第一篇:肝脏移植中免疫学的重要性
免疫学称得上是生命 科学 发展 的前沿学科,其发展日新月异,现已成为一门独立的学科,并广泛渗透到其他基础医学和临床医学的领域之中。而肝脏疾病的诊断和 治疗 是目前临床面临的重要问题之一 ,不断提高肝脏疾病免疫学诊疗的质量 ,可为临床提供必要的诊疗指标。下面笔者就从普遍存在的乙肝病毒和肝脏移植着手,谈一谈对有关免疫学的认识。
一、乙肝免疫治疗之相关事项乙肝病毒在全球有将近4亿的感染者,每年发生与乙肝相关的肝硬化和肝癌而导致的死亡人数在一百万以上,其数目骇人听闻。现阶段,对乙肝病毒理想的治疗方法应该是激活足够的免疫细胞,尽可能减少肝细胞的损伤,并能中止这种持续的感染。免疫治疗前患者体内抗原与前体dc系统的亲和积处于平衡改造状态,平衡常数l1q1l2q2=k,假设从体外补给a的替代物对患者进行治疗,其浓度为△x,免疫治疗效果c的增加浓度为n。由于b的群体中个体的亲和力呈正态分布,所以认为b数量的减小倍数等于平均亲和力的减小倍数,假设c的生理流量不受影响,q1不变,那么,n=l2{1-[l1/(l1+△x)]1/2},当l1越小, 由于l1q1l2q2=k,所以l2越大,并且当△x越大时,n越大。所以免疫治疗要大剂量给药,同时大剂量给药活化势越大,活化速度也就越大。免疫治疗需先降低血液中hbv-dna水平,所以有必要使用核苷类似物使l1减小,同时为了加速l2的增大,可能有使用免疫或血液系统兴奋剂的必要。又成熟dc数量=n×发生体积,所以有静脉给药或者多点皮下给药的必要。在慢性乙肝病人体内,由于存在静息活化平衡常数,那么在抗原浓度和亲和力相同的情况下,前体dc的浓度和亲和力之积为定值。前体dc浓度越大,亲和力越小,此时给药的途径的区别大大缩小。乙肝病毒的各种抗原都对促进细胞免疫和体液免疫有作用。拉米夫定能使乙肝病毒各种抗原的表达都有不同程度的降低,从而能降低抗体依赖的细胞介导的细胞毒作用(adcc);乙肝病毒能通过提高肿瘤坏死因子相关的调亡诱导受体和死亡受体4的表达而增强肿瘤坏死因子相关的调亡诱导配体毒性,人肝细胞中hbv复制水平升高能增强肿瘤坏死因子相关的调亡诱导配体诱导的调亡;hbv感染时肝细胞可强表达cd95l和cd95,相互作用可引起肝细胞调亡。所以拉米夫定的使用能减少肝细胞的调亡。拉米夫定治疗还能降低淋巴细胞的调亡敏感性,并且拉米夫定不会妨碍免疫系统对乙肝病毒的成功清除。在治疗的过程中可以有选择地予以护肝防纤维化治疗。持续存在的乙肝病毒抗原对其敏感的前体dc持续的反向选择,使得这些前体dc不能在同一段时间内积累,继而使得二者相互作用后产生的成熟的活化的dc不能在同一段时间内积累,以致不能同时产生足够的ctl细胞进行有效的控制被感染的肝细胞的作用。所以有必要提前降低病人细胞外液中慢性乙肝抗原的含量,以减小它们的反向选择作用。自然 界中生物对有限的资源同样存在着相互的竞争。各种免疫细胞以及它们的亚群之间均存在着相互的竞争和抑制作用,如t细胞、nk和nkt细胞之间以及它们亚群之间的相互竞争。人体各种前体dc细胞亚群之间也同样可能存在不同种群之间的相互竞争。乙肝病毒抗原系统对对其敏感的前体dc持续的反向选择,使得这些敏感的前体dc减少,进而使得它对其它前体dc细胞的抑制作用减弱,其它的前体dc细胞数量就会增加,进而增强了它们对对乙肝病毒抗原系统敏感的前体dc细胞的抑制作用,使其恢复感染前的速度减小和能恢复的数量减少。同样,被感染的肝细胞也会持续的反向选择对其敏感的ctl细胞而使其数量减少,其它ctl细胞的数量将会增加,它们的抑制作用也会抑制乙肝病毒特异性ctl的恢复。为了增加对乙肝病毒敏感的前体dc的恢复速度,增大其能恢复的数量;同样也为了特异性抗乙肝病毒的前途ctl细胞的恢复,有必要解除这种持续的抑制作用。另外,外周血中被感染的dc细胞低水平表达mhc和共刺激分子,使得它们在与乙肝病毒特异性的t细胞群作用时,诱导活化的t细胞的比例将下降,而耐受和调节性t细胞产生的比例将升高。要解决这些错综复杂的局面,必须对免疫系统重新进行一次格式化。
二、肝脏移植免疫学之相关事项 现代 器官移植是建立在移植免疫学基础之上的,移植免疫学研究的每一个进展都推动了器官移植的发展。目前,随着现代移植免疫学的飞跃进步,以外科技术、器官保存、围手术期处理为基础的肝脏移植技术日趋成熟。世界肝脏移植总例数已超过13万例,目前以每年1万多例的速度递增,肝移植排在肾脏移植手术之后的所有器官移植的第二位,术后患者最长生存时间已超过30年。然而,尽管移植肝一年存活率可以达到80-90%,但是其中60-80%的移植物发生了急性排斥反应,慢性排斥反应的发生率也高达10%。急性排斥反应是移植病人再次发病入院的主要原因,而慢性排斥反应患者则需要再次肝移植。
第二篇:模块教学在医学免疫学教学中的应用
模块教学在医学免疫学教学中的应用
模块教学的内容模块教学是将医学免疫学的全部课程根据各章节的知识特点、学习要求、临床结合度、基础性等不同划分为几个模块,各模块根据其自身内容和特点选择相应的教学方式,避免了医学免疫学课程的枯燥乏味,也保证了学生对医学免疫学基础理论的掌握和理解,同时又能兼顾临床知识的联系和科研意识的培养。这种教学内容的划分也避免了对医学免疫学教学体系的完全变革,因此能适应新形势下对医学免疫学课程教学的新要求。
