第一篇:一元二次方程的应用的评课纪录
附表4
中学数学组评课记录
时间:____10__月__11_日 星期 四 第 4 节 班级 初二(5)课题: 一元二次方程的应用(2)执教者
级别:
校(区、校、组)评课过程:
1、背景分析:
①概况介绍: 利用一元二次方程来解决面积、体积和增长率方面的应用题。
②研修主题:1)如何把实际问题抽象为数学问题,然后由数学问题的解决而获得对实际问题的解决。
2)列方程解应用题,最重要的是审题,审题是列方程的基础,而列方程是解题的关键,只有在透彻理解题意的基础上,才能恰当地设出未知数,准确找出已知量与未知量之间的等量关系,正确地列出方程。
③课堂教学中实践研修主题所运用的策略:利用合作学习,组内采取异质分组,让成绩好的同学帮助其他同学,一起来分析题目,并解决题目。
2、同伴互助,教学研讨:
1)在试讲的过程中,发现一节课又处理面积问题的应用题,又处理增长率方面的应用题,时间特别紧,而且学生就像在赶场子,一个还没有领会,第二个又下来了,练习也没时间完成,所以商量把增长率的问题放到第二节课来处理。
2)面积问题的应用题要注意面积的两种表达方式,一种是具体的数字,另外一种是用含有字母的代数式来表示,从而找到等量关系,列出方程。
3、反思与建议:
1)在处理面积问题的应用题时,例题1通过变了三次数字,从而使一道问题变成了三道题目,这样比较不错,有利于学生对于知识的掌握,而且还节约了时间。
2)在配套的练习中,引入了围墙长度的问题,其实完全可以把它在例题1的基础之上变化的,这样又可以节约时间同时也可以给学生以明确的提示。
3)有些老师认为方程的计算没有必要数字这么大,如果数字小点的话,解方程的时候可以更快一点。后来我们有讨论了一下,感觉数字还是不能小,因为到了初三,遇到路程问题的应用题一般数字都很大的。
4)解方程的办法要强调能用十字相乘就要尽可能的用十字相乘的方法来解决。
4、执教者课后感悟:
1)“应用问题如何讲,才能讲的好,分析的到位,既不罗嗦,又能清楚地表达自己的意思”一直是我困惑的问题。所以这次我特意选了应用题来开课,就是希望其他老师能给我好的建议。可以说收获颇多。首先,题目的设计很讲究,最好在同一个问题背景下,研究问题,有利于学生的举一反三,同时也节约了时间;其次,分析的时候,老师自己心中要有谱,要能够设想到学生会在什么地方卡壳,为什么会卡壳?站在他们的角度多想想问题。第三,面积问题的应用题要注意面积的两种表达方式,一种是具体的数字,另外一种是用含有字母的代数式来表示,从而找到等量关系,列出方程。最后,我还了解到初三考到的应用题有很多是关于路程方面的,在初二的时候,我们就应该着手,加强同学们的理解能力和运算能力。
第二篇:一元二次方程应用2010
1、(2009烟台市)某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台.
(1)假设每台冰箱降价x元,商场每天销售这种冰箱的利润是y元,请写出y与x之间的函数表达式;(不要求写自变量的取值范围)
(2)商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元?
2、(2009武汉)某商品的进价为每件40元,售价为每件50元,每个月可卖出210件;如果每件商品的售价每上涨1元,则每个月少卖10件(每件售价不能高于65元).设每件商品的售价上涨x元(x为正整数),每个月的销售利润为y元.
(1)求y与x的函数关系式并直接写出自变量x的取值范围;
(2)每件商品的售价定为多少元时,每个月的利润恰为2200元?
3、某果园有100棵橙子树,每一棵树平均结600个橙子.现准备多种一些橙子树以提高产量,但是如果多种树,那么树之间的距离和每一棵树所接受的阳光就会减少.根据经验估计,每多种一棵树,平均每棵树就会少结5个橙子.⑴利用函数表达式描述橙子的总产量与增种橙子树的棵数之间的关系.(2)增种多少棵橙子,可以使橙子的总产量达到60400个?
