总结、归纳了初中已学过的知识,而且为高中进一步学习指数方程、对数方程、三角方程等的解法准备了思想基础。
总之,数学思想方法是 中学 数学教学的重要内容之一。任何数学总是的解决无不以数学思想为指导,以数学方法为手段。数学思想是教材体系的灵魂,是教学 设计 的指导,是课堂教学的统帅,是解题思履指南。把数学知识的精髓 —— 数学思想方法纳入基础知识范畴是加强数学素质教育的一个重要举措。随着对数学思想方法教学研究的深入,在教学中渗透数学思想方法的实施,必将进一步提高数学教学质量。
【返回参考资料列表】
第三篇:数学思想方法缩印
数学思想方法:是对数学知识本质认识,对数学规律的理性认识,是从某些具体的数学内容和对数学知识的认识过程中提炼上升的数学观点。
数学方法:是从数学的角度提出问题,解决问题的过程中所采用的方式,手段,途径等。
中学数学涉及的思想方法有:1用字母代替的数的思想方法2集合的思想方法3函数、映射、对应的思想方法4统计思想和数据处理方法5算法思想6数形结合的思想方法7最优化的思想方法8极限思想和逼近方法9分类的思想方法10参数的思想方法 数学思想方法教学的特点:1隐喻性2活动性3主观性4差异性
从学生的认知角度看,数学思想方法的构建有三个阶段:潜意识阶段,明朗和形成阶段,深化阶段 在数学教学的不同阶段,如何进行数学思想方法教学;1在知识形成阶段,可有计划有步骤地选用观察、实验、比较、分析、抽象、概括等抽象化、模型化的思想方法。字母代替数的思想方法、函数的思想方法、方程的思想方法、极限的思想方法、统计的思想方法等2在知识结论推导阶段和解题教学中,可选用分类讨论、化归、等价转换、特殊化与一般化、归纳、类比等思想方法3在知识的总结性阶段,可采用结构化、公理化等思想方法 化归方法的基本思想是什么“化归”是转化和归结的简称。其基本思想是:人们在解决数学问题时,常常是将待解决的问题A,通过某种转化手段,归结为另一个问题B,而问题B是相对交易解决或已有固定解决程式的问题,且通过对问题B的解决可得到原问题A的解答 化归方法的基本原则:1化归目标简单化原则2具体化原则3和谐统一性4形式标准化原则5低层次化原则 RMI原理:通过建立欧式平面到有序实数对集合的映射,将平面几何问题转化为简析几何问题的过程,以及通过建立平面直角坐标系到复数集的映射,将几何问题化归为复数问题的过程。它们有着共同的形式,即通过寻找适当映射实现化归的策略进一步形式化地抽象为关系映射反演原理简称RMI原理
数学抽象的基本原则是逻辑建构形式化原则
数学抽象的主要方法:性质抽象,关系抽象,等置抽象,无限抽象,弱抽象和强抽象
数学模型方法是借用数学模型来研究原型的功能特征及其内在规律,并应用于实际的一种方法
数学建模的一般原则:1简化原则 2可推演,3反映性 必真推理方法包括演绎法和完全归纳法。完全归纳法常会用到穷举和类分的方法
类比法:类比法是根据两个或两类事物在某些属性上都相同或相似,而推出它们在其他属性上也相同或相似的推理方法
人们经常在数与式之间、平面与立体之间、一维与多维之间进行种种类比
类比的一般模式A类事物具有性质a1,a2,a3,a4,B类事物具有性质a1,a2,a3,所以B类事物可能具有性质a4 类比的三个环节:1依据某种相似性寻找适合的类比物2将两个对象的相似性进一步明确化3依据1、2步中明确化的相似性推测相似结论,得到命题或证明方法的猜想 反证法:当证明论题p→q时,不去直接证明它,而是把﹁q作为前提,加进原论题的前提,并根据已知真命题和推理规则推出与另一已知真命题或原论题的前提相矛盾的结论,或者导出自相矛盾的结论,从而确立论题的正确性
计算机技术和数学科学的迅速发展推动了几何定理证明机械化的进程,吴文俊先生研究几何证明的机械化方法 算法是指可以用计算机来解决的某一类问题的程序或步骤,它的主要特征是程序性、明确性和有限性
在向量运算的教学中,特别要重视向量的数乘运算和数量积运算
公理化方法:从尽可能少的一组原始概念和公设和公理出发,运用逻辑推理原则,建立科学体系的方法。具体形态:1实体性公理化方法,形态公理化方法和纯形式公理化方法