1.1 基础知识模块 包括绪论、免疫器官和组织、免疫细胞、抗原、抗体、补体、MHC、免疫应答等章节。这些章节的教学内容中包括大量免疫学基本概念和基本原理,特点是基础性很强,这一模块的教学内容无论如何变革,都必须保证学生的理解和掌握。最好的方法就是保持其基础性,按照传统教学法进行教学,也可结合启发式教学,保证学生能顺利掌握基础内容。可将知识点划分为“掌握”、“熟悉”和“了解”内容,让学生知道哪些是必须掌握的,哪些是需要理解的,也可根据知识点整理针对每一章的自测试题,完成课堂教学内容后,布置学生自测,强化教学效果。教师可通过自测题的完成情况来了解学生对此模块教学内容的学习情况, 保证学生对基础理论知识的真正掌握。
1.2 前沿进展模块 包括细胞因子、分化抗原、黏附分子、免疫耐受、免疫调节、免疫诊断、免疫治疗等章节。这一模块的特点是教学内容需掌握的知识点较少,但范围较广,而且涉及免疫学研究前沿内容较多。如果仍采用传统教学形式, 难免枯燥乏味,不易理解。因此这一模块的教学可以适当与科研相结合,将免疫学前沿内容融入到教学中,相关综述文献的查找、阅读、讨论、写作尝试等方法均可以在此模块中应用。学生通过阅读文献或亲自撰写综述文献,可以近距离接触免疫前沿知识和相关内容的科研进展,顺利完成此模块教学内容的同时,可以培养学生的科研兴趣和查找阅读文献的能力。此模块可以通过学生参与的认真程度、撰写综述的符合标准程度、对所查文献的理解程度、对相关章节的了解程度等评价学生的学习效果。1.3 临床免疫学模块 包括自身免疫病、免疫缺陷病、移植免疫、肿瘤免疫等章节。此模块主要涉及免疫系统在病理状态下功能的改变以及异常免疫应答在发病机制中的作用,与临床关系非常密切,此部分也是多数学生学习和关注的重要部分,学生的学习兴趣较高。但是这些章节并不作为基础医学免疫学教学的重点,学时通常占用较少,根本无法系统学习和认识免疫与相关疾病的关系,而这些疾病往往又属于临床常见病和多发病,因此传统教学无法满足学生对临床疾病 熟悉和了解的需要。在此模块教学中应以疾病为线索,引导学生将刚刚学习过的免疫学基础知识应用于临床疾病的发病机制、诊断原理、预防和治疗原理之中。教学中可以使用 PBL教学法或病例分析教学法,通过教师提出问题或学生自己提问、自己回答的方式,系统、全面、深入、自主的掌握这一部分内容,也可以直接应用病例要求学生进行深入讨论。无论哪一种方式,都可以很好地使医学免疫学基础知识与临床常见病相结合,从而培养学生分析疾病发生机制、检测、诊断和治疗原理的能力。此部分内容可以通过学生书写报告或者上交讨论记录等形式进行考评。
1.4 知识应用模块 包括超敏反应、免疫预防等章节,此模块教学内容与现实生活、免疫相关疾病的预防密切相关,如过敏症的发生、疫苗的使用方法和原理等,特别是近年来一些流行病的爆发,其预防和治疗方法都是学生较为关心的内容。此部分的教学应选用较为灵活的教学方法,可以根据不同主讲教师的特点和能力,也可以根据不同专业的特点进行多种教学方法的联合应用。教学方法中应以讨论式教学或论坛式教学为主,也可以结合演讲、小品、录像等多种形式鼓励学生积极参与,在愉快的教学活动中学习到更多、更实用的知识。此部分可根据气氛的热烈程度、分析的深入程度、总结结论的准确程度等对学生进行评价。2 模块教学的评价模块教学法的优点是伸缩性较强,可以逐步实施。教师从传统教学模式向其他教学模式的转变需要过程,包括思维转变的过程、教学能力提高的过程、新教学法的适应过程等。模块教学应用过程中可以采取逐步增加的方式,根据不同教师能力和个性特点,有选择性的增加模块。比如年轻教师能力不够,可以在基础知识模块上增加知识应用模块,适应和驾驭后再增加临床知识模块,之后增加前沿进展模块;科研能力较强的教师可以先增加前言进展模块;对PBL和案例分析感兴趣的教师也可以先增加临床知识模块。这种方式可以更好的发掘教师的潜力和热情,避免因全面改革使用新的教学方法,导致的教师和学生不适应和抵触情绪,达不到真正想要的教学效果。
第三篇:流式细胞仪在免疫学研究中的应用
流式细胞仪在免疫学研究中的应用
摘 要:随着现代激光技术、电子检测技术和电子计算机技术等的迅速发展,流式细胞仪(FCM)在免疫学、生物学、遗传学、血液学、临床检验等领域中得到了更加广泛的应用。在免疫学研究领域,FCM以快速、灵活及定量等特点被广泛地应用于基础研究和临床治疗的各个方面,尤其是与单克隆抗体技术的结合,使其在免疫分型、分选、免疫监测、免疫细胞的系统发生及特性研究等方面发挥了重要的作用,成为现代免疫学研究不可缺少的工具。该文对近年来流式细胞仪在免疫学研究中的应用进展进行了综述。
关键词:流式细胞仪;免疫学;检测
流式细胞仪(flow cytometry,FCM)是一种集激光技术、电子物理技术、光电测量技术、计算机技术、细胞荧光化学技术以及单克隆抗体技术为一体的新型高科技仪器[1]。FCM 可对细胞大小、细胞表面抗原的表达等进行快速、灵活、定量、多参数的检测,而且,可同时用于检测细胞内的核酸定量、DNA倍体、细胞周期分析,细胞因子和黏附分子等[2]。具有分析速度快、精确度高、重复性好和费用低廉等优点。流式细胞仪介绍
1.1 流式细胞仪的工作原理
流式细胞仪主要由流动室和液流系统,激光源和光学系统,光电管和检测系统,计算机分析系统和细胞分选系统5部分组成,其中,流动室是仪器的核心部件。
将待测标本制备成单细胞悬液,经特异性荧光染料染色后,由气压装置送入流动室,以一定的流速经过喷嘴进入激光聚焦区,流速的选择与检测的目的有关,此时,在激光束的照射下,被荧光染色的细胞产生散射光和激发荧光,其散射光信号和荧光信号经光学系统收集,由检测系统转换成为电信号,再通过模/数转换器,转换为可被计算机识别的数字信号,各种信号经计算机采集后,用相应的应用软件进行分析处理,最后,以直方图或三维图的形式显示出来。选择不同的单克隆抗体及荧光染料,可同时测定一个细胞上的多种不同的特征参数,从而可以对细胞进行分类[3]。1.2 流式细胞仪机型介绍