4、某商店经销一种销售成本为每千克40元的水产品.据市场分析,若按每千克50元销售,一个月能售出500千克;销售单价每涨1元,月销售量就减少10千克.针对这种水产品的销售情况,请售答以下问题:
(1)当销售单价定为每千克55元时,计算月销售量和月销售利润;
(2)设销售单价为每千克x元,月销售利润为y元,求y与x函数关系式(不必写出x的取值范围);(3)商店想在月销售成本不超过1000元的情况下,使得月销售利润达到8000元,销售单价应定为多少?
5、某化工材料经销公司购进了一种化工原料共7000千克,购进价格为每千克30元.物价部门规定其销售单价不得高于每千克70元,也不得低于30元.市场调查发现:单价定为70元时,日均销售60千克;单价每降低1元,日均多售出2千克.在销售过程中,每天还要支出其他费用500元(天数不足一天时,按整天计算).设销售单价为x元,日均获利为y元.求y关于x的二次函数关系式,并注明x的取值范围;
6、(2009年贵州省黔东南州)凯里市某大型酒店有包房100间,在每天晚餐营业时间,每间包房收包房费100元时,包房便可全部租出;若每间包房收费提高20元,则减少10间包房租出,若每间包房收费再提高20元,则再减少10间包房租出,以每次提高20元的这种方法变化下去。
(1)设每间包房收费提高x(元),则每间包房的收入为y1(元),但会减少y2
间包房租出,请分别写出y1、y2与x之间的函数关系式。
(2)为了投资少而利润大,每间包房提高x(元)后,设酒店老板每天晚餐包房总收入为y(元),请写出y与x之间的函数关系式。
7、(2009年甘肃庆阳)(8分)某企业2006年盈利1500万元,2008年克服全球金融危机的不利影响,仍实现盈利2160万元.从2006年到2008年,如果该企业每年盈利的年增长率相同,求:(1)该企业2007年盈利多少万元?
(2)若该企业盈利的年增长率继续保持不变,预计2009年盈利多少万元?
8、(2009年湖州)随着人民生活水平的不断提高,我市家庭轿车的拥有量逐年增加.据统计,某小区2006年底拥有家庭轿车64辆,2008年底家庭轿车的拥有量达到100辆.(1)若该小区2006年底到2009年底家庭轿车拥有量的年平均增长率都相同,求该小区到2009年底家庭轿车将达到多少辆?
(2)为了缓解停车矛盾,该小区决定投资15万元再建造若干个停车位.据测算,建造费用分别为室内车位5000元/个,露天车位1000元/个,考虑到实际因素,计划露天车位的数量不少于室内车位的2倍,但不超过室内车位的2.5倍,求该小区最多可建两种车位各多少个?试写出所有可能的方案.9.建造一个面积是140平方米的仓库,要求其一边靠墙,墙长16米,在与墙平行的一边开一道2米宽的门。现人32米长的材料来建仓库,求这个仓库的长是多少米?
10、如图在△ABC中,∠B是直角,AB=6厘米,BC=12厘米。点P从A点开始,沿AB方向以每秒1厘米的速度移动,同时点Q从点B开始,沿BC方向以每秒厘米移动。问几秒时△PBQ的面积等于8平方厘米?
11.(2009年甘肃庆阳)若关于x的方程x2
2xk10的一个根是0,则k.
12.、(2009威海)若关于x的一元二次方程x2
(k3)xk0的一个根是2,则另一个根是______.、(2009山西省太原市)某种品牌的手机经过四、五月份连续两次降价,每部售价P 13由3200元降到了2500元.设平均每月降价的百分率为x,根据题意列出的方程是.