公理化方法的逻辑特征:1无矛盾性2独立性3完备性 公理化方法对教学的启示:1启发学生自己去寻找依据2使学生在寻找体验依据的过程中,培养起”说理有据“的习惯和能力3在运用公理化方法解决问题时,要帮助学生将命题的条件和结论联系起来4应让学生在公理化方法中学到从一般到特殊逻辑和直观的教学的基本要素5要帮助学生认识运算是从一个或几个已知判断得到一个新判断思维过程
在数学和数学学习中,分析和综合的二种意义:1分析与综合可以理解为证明定理和解题的思维方法2分析与综合可以理解为研究数学概念和性质的方法
数学方法在实际应用中往往具有过程性和层次性的特点 涉及到无限概念的抽象为无限抽象,它分为潜无限抽象和实无限抽象
等置抽象是按某种等价关系,抽取一类对象共同性质特征的抽象
性质抽象是考察被研究对象某一方面的性质或属性,而抽取向量性方面的性质或属性的抽象方法
关系抽象是指根据认识目的,从研究对象中抽取或建构若干构成要素之间的数量关系或空间位置关系,而舍弃其他无关特征或物理现实意义的抽象方法
强抽象是指通过强化对象的特征,即增加对象的性特征来完成抽象建构,已形成新概念或模式的抽象方式 弱抽象是指由原型中抽取其某一方面的特征或侧面加以概括,从而形成比原对象更为一般的概念或理论的一种抽象方式
数学抽象是一种特殊的抽象,具体表现为它的抽象的内容,程度和方法上
数学中的三种母结构为代数结构,序结构,拓扑结构 数学推理:是从一个或几个已知判断得到一个新的判断的思维形式
推理的种类:安思维的方向性,可分为演绎推理、归纳推理、类比推理
推理有内容和形式两方面。内容指前提和结论的真假性问题,形式是所推理的结构形式问题
数学推理的规则:1三段论推理规则2联言推理规则3选言推理规则4分离规则5否定推理规则5逆推理规则6逆否规则
不完全归纳的理论依据:1共性存在于个性之中2普遍性寓于特殊性之中
为什么说数形结合方法是最基本最常用的方法,如何用?数学是研究数量关系和空间形式的科学。即就是研究数与形的科学,而且数学的高度抽象性,带来了数学的难教、难懂、难学。正是数学科学的研究对象和特点,决定于数形结合是数学思考和研究问题的基本方法,它可以帮助人们将抽象的而难题变得直观、形象,便于思考和研究,也可以帮助人们将直观问题数量化、精确化,促进问题的解决。如何用?1从数到形,以形论数2从形到数,以数论形3数形结合,互相转化,互相补充 公理化方法的意义和作用?1公理化方法有利于在理论上探索事物的发展规律2公理化方法有助于培养学生的逻辑思维能力3公理化方法对数学的发展起的积极作用及其局限性
不完全归纳:不完全归纳法即不完全归纳推理,是根据考察的一类事物的部分对象具有某一属性,向做出该类事物都具有这一属性的一般结论的归纳推理
数学思想方法:是对数学知识的本质认识,对数学规律的理性认识,是从某些具体的数学内容和对数学知识的认识过程中提炼上升的数学观点。
数学方法:是从数学的角度提出问题,解决问题的过程中所采用的方式,手段,途径等。
中学数学涉及的思想方法有:1用字母代替的数的思想方法2集合的思想方法3函数、映射、对应的思想方法4统计思想和数据处理方法5算法思想6数形结合的思想方法7最优化的思想方法8极限思想和逼近方法9分类的思想方法10参数的思想方法 数学思想方法教学的特点:1隐喻性2活动性3主观性4差异性
从学生的认知角度看,数学思想方法的构建有三个阶段:潜意识阶段,明朗和形成阶段,深化阶段 在数学教学的不同阶段,如何进行数学思想方法教学;1在知识形成阶段,可有计划有步骤地选用观察、实验、比较、分析、抽象、概括等抽象化、模型化的思想方法。字母代替数的思想方法、函数的思想方法、方程的思想方法、极限的思想方法、统计的思想方法等2在知识结论推导阶段和解题教学中,可选用分类讨论、化归、等价转换、特殊化与一般化、归纳、类比等思想方法3在知识的总结性阶段,可采用结构化、公理化等思想方法 化归方法的基本思想是什么“化归”是转化和归结的简称。其基本思想是:人们在解决数学问题时,常常是将待解决的问题A,通过某种转化手段,归结为另一个问题B,而问题B是相对交易解决或已有固定解决程式的问题,且通过对问题B的解决可得到原问题A的解答 化归方法的基本原则:1化归目标简单化原则2具体化原则3和谐统一性原则4形式标准化原则5低层次化原则