近年,流式细胞仪的主要生产厂家有美国的BD(BectonDickinson)公司、贝克曼库耳(Beckman Coulter)公司和德国的Partec公司。国内使用的流式细胞仪主要由前两家生产。它们生产出一系列科研型和临床型的流式细胞仪,并研制生产了流式细胞仪所用的各种单克隆抗体和荧光试剂。
流式细胞仪可分为两大类,一类为临床分析型(又称小型机、台式机),其特点为仪器光路调节系统固定,自动化程度高,易学易掌握,适合在临床实验室中应用。如BD公司的FACSCalibur,BeckmanCoulter公司的EPICSXL,Partec公司的Pas,Cytomation公司的MOFLO,Aber公司的Microcyte,Ortho公司Cytoron等。
另一类为科研分选型(又称综合型),特点为功能齐全,分析灵活,可快速将所感兴趣的细胞分选出来,同时可选配多种波长类型的激光器,适用于广泛的科学研究之用。如BD公司的FACSVantage,Beckman Coulter公司的EPICS ALTRA,Partec公司的PasIII及Cytomation公司的MOFLOMLS等。
随着计算机技术、电子制造技术、激光技术及荧光素合成技术的发展,流式细胞仪的制造工艺、功能、精确度等有了质的飞跃。流式细胞仪已开始向模块化发展,即它的光学系统、检测器单元和电子系统都可以按照试验要求随意更换[4]。各流式细胞仪生产厂商继续推出新产品以满足用户的不同需要。如BD公司的FACSAria(高速细胞分选仪)、分选增强型FACSVantage SETM(多色分析和高速分选流式细胞仪)、LSR II(数字化分析型流式细胞仪),FACSCanto(双激光六色分析流式细胞仪)。BeckmanCoulter公司近年又推出了Cytomics ™FC 500系列,如FC 500MCL/MPL 采用单激光或双激光激发方式,可进行五色分析。Partec公司的顶级科研型十三色荧光流式细胞仪CYFLOW ML,临床科研型六色荧光流式细胞仪DYFLOW SL。Amnis公司的Image Stream100(激光流动成像细胞仪),将流式多色检测技术和荧光显微图像显示技术结合在一个平台上,不仅可以通过荧光信号的强度,还可以通过细胞荧光图像对细胞内外信号定位,从而对细胞亚群进行定性和定量分析。流式细胞仪在免疫学中的应用近年来,随着生物医学等相关学科的发展和免疫学研究的深入,流式细胞仪在分子免疫学、免疫生物学和免疫遗传学,免疫血液学、免疫药理学、移植免疫学、肿瘤免疫学、抗感染免疫学、临床免疫学等免疫学领域的基础学科,以及淋巴细胞及其亚群分析、淋巴细胞免疫分型、细胞因子检测等临床研究中,也有了越来越广泛的应用。
2.1 淋巴细胞及其亚群分析
FCM在临床淋巴细胞及其亚群分析中得到广泛应用,可同时检测出一种或几种淋巴细胞细胞表面抗原,将不同的淋巴细胞亚群区分开,并计算出它们相互间的比例。通过淋巴细胞及其亚群数量的检测,可了解在不同情况下机体的免疫功能状态,辅助临床疾病的诊断,探索疾病的发病机理、病程、预后,指导临床治疗方案[5]。
由于FCM可以进行高灵敏度、高速度和多参数分析,使FCM对血液淋巴细胞亚群的检测较其他方法更精确,故其被认为是血液淋巴细胞亚群分析的标准方法[6]。
2.1.1 检测项目 在临床上,淋巴细胞及其亚群分析项目包括:B/NK/CD4/CD8/CD4:CD8;绝对计数(TruCount);活化淋巴细胞的检测(CD69/HLADR/CD71/B27);CD4+ Th/i和CD8+Ts/c的进一步区分;Naive/Memory T细胞亚群的检测;Th1/Th2亚群的检测。
用流式细胞仪诊断某种疾病时,经常需要检测多个项目,如当人类感染免疫缺陷病病毒(Human immunodeficiency virus,HIV)后,HIV主要选择地侵入人类具有重要免疫功能的T淋巴细胞亚群中的辅助性T细胞,即Th细胞(CD4+),使具有重要免疫功能的T细胞群被破坏,继而累及全身免疫器官,使机体免疫功能下降。检测的免疫指标表现为:T淋巴细胞总数减少(正常值的65%~81%);T细胞亚群比值倒置,即Th/Ts<1.0(正常1.3∶12~2.1∶1);Th细胞(CD4+)绝对计数<200个/μL(正常值400~1 500细胞/μL),CD8+ T细胞在感染早期增多,后期则下降;Ts细胞增高,NK细胞减少或活力下降,B淋巴细胞群则在正常范围;CD4+/CD8+ 明显低于健康成人(P<0.01)。
2.1.2 检测技术的发展 随着新的荧光色素分子的不断发现,荧光标记技术的进步和流式细胞仪的多激光激发技术的进展,多色荧光分析得到迅速发展,三色、四色甚至五色或六色荧光分析对细胞亚群的识别、细胞功能评价等更为精确。近年,淋巴细胞及其亚群的分析已经发展到三色荧光以上分析,且借用MultiSET全自动获取分析软件完成。如:通过四色荧光标记,对外周血T淋巴细胞亚群可进行快速、客观、准确检测及绝对计数分析[78]。利用流式细胞仪,采用多色荧光标记的单克隆抗体,分析黏附性T 细胞表面CD3+ CD4+ 或CD8+CD19-CD16-CD45RO+CD62+CD27+ CD57 抗原,从而对LFA1adhesive T 细胞快速准确地测定[9]。
总之,用流式细胞仪检测淋巴细胞及其亚群的检测技术朝着多激光、多色分析方向发展。近年来,为了使样本一次检测,得到更多结果,满足临床多色分析诊断的需要,一些厂家为临床应用专门设计了六色分析流式细胞仪。
2.2 白血病免疫分型