第三篇:一元二次方程应用
1.(2011•黑龙江)我市为了增强学生体质,开展了乒乓球比赛活动.部分同学进入了半决赛,赛 制为单循环形 式(即每两个选手之间都赛一场),半决赛共进行了 6 场,则共有 人进入半决赛. 2.(2007•防城港)要组织一次篮球联赛,赛制为单循环形式(每两队之间都赛一场),计划安排 21 场比赛,应 邀请 个球队参加比赛
3.(2010•毕 节 地 区)毕 业 之 际,某 校 九 年 级 数 学 兴 趣 小 组 的 同 学 相 约 到 同 一 家 礼 品 店 购 买 纪 念 品,每 两 个 同 学 都 相 互 赠 送 一 件 礼 品,礼 品 店 共 售 出 礼 品 30 件,则 该 兴 趣 小 组 的 人 数 为(A. 5人 B. 6人 C. 7人 D. 8人)
4.握手问题
5.数字问题
6.(2013•珠海)某渔船出海捕鱼,2010 年平均每次捕鱼量为 10 吨,2012 年平均每次捕鱼量为 8.1 吨,求 2010 年-2012 年每年平均每次捕鱼量的年平均下降率. 7.天收到捐款 10 000 元,第三天收到捐款 12 100 元.(1)如果第二天、第三天收到捐款的增长率 相同,求捐款 增长率;(2)按照(1)中收到捐款的增长率速度,第四天该单位能收到多少捐款? 8(2013•襄阳)有一人患了流感,经过两轮传染后共有 64 人患了流感.(1)求每轮传染中平均一个人传染了几个人?(2)如果不及时控制,第三轮将又有多少人被传染? 9.(2013•来宾)某商场以每件 280 元的价格购进一批商品,当每件商品售价为 360 元时,每月可售 出 60 件,为了扩大销售,商场决定采取适当降价的方式促销,经调查发现,如果每件商品降价 1 元,那么商场每月就可以多售出 5 件.(1)降价前商场每月销售该商品的利润是多少元?(2)要使商场每月销售这种商品的利润达到 7200 元,且更有利于减少库存,则每件商品应降价多 少元? 10.(2013•泰安)某商店购进 600 个旅游纪念品,进价为每个 6 元,第一周以每个 10 元的价格售出 200 个,第二周若按每个 10 元的价格销售仍可售出 200 个,但商店为了适当增加销量,决定降价销 售(根据市场调查,单价每降低 1 元,可多售出 50 个,但售价不得低于进价),单价降低 x 元销售,销售一周后,商店对剩余旅游纪念品清仓处理,以每个 4 元的价格全部售出,如果这批旅游纪念品 共获利 1250 元,问第二周每个旅游纪念品的销售价格为多少元? 11(2013•连云港)小林准备进行如下操作实验;把一根长为 40cm 的铁丝剪成两段,并把每一段各 围成一个正方形. 2(1)要使这两个正方形的面积之和等于 58cm,小林该怎么剪? 2(2)小峰对小林说: “这两个正方形的面积之和不可能等于 48cm . ”他的说法对吗?请说
第四篇:一元二次方程应用
一.增长率问题:例如经济增长率、人口增长率等。讨论的是两轮(即两个时间段)的平均变化率,设平均增长率为X,则有下列关系:变化前的数量×(1+X)2=变化后的数量。
1.向阳村2001年的人均收入是1200元,2003年的人均收入是1452元,求人均收入的年平均增长率。
2.青山村种的水稻2001年平均每公顷产7200千克,2003年平均每公顷产8450千克,求水稻每公顷产量的年平均增长率。
3.某银行经过最近的两次降息,使一年期的存款利率由2.25%降至1.98%,平均每次降息的百分率是多少?
4.某工厂第一季度的总产值是500万元,已知一月份的产值是150万元,二、三月份的平均增长率相同,求二、三月份的平均增长率。
二.握手、签合同、赠送礼物等问题:(1)1X(X-1)=a(2)X(X-1)=a。2
1.参加一次聚会的每两个人都握了一次手,所有人共握了10次,有多少人参加聚会?
2.参加一次商品交易会的每两家公司之间都签订了一份合同,所有公司共签订45份合同,共有多少家公司参加商品交易会?
3.参加一次足球联赛的每两队都进行了两场比赛,共比赛90场,共有多少个队参加比赛?
4.元旦同学之间相互赠送贺卡,一共使用了150张贺卡,问有多少名同学参加此次活动?
三. 细胞分裂、信息传播、传染病扩散、树木分支等问题。
(1)1+X+X(1+X)=a,1+X+X2=a。
1.有一人患了流感,经过两轮传染后共有121人患了流感,每轮传染中平均一人传染了几人?
2.某种植物的主干长出若干数目的支干,每个支干又长出同样多的小分支,主干、支干、小分支的总数是91,每个支干长出多少个小分支?