RMI原理:通过建立欧式平面到有序实数对集合的映射,将平面几何问题转化为简析几何问题的过程,以及通过建立平面直角坐标系到复数集的映射,将几何问题化归为复数问题的过程。它们有着共同的形式,即通过寻找适当映射实现化归的策略进一步形式化地抽象为关系映射反演原理简称RMI原理
数学抽象的基本原则是逻辑建构形式化原则
数学抽象的主要方法:性质抽象,关系抽象,等置抽象,无限抽象,弱抽象和强抽象
数学模型方法是借用数学模型来研究原型的功能特征及其内在规律,并应用于实际的一种方法
数学建模的一般原则:简化原则,可推演原则,反映性原则
必真推理方法包括演绎法和完全归纳法。完全归纳法常会用到穷举和类分的方法
类比法:类比法是根据两个或两类事物在某些属性上都相同或相似,而推出它们在其他属性上也相同或相似的推理方法
人们经常在数与式之间、平面与立体之间、一维与多维之间进行种种类比
类比的一般模式为:A类事物具有性质a1,a2,a3,a4,B类事物具有性质a1,a2,a3,所以B类事物可能具有性质a4
类比的三个环节:1依据某种相似性寻找适合的类比物2将两个对象的相似性进一步明确化3依据1、2步中明确化了的相似性,推测相似结论,得到命题或证明方法的猜想
反证法:当证明论题p→q时,不去直接证明它,而是把﹁q作为前提,加进原论题的前提,并根据已知真命题和推理规则推出与另一已知真命题或原论题的前提相矛盾的结论,或者导出自相矛盾的结论,从而确立论题的正确性
计算机技术和数学科学的迅速发展,推动了几何定理证明机械化的进程,吴文俊先生研究几何证明的机械化方法
算法是指可以用计算机来解决的某一类问题的程序或步骤,它的主要特征是程序性、明确性和有限性
在向量运算的教学中,特别要重视向量的数乘运算和数量积运算
公理化方法:从尽可能少的一组原始概念和公设和公理出发,运用逻辑推理原则,建立科学体系的方法。具体形态:1实体性公理化方法,形态公理化方法和纯形式公理化方法
公理化方法的逻辑特征:1无矛盾性2独立性3完备性 公理化方法对教学的启示:1启发学生自己去寻找依据2使学生在寻找体验依据的过程中,培养起”说理有据“的习惯和能力3在运用公理化方法解决问题时,要帮助学生将命题的条件和结论联系起来4应让学生在公理化方法中学到从一般到特殊逻辑和直观的教学的基本要素5要帮助学生认识运算是从一个或几个已知判断得到一个新判断的思维过程
在数学和数学学习中,分析和综合的二种意义:1分析与综合可以理解为证明定理和解题的思维方法2分析与综合可以理解为研究数学概念和性质的方法
数学方法在实际应用中往往具有过程性和层次性的特点 涉及到无限概念的抽象为无限抽象,它分为潜无限抽象和实无限抽象
等置抽象是按某种等价关系,抽取一类对象共同性质特征的抽象
性质抽象是考察被研究对象某一方面的性质或属性,而抽取向量性方面的性质或属性的抽象方法
关系抽象是指根据认识目的,从研究对象中抽取或建构若干构成要素之间的数量关系或空间位置关系,而舍弃其他无关特征或物理现实意义的抽象方法
强抽象是指通过强化对象的特征,即增加对象的性特征来完成抽象建构,已形成新概念或模式的抽象方式 弱抽象是指由原型中抽取其某一方面的特征或侧面加以概括,从而形成比原对象更为一般的概念或理论的一种抽象方式
数学抽象是一种特殊的抽象,具体表现为它的抽象的内容,程度和方法上
数学中的三种母结构为代数结构,序结构,拓扑结构 数学推理:是从一个或几个已知判断得到一个新的判断的思维形式
推理的种类:安思维的方向性,可分为演绎推理、归纳推理、类比推理
推理有内容和形式两方面。内容指前提和结论的真假性问题,形式是所推理的结构形式问题
数学推理的规则:1三段论推理规则2联言推理规则3选言推理规则4分离规则5否定推理规则5逆推理规则6逆否规则
不完全归纳的理论依据:1共性存在于个性之中2普遍性寓于特殊性之中
