第一篇:线性代数学习总结
线性代数学习总结
----------应化11 王阳(2110904024)
时间真快,一转眼看似漫长的大一就这样在不知不觉中接近尾声。纵观一年大学的学习和生活,特别是在线代的学习过程中,实在是感慨颇多。在此,我就从老师教学和自身学习方面,谈谈自己的一点体会。
老师在教学中,也应该以一些具体的实例入手来教学,如果脱离了实际应用,只是讲抽象的概念和式子,是很难明白的,并且有实例的对照,可以加深记忆理论知识。然后要注重易混淆概念的区别,必要时应该拿出来单独讲讲,比如矩阵和行列式的区别,矩阵只是为了计算线性方程而列的一个数据单而已,并无实际意义。而行列式和矩阵有本质的区别,行列式是一个具体的数值,并且行列式的行数和列数必须是相等的。其实老师在教学过程中,应该学会轻松一点,我不希望看到老师在讲台上讲得满头大汗,而学生坐在下面听得云里雾里的场面,这就需要老师能够精选一些内容讲解,不需要都讲,而其他相关的内容让学生自己通过举一反三就得到就可以了。老师可以自己选一些经典的例子来讲,而不一定要讲书上的例子。然后对于例子中的计算,老师就可以不用算了,多叫学生动动手,增加我们的积极性,并且这样也更能发现问题。再就是线性代数的课时少,这是一个客观存在的原因,所以更要精讲。而不需全部包揽。当然,若果能通过改革,增加课时是最好不过了。这也算一点小小的建议吧。
再者,在自身学习过程中,我想说明的是,大学里的学习是不能靠其他任何人的,只能靠自己,老师只是起到一个引导作用。所以教材是我们最重要的学习资源,如果没有书本,就是天才也不可能学好。总体看来,我们使用的课本题型简单易懂,非常适合初学者学习。但它也有许多的不足之处,就个人在看这本教材时,觉得它举得实例太少了,并且例子不太全面,本来线性代数是一门比较抽象的学科,加上计算量大,学时少,所以要学好它,就只有靠自己在课余时间多加练习,慢慢领悟那些概念性的东西。然后对于教材内容的侧重点,我觉得应该放在线性方程组这一块,因为它是其他问题的引出点,不管是矩阵,行列式,还是矩阵的秩和向量空间,都是为线性方程组服务的。我们对向量组的线性相关性的讨论,还有对矩阵的秩,向量组的秩的计算,都是为了了解线性方程组的解的情况。在线性方程组的求解过程中,我们运用了矩阵的行变换来求基础解系,当然这就相当于求极大无关组。还有对线性相关和线性无关的讨论,这也关系到线性方程组的解。所以在改革中,应该拿线性方程组为应用的实例,来一步一步的解剖概念和定理。当然一些好的、典型的解题方法,也应该用具体的例子来讲解,这是一本教材必须具备的。
当然在学习过程中,我们应该具备能够整体把握老师所讲重点的能力,注意各个章节的联系。数学中的概念往往不是孤立的,理解概念间的联系既能促进新概念的引入,也有助于接近已学过概念的本质及整个概念体系的建立。如矩阵的秩与向量组的秩的联系:矩阵的秩等于它的行向量组的秩,也等于它的列向量组的秩;矩阵行(列)满秩,与向量组的线性相关和线性无关也有一定的联系。知识体系是一环扣一环,环环相连的。前面的知识是后面学习的基础,如用初等变换求矩阵的秩熟练与否,直接影响求向量组的秩及极大无关组,进一步影响到求由向量组生成的向量空间的基与维数;又如求解线性方程组的通解熟练与否,会影响到后面特征向量的求解,以及利用正交变换将二次型化为标准型等。因此,学习线性代数,一定要坚持温故而知新的学习方法,及时复习巩固,为此,老师课前的知识回顾以及学生提前预习是十分必要的。对于后来学的,应该多翻翻书看看前面是怎么说的,往往前面学习的内容是为后面做铺垫的,所以在学了后面的知识后,再看前面的知识,会对前面的知识有一个新的认识,会更好的加深对它的理解和记忆。这一点上老师您做的很好。
然后对于书上花了很大的篇幅写的matlab实验,我觉得这是好事,但是在教学中老师是不会教我们的,因为课时有限,这是情理当中的,但是作为学生,我觉得应该好好地利用书上的资源,单靠做练习的笔头功夫是难以解决实际问题的。
