普通高等学校招生全国统一考试理科数学试题及答案 82届

2020-11-01 16:20:14下载本文作者:会员上传
简介:写写帮文库小编为你整理了这篇《普通高等学校招生全国统一考试理科数学试题及答案 82届》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《普通高等学校招生全国统一考试理科数学试题及答案 82届》。

1982年普通高等学校招生全国统一考试

数学(理科)

一.(本题满分6分)

填表:

使函数有意义的x的实数范围

{0}

R

R

[-1,1]

(0,+∞)

R

解:见上表

二.(本题满分9分)

1.求(-1+i)20展开式中第15项的数值;

2.求的导数

解:1.第15项T15=

2.三.(本题满分9分)

Y

X

O

Y

O

X

在平面直角坐标系内,下列方程表示什么曲线?画出它们的图形

1.2.

解:1.得2x-3y-6=0图形是直线

2.化为图形是椭圆

四.(本题满分12分)

已知圆锥体的底面半径为R,高为H

求内接于这个圆锥体并且体积最大的圆柱体的高h(如图)

A

D

c

H

h

B

E

O

2R

解:设圆柱体半径为r高为h

由△ACD∽△AOB得

由此得

圆柱体体积

由题意,H>h>0,利用均值不等式,有

(注:原“解一”对h求导由驻点解得)

五.(本题满分15分)

(要写出比较过程)

解一:当>1时,解二:

六.(本题满分16分)

A

M

P(ρ,θ)

X

O

N

B

如图:已知锐角∠AOB=2α内有动点P,PM⊥OA,PN⊥OB,且四边形PMON的面积等于常数c2今以O为极点,∠AOB的角平分线OX为极轴,求动点P的轨迹的极坐标方程,并说明它表示什么曲线

解:设P的极点坐标为(ρ,θ)∴∠POM=α-θ,∠NOM=α+θ,OM=ρcos(α-θ),PM=ρsin(α-θ),ON=ρcos(α+θ),PN=ρsin(α+θ),四边形PMON的面积

这个方程表示双曲线由题意,动点P的轨迹是双曲线右面一支在∠AOB内的一部分

七.(本题满分16分)

已知空间四边形ABCD中AB=BC,CD=DA,M,N,P,Q分别是边AB,BC,CD,DA的中点(如图)求证MNPQ是一个矩形

B

M

R

A

N

Q

D

K

S

P

C

证:连结AC,在△ABC中,∵AM=MB,CN=NB,∴MN∥AC

在△ADC中,∵AQ=QD,CP=PD,∴QP∥AC∴MN∥QP

同理,连结BD可证MQ∥NP

∴MNPQ是平行四边形

取AC的中点K,连BK,DK

∵AB=BC,∴BK⊥AC,∵AD=DC,∴DK⊥AC因此平面BKD与AC垂直

∵BD在平面BKD内,∴BD⊥AC∵MQ∥BD,QP∥AC,∴MQ⊥QP,即∠MQP为直角故MNPQ是矩形

八.(本题满分18分)

Y

x2=2qy

y2=2px

A1

O

A2

A3

X

抛物线y2=2px的内接三角形有两边与抛物线x2=2qy相切,证明这个三角形的第三边也与x2=2qy相切

解:不失一般性,设p>0,q>0.又设y2=2px的内接三角形顶点为

A1(x1,y1),A2(x2,y2),A3(x3,y3)

因此y12=2px1,y22=2px2,y32=2px3

其中y1≠y2,y2≠y3,y3≠y1

.依题意,设A1A2,A2A3与抛物线x2=2qy相切,要证A3A1也与抛物线x2=2qy相切

因为x2=2qy在原点O处的切线是y2=2px的对称轴,所以原点O不能是所设内接三角形的顶点即(x1,y1),(x2,y2),(x3,y3),都不能是(0,0);又因A1A2与x2=2qy相切,所以A1A2不能与Y轴平行,即x1≠x2,y1≠-y2,直线A1A2的方程是

同理由于A2A3与抛物线x2=2qy相切,A2A3也不能与Y轴平行,即

x2≠x3,y2≠-y3,同样得到

由(1)(2)两方程及y2≠0,y1≠y3,得y1+y2+y3=0.由上式及y2≠0,得y3≠-y1,也就是A3A1也不能与Y轴平行今将y2=-y1-y3代入(1)式得:

(3)式说明A3A1与抛物线x2=2qy的两个交点重合,即A3A1与抛物线x2=2qy相切所以只要A1A2,A2A3与抛物线x2=2qy相切,则A3A1也与抛物线x2=2qy相切

九.(附加题,本题满分20分,计入总分)

已知数列和数列其中

1.用p,q,r,n表示bn,并用数学归纳法加以证明;

2.求

解:1.∵1=p,n=pn-1,∴n=pn.又b1=q,b2=q1+rb1=q(p+r),b3=q2+rb2=q(p2+pq+r2),…

设想

用数学归纳法证明:

当n=2时,等式成立;

设当n=k时,等式成立,即

则bk+1=qk+rbk=

即n=k+1时等式也成立

所以对于一切自然数n≥2,都成立

下载普通高等学校招生全国统一考试理科数学试题及答案 82届word格式文档
下载普通高等学校招生全国统一考试理科数学试题及答案 82届.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