白血病是白细胞在分化到某个阶段受阻后呈克隆性异常增殖的结果,它的发病是多阶段的,不同病因引起的白血病的发病机制不同,在治疗和预防上也不同,所以,利用白细胞分化不同阶段出现的细胞表面标志,可以对白血病进行免疫分型,对其进行导向治疗[10]。近年,白血病的MICM(形态学、免疫学和细胞遗传学,分子生物学)分型已成为现代白血病诊断的重要指标,其中应用流式细胞仪进行免疫表型的检测在分型中发挥了越来越重要的作用,现已积累了丰富的应用经验。它具有快速、客观、准确、特异性强、重复性好等优点,对白血病进行免疫分型具有极其重要的临床诊断意义[11]。
准确的免疫分型关键是区分正常细胞与白血病细胞,传统的流式细胞仪白血病免疫分型依赖于白血病细胞的FSC/SSC特性来设定原始细胞群,然后根据门内某些阳性单抗占门内细胞的百分比来确定其抗原表达情况。很显然,这种方法是不能将原始细胞与正常细胞完全分开的。
随着免疫学和遗传学及流式细胞仪检测技术的发展,由开始的主要采用间接免疫荧光标记法到直接免疫荧光标记法,从单色或双色到利用CD45抗体标记设门法进行多色免疫标记。利用造血系统细胞CD45表达量与细胞分化程度的高度相关性,可以精确地将原始/幼稚细胞与正常成熟细胞群完全分开。使免疫分型的准确性得到很大的提高,现在,已成为诊断白血病免疫分型的重要工具[12]。国际上普遍采用三色或四色分析的方法,利用CD45SSC设门法,并结合其他技术进行免疫分型。如应用流式细胞仪,采用CD45 SSC 设门法多参数,并利用抗体积分系统诊断标准,可以准确地、完整地分析白血病免疫分型[13]。采用三色流式细胞术CD45/侧散射(SSC)双参数散点图设门,并结合FAB 形态学能对急性白血病进行准确分型[14]。应用流式细胞仪四色荧光标记技术,CD45/SSC双参数散点图设门方法,能清楚地区分各种免疫细胞,可准确、客观地进行白血病免疫分型[15]。
2.3 血小板膜表面受体检测
血小板膜上有丰富的糖蛋白受体,是血小板发挥其功能的物质基础,静止期和活化期的血小板膜糖蛋白受体的种类、含量、结构和功能显著不同。应用流式细胞仪检测血小板膜上受体,主要是对血小板特异性膜糖蛋白和活化标志物进行免疫荧光标记,结合单克隆抗体和免疫荧光技术,用不同的抗血小板单克隆抗体,可以从分子水平上诊断血小板功能和数量的异常。使用流式细胞仪测定活化血小板是目前公认的快捷而灵敏的方法之一[16],可直接、灵敏、特异地分析血小板的活化程度和功能状态。
普遍采用的技术是以全血为标本,应用流式细胞仪进行多参数分析,即全血法流式细胞术。如采用流式细胞仪三色荧光标记技术,能准确地检测冠心病患者血小板表面糖蛋白的变化[17]。采用流式细胞仪和三色免疫荧光标记的单克隆抗体,可直接检测全血样本中血小板膜表面CD41、CD61、CD62的表达水平[18]。
与常规血小板功能测定法相比,全血法流式细胞术虽然有许多优点,如直接使用全血样本,且标本用量少;简化标本的处理,避免了样本处理不当等因素导致的血小板体外激活,并可防止血小板亚群的丢失,从而更客观、更准确地反映血小板的功能[19]。但是,全血法流式细胞术也存在不足之处,如流式细胞仪价格昂贵,为了避免血小板体外活化,血样不能久置,需在45 min内处理;只能分析循环中的血小板的数量和功能,不能反映血小板代谢和最近被清除的血小板的数量。所以,还需对该方法进行更深入的研究,并使之标准化[20]。
2.4 细胞因子的检测 细胞因子(cytokine)是由免疫细胞或非免疫细胞合成和分泌的小分子多肽,在调节机体多种细胞的生长、分化和功能,调节正常与病理状态下的免疫应答过程中起着十分重要的作用。检测细胞因子对于阐明机体免疫应答机制及相关疾病的发生、发展规律和临床治疗具有重要意义。
随着研究的进展,仅仅对细胞进行定量和活性的检测已不能满足需要。目前,越来越重视在单细胞水平上研究细胞因子的表达能力。应用流式细胞仪结合间接免疫荧光法,可在单细胞水平上客观、正确地检测细胞内多个细胞因子,并可区分表达特定细胞因子的细胞亚群,进行多参数相关分析,是一种有效地在单细胞水平研究细胞因子的方法[21]。
近年主要采用的是胞内流式分析法。该方法是基于BD公司的快速免疫细胞因子系统(fast Immune cytokine system)。以植物血凝素(phytohemagglutinin,PHA),佛波酯(phorbol myristate acetate,PMA)加离子霉素(ionomycin,Ion)作刺激剂,刺激全血中淋巴细胞表达细胞因子;用雷菲德菌(Brefeldin A,BFA)与莫能霉素(monensin,MN)等药物阻断细胞因子分泌至胞外,用CD3和CD8设门,应用两种免疫荧光抗体同时标记淋巴细胞膜表面特异分子和被阻滞在胞内的细胞因子,然后用流式细胞仪进行检测和分析。
该方法具有许多优点,如完善的全血激活方法,保留体内细胞及生化微环境,能更准确反映体内状况,避免了人工假象的产生。高效荧光结合抗体,确保高度灵敏及低背景染色。高质量的膜通透剂,可以保证一致的灵敏度与低背景染色,且免除了为增加通透性所需冷冻细胞过夜的步骤。同型对照,避免了使用重组细胞因子进行繁琐的竞争性封闭。
该技术虽然已成为一项可在单细胞水平上检测细胞因子的有效方法,尤其是在确定功能不同的T细胞亚群方面具有重要的作用[22],具有其他方法难以比拟的优点。但是,也存在一定的缺陷,如现有的激活剂可导致部分至表面分子表达的下调。因此,今后还要寻找更佳的激活剂。结语