总的来说,在线代的学习过程中,老师你总是能够调节课堂的气氛,让大家在开心的笑声中学习,并穿插着一些为人处事的道理,这都将让我们在以后的生活和工作中受益匪浅。很高兴能在你的班上学习这门课,我想我会永远记住您那一个个宁人忍俊不禁的冷笑话。
第二篇:线性代数学习总结
数学四
线 性 代 数 总 结
一、行列式
1.n阶行列式的概念
a11 a12 …… a1n(1)n阶行列式的递归定义a21 a22 …… a2n 有n ^ 2个数组成的n阶列式是一个算式,当……………… n=1时an1 an2 …… ann
la11l=a11。当n≥2时
n
D=a11A11 + a12A12 + … + a1A1n=∑a1j A1j
j=1
其中A1j=(-1)^ 1+ jM1j,为a1j的代数余子式。
a21… a2j-1 a2j+1… a2na31… a3j-1 a3j+1… a3n 为a1j的余子式。……………………an1… anj-2 an j+1… ann
(2)n阶行列式的逆序定义
a11 a12 …… a1n
a21 a22 …… a2n
∑(-1)^σ(i1,i2…in)a1i1 a2i2…anin………………
an1 an2……ann(i1,i2…in)
2.行列式的性质
性质一行列式的行和列互换后,行列式的值不变。
性质二行列式的两行(或两列)互换,行列式改变符号。
推论如果行列式中有两行(或列)的对应元素相同,则此行列式为零。性质三用数k乘以行列式的一行(列),等于以数k乘以此行列式。
推论如果行列式某行(列)的所有元素的公因子,则公因子可以提到行列式外面。
推论如果行列式有两行(或两列)的对应元素成比列,则行列式等于零。推论如果行列式中以行(或一列)全为零,则行列式的值必为零。
性质四如果行列式中的某行(或某列)均为两项之和,则行列式等于两个行列式之和。
推论如果将行列式某一行(或某一列)的每一个元素都写成M(M≥2)个元素的和,则此行列式可以写成M个行列式的和。
性质五将行列式的某一行(列)的每一个元素同乘以数k后加于另一行(列)对应位置的元素上,行列式的值不变。
性质六如果行列式中某行(或列)中各元素是其余各行(或各列)分别乘一常数后各对应元素之和,则行列式的值为零。
性质七行列式的任何一行(或列)的元素于另一行(或列)的对应元素的代数余子式的乘积之和必为零。
ai1Aj1 + ai2Aj2 + … +a1nAjn = 0(i≠j)
3.拉普拉斯展开式
行列式按k行(或列)展开,则c
D = ∑ MiAi(Mi为k阶子式,Ai为k阶代数余子式)
i=1
4. 利用拉普拉斯展开式的两种特殊情况
a11 … a1n0… 0………………………… a11 … a1n an1 … ann0… 0…………c11 … c1nb11 … b1n an1 … ann…………………………
cm1 …cmnbm1 …bmn
0…0a11 … a1n……………………………ann=(-1)^(mn)0…0a n1
c11 … c1nb11 … b1n…………………………cm1…cmnbm1 …bmn
5. 重要公式及结论
b11 … b1n …………… bm1 …bmn
a11 … a1n……………an1 … ann b11 … b1n …………… bm1 …bmn
(1)如果A,B均为n阶矩阵,则lABl = lAllBl,但AB≠BA。(2)如果A,B均为n阶矩阵,则lA±Bl ≠ lAl±lBl。(3)如果A为n阶矩阵,则lkAl = k^n lAl。(4)如果A为n阶矩阵,则lAl = lA´l
(5)如果A为n阶可逆矩阵,则lA¯;¯l =k^n / lAl。(6)如果A*为A的伴随矩阵,则lA*l = lAl^(n-1)
lAl(i = j)
(7)如果A为n阶矩阵,则ai1Aj1 + ai2Aj2 + … +a
0(i≠j)
A C A O O A
(8)O B= lAl lBl ;(-1)^(mn)lAl C B B O
O A
B C
=(-1)^(mn)lAl lBl。
(9)a11X a11Oa22a22
==Oann Xann
=a11 a22 … ann。