为什么说数形结合方法是最基本最常用的方法,如何用?数学是研究数量关系和空间形式的科学。即就是研究数与形的科学,而且数学的高度抽象性,带来了数学的难教、难懂、难学。正是数学科学的研究对象和特点,决定于数形结合是数学思考和研究问题的基本方法,它可以帮助人们将抽象的而难题变得直观、形象,便于思考和研究,也可以帮助人们将直观问题数量化、精确化,促进问题的解决。如何用?1从数到形,以形论数2从形到数,以数论形3数形结合,互相转化,互相补充 公理化方法的意义和作用?1公理化方法有利于在理论上探索事物的发展规律2公理化方法有助于培养学生的逻辑思维能力3公理化方法对数学的发展起的积极作用及其局限性
不完全归纳:不完全归纳法即不完全归纳推理,是根据考察的一类事物的部分对象具有某一属性,向做出该类事物都具有这一属性的一般结论的归纳推理
第四篇:数学思想方法心得体会
数学思想方法心得体会
数学思想方法是从数学内容中提炼出来的数学学科的精髓,是将数学知识转化为数学能力的桥梁。下面是小编帮大家整理的数学思想方法心得体会,希望大家喜欢。
随着素质教育的深入开展,数学思想方法作为数学素质教育的重要内容已引起教育界的普遍关注和高度重视。做为未来高中教师的初等教育系的学生肩负着基础教育的重任,所以更应具有创新意识和创新能力。那么,应当如何认识数学思想方法?数学思想方法与初等数学又有什么样的关系?在初等数学的教学中又如何体现和渗透数学思想方法?
数学关键就在一个悟字,所谓悟,就是开窍,如何开窍,就要求讲师不要只讲题目的做法,而是包括,是怎么想到要这么做的,以引导学生去理解,去悟,对于初等数学,本人的看法是随便怎么做,因为初等数学的试题必然有解,必然是可以通过所给条件经过N多步骤推出来,不信可以试试,拿一道,先什么都不要管,只管把已知条件以全排列方式组合,以推出新的条件,再将所得条件组合,再推,直到最后推无可推,你会发现题目所求就在其中,甚至简单的可能是离最终结论还有N步,复杂的估计也就是最终结论了,所以以高考为目的的初等数学题目是不经做的,因为只要你做,就一定能做出来,而之所以很多学生觉得难,没处着笔,不知道改该怎么做,很大一部分是因为懒,不愿动笔,而只是
呆看,简单的能看出来,复杂的是很难看出来的,如果说那种直接推导的办法太耗时间,那么只能说是因为不熟练,一旦题目做多了,思维形成了,差不多就可以一眼看出来,顶多推两步,就知道后面的怎么推了,从而省略了N多的分支,古往今来的题海战术不是没有依据的,熟能生巧,见得多了,做的多了,自然可以找到某种规律
初数研究课在研究初等数学问题时,大多采用专题讨论的方法,都有一套完整的体系。如果过分强调自身完整的逻辑系统,容易导致不同学科、不同课程的内客及方法有很多重复和交叉。
如数与初等数论中的相关内容,解析式的恒等变形,方程、不等式的解法与证明,几何证题法与证题术排列、组合及数列的一些解题方法等。如果不处理好它们之间的关系,只是简单地追求各门课程自身体系的完整,既不利于学生整体数学思想的建立,又制约了他们数学综合运用能力的提高,同时占用了很多的课时,所以,对于相关课程中己作详尽讨论过的知识及理论,应作为工具来应用,避免一些不必要的重复。
1.知识系统的探究
初数研究课涉及大量的理论,教师讲、学生听的传统教学模式既占用课时多,又难以体现学生的主体性。因此对理论性较强的内容,教师可以先提出一些切题的问题作为一堂
课的锲子,留待后面逐个解决。这些问题将整个教学内容串起来,起到提纲挚领的作用,使学生明确学习目标,集中学习资源有针对性地去探究问题,然后教师组织学生对探究的结果进行归纳整理,形成较完整的知识体系。当然一个问题的解诀并非探究的终结,在探究过程中教师与学生都可以提出一些新问题,延续学生探究的热情,在合作交流的民主和谐的氛围里,尽可能地让学生走向自由探究。
2.解题方法的探究
从学生的认知角度未说,解题过程是独立的发现、探索与积极思考的过程,这种探索过程中所形成的意识和思维,就是真正的创造与发现。应该说,解题教学是中学数学教学的主要任务之一,设置初数研究课程的目的之一,就是结合中学实际对解题作专门的训练。
3.条件与结论的探究
对一个问题的条件或结论进行探究是对问题深入研究的重要组成部分,也是初数研究课程中具有挑战性的任务之一,引导学生从不同角度、不同层面来看问题,对学生的发散思维及创造思维的培养,都能起到良好的推动作用。