FCM以其快速、准确、灵活、大量、多参数同时分析等优点,已成为免疫学研究领域中无可替代的重要工具。科技水平的不断发展,免疫学研究的不断深入,尤其是近年来,流式细胞仪的功能不断完善、各种功能强大的分析软件的开发、多参数分析技术的发展等,为流式细胞仪检测结果准确性的提高和分析能力的扩展提供了保障,并使仪器不断向小型化,操作自动化,简单化方向发展。可以预见,在未来免疫学领域,流式细胞仪的应用范围会进一步扩大,应用深度会进一步加强。
第四篇:由类毒素看微生物学与免疫学对药学的重要性
由类毒素看微生物学与免疫学对药学的重要性
摘要:生物制品越来越多,无法避免的,生物制品与“药”搭上关系。通过了解类毒素的作用机理,了解类毒素与微生物、免疫学之间的联系,同时分析微生物学与免疫学对药学的发展有何重要性。关键字:类毒素、生物制品、微生物学、免疫学、药学 第一章:关于类毒素
一些细菌在培养过程中产生的毒性物质称为外毒素,细菌的外毒素经甲醛处理后,失去毒性而仍保留其免疫原性,产生能刺激机体产生保护性免疫的制剂,即类毒素。常用的甲醛溶液的浓度是0.3~0.4%。它可使细菌外毒素的电荷发生改变,封闭其自由氨基,产生甲烯化合物(CH2=N-)。其他基团(如吲哚异吡唑环)与侧链的关系亦可改变,成为类毒素。常用的类毒素有白喉类毒素,破伤风类毒素。类毒素在预防由外毒素引起的传染病中起重要作用,可用于人和动物的免疫接种,使其通过人工自动免疫获得抗病能力;还可用来免疫动物,再从动物血液中提取含抗毒素的血清,将此抗血清注入人体后,可使人体通过被动免疫的方式,立即获得相应的特异性免疫力。第二章: 关于免疫与类毒素
免疫:指机体对感染有抵抗能力,而不患疫病或传染病。是机体免疫系统识别并清除外界入侵的 “非己”性抗原物质、自身突变和损伤的细胞,保持机体内环境稳定的一种生理功能。在类毒素的作用机理中,类毒素可用于人和动物的免疫接种,使其通过人工自动免疫获得抗病能力;还可用来免疫动物,再从动物血液中提取含抗毒素的血清,将此抗血清注入人体后,可使人体通过被动免疫的方式,立即获得相应的特异性免疫力。
在人工自动免疫中,使用的生物制品有疫苗和类毒素,这些药物(生物制品)都能够使人类获得一个相应的免疫能力,这也是药学要发展的其中一个目的——提高人类免疫力,免受病痛灾害。第三章:关于微生物与类毒素
细菌是微生物的一种,虽然外毒素到类毒素或许经历了一个质的变化,但广泛存在于自然界中、个体微小、结构简单,在适当环境中可生长繁殖,并发生遗传、变异的一类的微生物和存在于自然界或人体内的一小部分可引起人类与动植物疾病的病原微生物并不仅是细菌,也包括细菌产生的外毒素。因而也可以说类毒素由微生物发展而来。
第四章:关于微生物学、免疫学与药学
免疫学是研究机体免疫斯通结构和功能的科学,包括:免疫系统的组织结构、免疫系统对自身和非己的识别及应答、免疫系统对非己的排异效应及其机制、免疫耐受的诱导、维持、破坏及其机制等。医学免疫学是研究人体免疫系统的组成、结构和功能、抗原物质的种类特性以及机体免疫系统对抗原物质产生免疫应答的规律、免疫应答的生理和病理效应以及免疫学理论、方法和技术在疾病预防、诊断和治疗中的应用等内容的一门学科。
医学微生物学主要研究与人类疾病有关的病原微生物的形态、结构、代谢活动、遗传和变异、致病机理、机体的抗感染免疫、实验室诊断及特异性预防等。学习医学微生物学的目的,在于了解病原微生物的生物学特性与致病性;认识人体对病原微生物的免疫作用,感染与免疫的相互关系及其规律;了解感染性疾病的实验室诊断方法及预防原则。及医学微生物学与免疫学是不可分割的两个学科。药学是以现代化学、医学为主要理论指导,研究、开发和生产用于治病防病药物的一门科学。而药物的来源无外乎化学合成、生物合成以及化学半合成。
微生物:是指广泛存在于自然界中、个体微小、结构简单,在适当环境中可生长繁殖,并发生遗传、变异的一类微小生物的总称。病原微生物:是指存在于自然界或人体内的一小部分可引起人类与动植物疾病的微生物。在医药工业方面,许多抗生素是微生物的代谢产物;在生活中,也可利用微生物来制造一些维生素、辅酶、ATP等药物。可知微生物完全可以作为药物的资源,其种类繁多、生长快速、遗传简单的优势展现在人类面前。而医学微生物学:主要研究细菌、病毒、真菌等病原微生物(如各类细菌性食物中毒、霍乱、伤寒、气性坏疽、艾滋病、“非典型性肺炎”等疾病的病原体)的生物学性状和致病性。其内容包括病原微生物的形态、结构、培养特性、抵抗力、遗传变异和致病物质、所致疾病、致病机制、免疫性以及传染病的预防、诊断和治疗原则等内容。可看出,想要推动药学的发展,想要为世界带来一种新药,微生物作为研究对象会是一个不错的选择,微生物制药利用微生物技术,通过高度工程化的新型综合技术,以利用微生物反应过程为基础,依赖于微生物机体在反应器内的生长繁殖及代谢过程来合成一定产物,通过分离纯化技术进行提取精制,并最终制剂成型来实现药物产品的生产。而希望利用微生物制药将微生物变成对人类有益的一种药物,自然避免不了要对微生物的种种特性进行研究,因而微生物学也是必须要熟知的,所以在微生物制药中,微生物学是药学的前提。药物对于免疫一般有两个方面的作用,提高作用或抑制作用,若药物由微生物研究而来,则需要研究病原微生物对生物体有何免疫作用,因而医学免疫学对于探知药物的免疫作用有重要意义。结束语:通过探讨医学微生物学与免疫学的研究方向,可知最终在很大程度上是为药学做准备,所以,通过类毒素的作用机理,我们可知医学微生物学与免疫学对药学有重要作用。相关文献:《医学微生物学与免疫学》 主编:章育正
上海科技技术出版社出版
《药学概论》
主编:吴春福
中国医药科技出版社出版
《微生物学与免疫学》
主编:甘晓玲
人民卫生出版社出版
姓名:姚应增
学号:2011190440 班级:药学班
第五篇:免疫学检测技术在食品安全中的应用