四.图形问题
1.一张桌子的桌面长为6米,宽为4米,台布面积是桌面面积的2倍,如果将台布铺在桌子上,各边垂下的长度相等,求这块台布的长和宽。
2.要为一幅长29厘米,宽22厘米的照片配一个镜框,要求镜框的四条边宽度相等,且镜框所占面积为照片面积的四分之一,镜框边的宽度应为多少?
第五篇:教案一元二次方程的应用
教案19.5一元二次方程的应用
(沪科版八年级下一元二次方程的应用教案)
教学目标; 知识与技能,1.使学生学会列一元二次方程解应用题的方法。
2.掌握增长率问题建立数学模型的方法,并利用它解决一些具体问题.
过程与方法,通过具体实例的抽象概括过程。进一步向学生渗透把未知转化为已知的化归思想。培养学生的分析问题和解决问题的能力。发展学生的抽象思维能力。
情感态度与价值观,通过具体实例的分析,思考,与合作学习。培养学生应用知识分析问题,解决问题的能力和良好的学习习惯。
教学重点:
正确分析应用题的题意,列出一元二次方程。
教学难点:
分析问题,建立正确的数学模型。
教学方法:讲练结合,教学过程:
一,温故知新。
1,一元二次方程有哪几种解法?
2,看18.1节中的问题2,(见课本P37)
二:探索新知;
3,问题1:一个两位数,十位数字与个位数字之和是5,把这个数 的个位数字与十位数字对调后,所得的新两位数与原来的两 位数的乘积为736,求原来的两为数。
分析 :多位数的表示方法:
两位数:(十位数)乘以10+个位数字
三位数:(百位数)乘以100+(十位数)乘以 10+个位数字
… …
本题是属于数字问题,题中的等量关系比较明显:新两位数乘以 原来的两位数=736,正确列出方程的关键是熟练掌握用字母表示两位数的方法。
解:设原来两位数的十位数字为x,则个位数字为(5-x),根据题意::得[10x+(5-x)] [10(5-x)+x]=736
整理,得x2-5x+6=0,解得;x1=2,x2=3
当x=2时,5-x=3,符合题意,原来的两位数是23
当x=3时,5-x=2,符合题意,原来的两位数是32
4.练一练
(1)、两个数的差是4,这两个 数的积是96,求 这两个数.(2)、已知两个连续奇数的平方和等于74,求这两个数.(3)、有三个连续整数,已知最大数与最小数的积比中间数的5倍小1,求这三个数.5.问题2:课本 P37例2(让学生交流学习后再讲解)
6.练一练,(一)某储蓄 所第一季度收到的 存款额是150万元,第三季度上升到216万元,且每个季度的增长率相同。
(1)求每个季度的增长率是多少?
(2)该储蓄所第二季度收到的存款额多少万元?
分析:增长率问题中基本关系是:原来的部分乘以(1+增长率)=增长后的部分。
若连续两次增长率相同,设起始量为a,增长率为x,则:
第一次增长后的数值为 ,a(1+x),第 二次增长后的数值为,a(1+x)(1+x)= a(1+x)2
解:设每个季度的增长率是x,则150(1+x)2•=216
解得:x1=-2.2(不合题意,舍去),x2=0.2=20%
答:(略)
提示: 本题中第一次出现舍根的情况,解方程所得的根,如果与实际问题不相符,就要舍去。
(二): 某种产品,计划两年后使成本降低36%,平均每年降低的百分率是多少?
解:设这种产品的下降率是x,起始量为a,则
a(1-x)2 = 36%a
解得:x1=1.6(不合题意,舍去),x2=0.4=40%
答:(略)
分析:下降率或降低率可理解为增长率为负值(-x),同理,若连续两次的下降率相同,设起始量为a,下降率为x,则
第一次下降后的数值为:a(1-x),第 二次下降后的数值为:a(1-x)(1-x)= a(1-x)2
三,课堂小结
本节学习了列一元二次方程解应用题的一般方法步骤即,审、设、列、解、验、答。重点是,审题,找等量关系。
四,板书设计;(略)
五,布置作业
课本P38 第1、2、3题