随着教学改革的深化,教学思想方法不仅要在理论上做研究探讨,更重要的是需要在实践中不断地创造与完善,才能使教学取得较好的效果。
第五篇:小学数学思想方法学习心得
《小学数学思想方法》学有所得
我们在老师的指导下着重学习了《小学数学教材概说》第二章的小学数学思想方法中的集合思想、对应思想、符号化思想、极限思想、统计思想、数学模型方法,并分析了这些思想方法在小学数学教材中的渗透。
通过在课堂上对小学数学思想方法的学习,我深刻地认识到学习并研究数学思想方法对于数学教学具有重大意义。首先,懂得数学思想方法有利于教师深刻地认识数学教学内容,正确把握教材体系,以较高的观点分析和处理小学教材。小学教材体系就两条主线:
一、数学知识;
二、数学思想。教师会分析教材,就能明确数学知识;而数学思想是必须掌握了它的方法才能明确为什么要这样写,才能从整体上、本质去理解教材,也才能科学、灵活地设计教学方法,提高课堂教学效率。其次,懂得数学思想方法有利于提高学生的数学素养,促进学生思维能力的培养。最后,有利于对学生进行美育渗透和辩证唯物主义的启蒙教育。
正是因为我意识到懂得数学思想方法对数学学习和教学具有重大意义,所以我利用课余时间学习了小学数学的其他思想方法:类比思想、转化思想、分类思想、代换思想、可逆思想、化归思想、整体思想、比较思想、假设思想、数形结合思想。
其中我对类比思想方法颇感兴趣,对它的了解比较深刻。类比思想是把某一或几个方面彼此一致的新旧事物放在一起相比较, 让学生由旧事物的已知属性推出或猜想新事物也具有相同或类似属性的一种逻辑推理方法, 它包含特殊到特殊, 也包含一般到一般。整个思维过程是以“联想”为前提;以“相似性”为向导;以提出“猜想”为使命;以发现“新规律”为目的。在小学数学课堂教学中渗透类比思想,通过以下几个方面实现:(1)渗透类比思想探究新知(2)渗透类比思想建构知识网络
(3)渗透类比思想激发创新思维(4)渗透类比思想加深对概念的理解。在运用类比方法时应注意以下几点。
(一)类比的结论具有或然性:或者正确,或者不正确,或者不完全正确,对类比的结论能进行辩证的处理。
(二)类比推理需要相当的引导,且学生容易为表面上相似的类比所误导,有位数学家于1992年提出几个克服类比障碍的方法:(1)由学生自己类比。(2)使用多种类比。(3)教师应明确指出类比推理可能失败之处。
(三)要想让学生掌握一些类比思维,作为一名小学数学教师应该做到以下几点:
1、教师应该从自身做起,先要使自己充实起来,这样才能将思想,方法逐渐渗透到学生的思维中,因此教师迫切需要学习和掌握以下知识:(1)补充综合性知识。从今后发展来看,知识也是日趋综合化,很多问题不是只用一门学科知识就能解决和回答的。老师必须在知识上融会贯通,才能更好的在课堂上启发引导学生,实现纵横类比。(2)挖掘教材中的潜在知识。有些知识书本没有明确给出要求,但是必要时要给予补充。例如:苏教版小学数学第六册第94-95页,这部分内容讲的虽是长方形面积,但是从教材中可以发现它隐含了简单的统计思想。教师教学时要注意挖掘这部分知识。
2、老师在教学过程中也要创设一种有培养创造性思维的教学情境。如采用开放式教学。
3、要培养学生的类比思维能力,首先要注意培养学生的归纳总结能力,只有概括出不同知识的相同或相似的性质,才能引导学生进行类比。古代学者韩愈提倡读书学习先要入书,后要出书,要先把书读厚,再把书读薄。这就是说要总结,要概括,要深入认识问题的精神实质。运用类比让学生去发现,去创造,让教学充满创新与活力。懂得了数学思想方法也意识到了它的重要性,那么在教学中,如何将这些方法渗透呢?经过思考我个人有几点看法:(1)提高渗透的自觉性,在知识的形成、发展过程中,渗透数学思想与方法;(2)把握渗透的可行性,在解题思路的探索中,揭示数学思想与方法;(3)丰富数学渗透的人文性,在问题解决方法的探索过程中,激活数学思想与方法;(4)注重渗透的反复性,在知识的总结归纳过程中,概括数学思想与方法。
以上是我在小学数学思想方法这一章学习之后的心得与思考,若有不妥的的地方还请老师指点迷津,谢谢啦!