免疫学检测技术在食品安全中的应用
杨明
(甘肃农业大学 动物医学院,甘肃 兰州 730070)
食品安全问题在21世纪的今天已经成为全世界关注的重大问题,对国家的经济发展和消费者的身体健康产生了重大影响。随着我国市场经济的的不断完善和发展,食品行业对外贸易与日剧增,食品的质量与安全问题已成为影响农业和食品工业产品竞争力的关键因素。同时,由于我国人民生活已由温饱型食物结构转向营业健康型食物结构,全民食品营业卫生知识得到普及。人民的饮食消费观念也由数量型转向质量型,对食品卫生质量标准的要求越练越高,这就对食品检测技术提出更高的要求。
由于食品种类丰富,食品中检测的有毒有害物质种类和组分繁多,需要检测的物质质量极低,样品中待检物的浓度常为μg、ng甚至 pg级,除此之外,许多检测物除需检测物质本身,还涉及其衍生物和降解物测定。区别同位异构体以及元素的价态等。因此食品检测要求检测方法更加准确、快速、方便,也使得其他学科的先进技术不断应用于食品检测领域中来,由于新技术的引入,食品行业开发出了许多自动化程度和精确度很高的检测仪器,这不仅缩短了分析时间,减少了人力误差,也大大提高了食品分析检测的速度、灵敏度和准确度。现代食品检测技术主要包括以下几个方面:①计算机视觉技术;②现代仪器分析技术;③食品物性的力学、声学和电学检测技术;④电子传感检测技术;⑤生物传感技术;⑥核酸探针检测技术;⑦PCR基因扩增技术;⑧免疫学检测技术。
免疫学检测技术是食品检测技术中的一个重要组成部分,特别是三大免疫技术——荧光免疫技术、酶免疫技术、放射免疫技术在食品检测中得到了广泛应用。利用免疫学检测技术可检测细菌、病毒、真菌、各种毒素、寄生虫等,还可用于蛋白质、激素、其他生理活性物质、药物残留、抗生素等的检测,其检测方法简便、快速、灵敏度高、特异性强,特别是单克隆抗体的发展,使得免疫检测方法特异性更强,结果更准确。
免疫分析是抗原与抗体的特异性、可逆性结合为基础的分析技术。1959年,Yalow和Berson 将发射性同位素示踪与免疫反应相结合建立了发射免疫测定法,从而开创了免疫分析这一崭新领域,次后又发展了许多替代或非同位素免疫免疫分析法。
1.免疫荧光技术在食品检测中的应用
免疫荧光分析(Immuno Fluorescence Assay , IFA)始创于20世纪40年代初,1942年Cons等首次报道用异硫氰酸荧光素标记抗体,检查小鼠组织切片中的可溶性肺炎球菌多糖抗体,但此种荧光素标记物的性能较差,未能推广应用,20世纪50年代,Riggs等合成性能较为优良的异硫氰酸荧光素。Mashall等对荧光抗体的标记方法又进行了改进,从而使得免疫荧光技术逐渐推广应用。1.1 基本原理
抗体与荧光素结合后,并不影响其与相应的抗原发生特异性反应,事先将待测抗原固定与玻璃载玻片上,滴加荧光标记抗体,若荧光标记抗体与相应的抗原发生特异性结合反应,不能被缓冲液冲掉,载荧光显微镜下可观察到荧光,否则荧光抗体被缓冲液冲掉,在显微镜下观察不到荧光。1.2 荧光免疫测定法的分类
根据标记荧光产生的方式不同分为底物标记荧光测定法、荧光偏振免疫测定法、荧光猝灭增强免疫测定法。FIA可使用均相或非均相分析方式,均相FIA应用较多。
1.2.1 底物标记荧光测定法
底物标记荧光测定法(SLFIA)使用一种酶的底物标记待测物,底物本身无荧光,在受到相应酶的催化时能转变为荧光物,当标记底物与抗体结合产生的空间位阻阻碍了酶与标记底物间的接触,样品中的待测物通过竞争作用使游离的酶标结合物或荧光强度增加。1.2.2荧光偏振免疫测定法
使用偏振光作为激发光时,视分子的运动状态,发射的荧光可能是振动方向各向随机化的普通荧光,或是只在某一平面振动的偏振荧光(ploarized fluorescence)在反应液中,游离的标记物分子体积小,在布朗运动中转动速度快,受偏振光照射后产生的荧光偏振方向被分散,不能产生偏振光,只发射普通荧光;与抗体结合的标记物分子体积增大,布朗运动速度减慢,甚至不能转动而形成定向排列,所以受偏振光激发后能产生偏振荧光,样品中的待测物的量越大,偏振荧光的强度越高。
1.2.3 荧光淬灭免疫测定法
荧光淬灭免疫测定法(Fluoresecent Quenching Immunoassay)的原理是当荧光标记物与抗体结合后发生荧光淬灭。荧光猝灭的机制尚不清楚,荧光淬灭可能与标记物与抗体结合后导致电子振动状态的改变有关。1.2.4荧光增强免疫测定法
荧光增强免疫测定法(Fluoresecent Enhancement Immunoassay)的原理与荧光淬灭增强免疫测定法相似,不同的是标记物与抗体结合后荧光强度增强。酶免疫检测技术在食品检测中的应用
酶免疫检测技术是在20世纪60年代在荧光和组织化学的基础上发展起来的一种新技术,最初用酶代表荧光素标记抗体作为生物组织中抗原的鉴定和定位。随后发展为用于鉴定免疫扩散及免疫电泳板上的沉淀线,到1971年,Engrall等用碱性磷酸酶标记抗原或抗体,建立了酶联免疫吸附试验(ELISA),这一技术因其高度的准确性、特异性、应用范围广、检测速度快以及费用低等优点,是目前食品检测中令人瞩目的有发展前途的一种新技术。2.1 酶免疫技术的基本原理
用酶标记已知的抗原(抗体),然后与样品在一定条件下反应,如果样品中含有相应的抗体(抗原),抗原抗体结合形成复合物中所带酶分子遇到底物时,能催化底物水解、氧化或还原,产生显色反应,这样就可以定性定量测定样品中的抗体(抗原)。2.2 酶免疫技术的分类
酶免疫技术发展迅猛,种类繁多,酶免疫技术分为酶免疫组化技术和酶免疫测定技术,酶免疫测定技术又分为均相免疫测定和异相免疫测定技术,异相免疫测定技术又分为固相免疫测定技术和液相免疫测定技术。2.3 酶联免疫吸附测定技术 2.3.1 基本原理
抗体(抗原)与酶结合后,仍然能和相应的抗原(抗体)发生特异性结合,将待测样品事先包被于固相载体表面,加入酶标抗体(抗原),酶将抗体(抗原)于吸附于固相载体上相应的抗原(抗体)发生特异性结合反应,形成酶标记的免疫复合物,不能被缓冲液冲掉,当加入酶的底物时,底物发生化学反应,呈颜色变化,颜色深浅与待测抗原或抗体的量有关,可定性或定量测定抗原或抗体。ELISA常用的方法有直接法、间接法、双抗体夹心法、双夹心法和竞争法。2.3.2 ELISA技术在食品安全性检测中的应用及前景
ELISA技术把抗原抗体特异性与酶反应的敏感性相结合,使食品在未经分离的提取的情况下,即可进行定性和定量分析。近年来,该技术在食品安全检测中正逐步推广应用,用于细菌及其毒素、真菌及其毒素、病毒、寄生虫的检测。还用于蛋白质、激素、农业残留、兽药残留和抗生素及食品成分和劣质食品的检测分析。ELISA技术由于灵敏度高、特异性强、检测费用低和易于商品化,具有十分广阔的应用前景。
3.放射免疫技术在食品检测中的应用
放射免疫技术(Radio Immunoassay ,RIA)是以放射性核素为标记物的标记免疫分析法。是由Yalow和Berson于1960年创建的标记免疫分析技术。由于标记物放射性核素的检测灵敏性,本法灵敏度高,测定准确性良好,特别适应于蛋白质、激素和多肽的精确定量测定。3.1 基本原理
放射免疫分析的基本原理是标记抗原和非标记抗原对特异性抗体的竞争结合反应。在这一反应系统中,作为试剂的标记抗原和抗体的量是固定的,抗体量一般采用能结合40%-50%的标记抗原,而受检标本中的非标记抗原是变化的,根据标本中抗原的量不同,得到不同的反应结果。当标记抗原、非标记抗原和特异性抗体三者同时在于一个反应系统时,由于标记抗原和非标记抗原对特异性抗体具有相同的结合力,因此两者相互竞争特异性的抗体,由于标记抗原与特异性抗体的量是固定的,故标记抗原抗体复合物形成的量就随着非标记抗原的量而改变。非标记抗原量增加,相应的结合较多的抗体,从而抑制了标记抗原对抗体的结合,是标记抗原抗体复合物的量相应减少,游离的标记抗原相应的增加,亦即抗原抗体复合物中的放射性强度与受检标本中抗原的浓度呈反比。若将抗原抗体复合物与游离的标记抗原分开,分别测定其放射强度,就可计算出结合的标记抗原(B)与游离的标记抗原(F)的比值(B/F),这与标本中的抗原呈函数关系。用一系列不同的标准抗原进行测定,计算相应的B/F值,可得到一条剂量反应曲线,受检标本在同样条件下进行测定,计算B/F值,即可在剂量反应曲线是查出标本中的抗原含量。放射免疫测定 分为液相放射免疫测定和固相放射免疫测定。3.2 放射免疫技术在食品检测中的应用
RIA测定就是应用放射性物质代替ELISA中的标记酶作为抗原或抗体耦联物,在食品安全检测中最常见的同位素是3H和14C。1978年,Charm在RIA技术的基础上发展了放射免疫检测技术(RRA),放射免疫检测在快速检测方面最成功的是CharmⅡ6600/7600抗生素快速检测系统,该系统就是利用专一受体来识别结合于同一类抗生素族中的母环以便最快速同时检测同一抗生素族在样品中的残留情况。目前,CharmⅡ7600检测系统就β-内酰胺类、氯霉素类、四环素类、磺胺类、氨唑西林及碱性磷酸酶这六项检测以被FDA认可。放射免疫技术由于可以避免假阳性,适宜于阳性率较低的大量样品检测,对水产品、肉类产品、果疏产品中的农药残留量的检测中广泛应用。还可检测经食品传播的细菌及毒素、真菌及毒素、病毒和寄生虫及小分子物质和大分子物质。如南京农业大学用放射免疫测定牛奶中的天花粉蛋白。
4.免疫胶体金检测技术在食品检测中的应用
免疫胶体金检测技术又叫Rosa.Tests法,是利用胶体金颗粒进行标记的一项新技术。4.1基本原理
氯金酸(HAuCl4)在还原剂作用下,可聚合成一定大小的金颗粒,形成负电的疏水胶溶液,由于静电作用而成为稳定的胶体状态,故称胶体金。胶体金标记,实质上是蛋白质等分子被吸附到胶体金颗粒表面的过程,吸附机理可能是胶体金颗粒表面带有负电荷,与蛋白质的正电荷基团因静电吸附而行形成牢固结合,用已知还原法可以方便地从HAuCl4制备各种不同的粒径,不同颜色的胶体金颗粒,这种球形的颗粒对蛋白质有很强的吸附功能,可以与葡萄球菌A蛋白、毒素、免疫球蛋白、糖蛋白、酶、抗生素、激素等非共价结合。
免疫胶体金检测原理是利用了金颗粒具有电子密度的特性,当这些标记物在相应配体处大量聚集时,肉眼可见红色或粉红色斑点。因而可用于定性或定量的快速检测方法中。这一方法可通过银颗粒的沉积被放大,称之为免疫金银染色。4.2 免疫胶体金技术在食品检测中的应用
该技术当前主要用于在牛奶中检测抗生素,可在十分钟内快速检测牛奶中的抗生素,利用该技术可检测的抗生素种类有六种,β-内酰胺、四环素、磺胺二甲嘧啶、恩诺沙星和黄曲霉毒素,可检测的β-内酰胺药物有氨苄青霉素、阿莫西林、邻氯青霉素头孢噻呋、头孢霉素和青霉素G等。由于该技术结果直观、操作简单,在食品安全检测中有广阔的应用前景。单克隆抗体技术在食品检测中的应用
抗体主要由B淋巴细胞合成,每个B淋巴细胞有合成一种抗体的遗传基因,如果能选出一个制造一种专一抗体的细胞进行培养,就可以得到由单细胞经分裂增殖而形成的细胞群,即克隆。单克隆细胞将合成一种决定簇的抗体。1975年,Kohler和 Milstein发现将小鼠骨髓瘤细胞和绵羊红细胞免疫的小鼠脾细胞进行融合,形成了杂交细胞即可产生抗体,又可无限增殖,从而创 立了单克隆抗体杂交瘤技术。这一技术为医学和生物学基础研究开创了新纪元,是免疫学领域的重大突破。5.1 基本原理
B淋巴细胞具有专一性的合成针对某一抗原决定簇的抗体,但这种B淋巴细胞不能在体外生长,而骨髓瘤细胞可在体外生长,应用细胞杂交技术使骨髓瘤细胞与免疫的淋巴细胞二者合二为一,得到杂种的骨髓瘤细胞即杂交瘤细胞,这种杂交瘤细胞即具有专一性合成某一抗体的特性,也具有瘤细胞能在体外无限增殖的特性,用这种杂交瘤细胞培养的细胞群,可制备抗一种抗原决定簇的特异性单克隆抗体,这种用杂交瘤技术制备的单克隆抗体称为第二抗体,主要抗原能引起小鼠的抗体应答,应用杂交瘤技术可获得几乎所有抗原的单克隆抗体。5.2 单克隆抗体技术在食品检测中的应用
单克隆抗体在食品检测中最大的优点是特异性强,不易出现假阳性。在食品检测中有广泛的应用前景。目前人们已制备出各种经食品传播和引起食物中毒的细菌及毒素、真菌及毒素、病毒、寄生虫、农药、激素等的单克隆抗体并建立的检测方法。
磺胺二甲嘧啶和克伦特罗(瘦肉精)这两种药物被欧美各国和我国列为兽药残留控制重点,国内研究出了用于动物性食品中磺胺二甲嘧啶检测的单克隆抗体试剂盒和克伦特罗残留检测的多克隆试剂盒。这两种试剂盒具有特异性强、仪器化程度低、样品前处理简单、检测时间短,在实际生产中应用前景广阔,填补了国内空白。
单克隆抗体检测技术可在十分钟内快速检测有机磷类、氨基甲酸酯类、有机氯类、拟除虫菊酯类及激素类的残留量为农产品的优质安全提供技术支持。
英国建立了自动肉制品中的沙门氏菌的单克隆抗体检测方法,人们还制出了单核增生性李特氏杆菌的单抗,用单抗ELISA检测该菌。乳中氯霉素的单克隆抗体检测技术也被建立。
食品储藏过程中会受到霉菌污染,现已从青霉、毛霉等霉菌中提取耐热性抗原制成单克隆抗体用ELISA方法可检出加热和未加热食品中的霉菌。免疫测定新技术
6.1 脂质体免疫测定法
脂质体免疫测定法(LIA)是一种较新的免疫测定技术,脂质体是由磷脂或由其他类脂分子在水相中自发形成的一种密闭的双分子单层或多层囊泡,脂质体表面还可以连接抗原或抗体分子。这种生物模拟膜在形成过程中能包裹水及其中的溶质(染料或酶),膜的稳定性可随免疫反应有规律变化。根据释放出的标记物的量进行测定,所以LIA具有很高的信号放大作用。目前LIA主要存在脂质体的稳定性和非特异性溶解问题。6.2 克隆酶给予体免疫测定法
克隆酶给予体免疫测定法(CEDIA)是一种新型均相免疫测定法。CEDIA中使用由重组DNA技术获得的半乳糖苷酶两个独立的蛋白质片段,这两个片段独立存在时无酶活性,但两个片段结合则显示催化活性。以此作为分析方法的基础。其中较小片段称为酶给予体片段(ED),另一片段称为酶受体片段(EA)。ED标记物与抗体集合后不再与EA形成酶,所以当样品中待测物增 加时则游离ED标记物增多,使反应液中酶产生增加,经底物显色测定。CEDIA是目前灵敏度较高的均相免疫测定法。6.3 发光免疫测定法
发光免疫测定法(CLIA)常用鲁米诺(Luminol)、异鲁米诺(Isoluminol)及其衍生物进行标记。这些环肼类化合物在碱性条件下可被氧化产生3-胺基苯二甲酸盐和430nm的发射光。在鲁米诺的芳氨基上进行烃链取代后产光性能增强,但若置换芳氨基则发光被破坏。另外丫叮酯也用于发光标记。CLIA操作简单、灵敏度高、测定速度快。但CLIA产光物质发光时间极短(数秒钟),测定误差较大。6.4免疫传感器技术
免疫传感器是生物传感器的一种,近年来已取得迅速发展。免疫传感器的探头主要由两部分组成;感受器:通常覆有连接有特异性抗体的可更换的传感膜;换能器:能将抗原抗体产生的信号转换为可供仪器检测的电信号。免疫传感器使用对象广泛,专一性较强,高度的自动化,微型化与集成化减少对使用者及环境技术条件的依赖,测定速度快,适合现场或野外操作。6.5 多组分免疫测定法
根据不同检测物标记方法互不相同,分析条件和检测信号互不干扰。同一反应液中同时检测不同的检测物。但这种方法必须使几种标记物的测定条件相互协调,其灵敏度和组分数受到限制。
免疫反应最大的特点是高度选择性,抗原抗体的亲和数通常为109或更高。作为一种分析手段,免疫分析技术操作简单、速度快、分析成本低,在食品安全检测中已表现出巨大的应用潜力。此外免疫分析技术能与其他技术联用,在联用方法中免疫技术即可作为高效液相色谱(HPLC)或气相色谱法(GC)等测定技术的样品进化或分离手段,也可作为其离线或在线检测方法。这些方法结合了免疫分析的选择性,灵敏性与HPLC,GC等技术的高速,高效分离和准确检测能力,使分析过程简化,分析成本下降,拓展了待测物范围。
免疫分析测定法提供的待测物组分或结构方面的信息太少,一般不具备多残留分析能力;免疫分析过程复杂,影响因素众多,且不易控制,结果易于出现假阳性,方法难以标准化;方法建立过程复杂,研究周期长,某些待测物半抗原难以合成。免疫测定法不可能取代色谱或光谱等常规分析方法,只能作为其重要补充。
参考文献
[1]现代食品检测技术.赵杰文,孙永海主编.中国轻工业出版社.北京,2005:4.[2]兽药残留分析.赵俊锁,邱月明,王超主编.上海科学技术出版社.2002:2.[3]食品安全与卫生.曹小红主编.科学出版社.2006:7.[4]兽医免疫学.杜念心主编.中国农业出版社.北京:1997.[5]分子免疫学.余传霖主编.上海医科大学出版社.复旦大学出版社.上海:2001.[6]细胞和分子免疫学.余伯泉主编.科学出版社.2001.[7]乳和乳制品检测技术.翁鸿珍主编.中国轻工业出版社.北京:2006.[8]乳品安全和乳品检测技术.庞广昌,陈庆森,刘志和,等主编.科学出版社.北京: 2005.