Oa1n Oa1n2n-1=a 2n-1=aan1O an1X
a11Oa2
2Oann
Xa1na2n-1
an1O
=(-1)^ [n(n+1)/ 2] a1n a2n-1 … an1。(10)范德蒙行列式
111…1
a1a2a3…an
a1^2a2^2a3^2…an^2=∏(aj – ai)其中(ai≠aj)(i≠j)……………………………1≤i≤j≤n
a1^n-1a2^n-1a3^n-1 … an^n-1
6. 行列式的求值方法
(1)一般行列式的求值方法
将行列式化为上、下三角行列式;
将行列式中一列的其余元素化为零,在按该列展开,不断降阶计算;(2)n阶行列式的求值方法
行列式中较多元素是零时,利用行列式的定义计算;
当各行(或列)诸元素之和相等时,可将各行(或列)加到同一行(或列)中去; 各行(或列)加减同一行(或列)的倍数,适用于可变为三角形式或提取公因子的; 观察一次因式法; 升阶法; 降阶法; 拆项法;
递归法(归纳法);
第三篇:线性代数总结
线性代数总结 [转贴 2008-05-04 13:04:49]
字号:大 中 小
线性代数总结
一、课程特点
特点一:知识点比较细碎。
如矩阵部分涉及到了各种类型的性质和关系,记忆量大而且容易混淆的地方较多。特点二:知识点间的联系性很强。
这种联系不仅仅是指在后面几章中用到前两章行列式和矩阵的相关知识,更重要的是在于不同章节中各种性质、定理、判定法则之间有着相互推导和前后印证的关系。复习线代时,要做到“融会贯通”。
“融会”——设法找到不同知识点之间的内在相通之处; “贯通”——掌握前后知识点之间的顺承关系。
二、行列式与矩阵
第一章《行列式》、第二章《矩阵》是线性代数中的基础章节,有必要熟练掌握。
行列式的核心内容是求行列式,包括具体行列式的计算和抽象行列式的计算,其中具体行列式的计算又有低阶和 阶两种类型;主要方法是应用行列式的性质及按行列展开定理化为上下三角行列式求解。
对于抽象行列式的求值,考点不在求行列式,而在于、、等的相关性质,及性质(其中 为矩阵 的特征值)。
矩阵部分出题很灵活,频繁出现的知识点包括矩阵运算的运算规律、、、的性质、矩阵可逆的判定及求逆、矩阵的秩的性质、初等矩阵的性质等。
三、向量与线性方程组
向量与线性方程组是整个线性代数部分的核心内容。相比之下,行列式和矩阵可视作是为了讨论向量和线性方程组部分的问题而做铺垫的基础性章节;后两章特征值、特征向量、二次型的内容则相对独立,可以看作是对核心内容的扩展。
向量与线性方程组的内容联系很密切,很多知识点相互之间都有或明或暗的相关性。复习这两部分内容最有效的方法就是彻底理顺诸多知识点之间的内在联系,因为这样做首先能够保证做到真正意义上的理解,同时也是熟练掌握和灵活运用的前提。解线性方程组可以看作是出发点和目标。线性方程组(一般式)还具有两种形式:(Ⅰ)矩阵形式,其中,(Ⅱ)向量形式,其中 ,向量就这样被引入了。
1)齐次线性方程组与线性相关、无关的联系
齐次线性方程组 可以直接看出一定有解,因为当 时等式一定成立;印证了向量部分的一条性质“零向量可由任何向量线性表示”。
齐次线性方程组一定有解又可以分为两种情况:①有唯一零解;②有非零解。当齐次线性方程组有唯一零解时,是指等式 中的 只能全为0才能使等式成立,而当齐次线性方程组有非零解时,存在不全为0的 使上式成立;但向量部分中判断向量组 是否线性相关无关的定义也正是由这个等式出发的。故向量与线性方程组在此又产生了联系:齐次线性方程组 是否有非零解对应于系数矩阵 的列向量组是否线性相关。可以设想线性相关无关的概念就是为了更好地讨论线性方程组问题而提出的。2)齐次线性方程组的解与秩和极大无关组的联系
同样可以认为秩是为了更好地讨论线性相关和线性无关而引入的。秩的定义是“极大线性无关组中的向量个数”,向量组 组成的矩阵 有 说明向量组的极大线性无关组中有 个向量,即 线性无关,也即等式 只有零解。所以,经过
“秩 → 线性相关无关 → 线性方程组解的判定” 的逻辑链条,由 就可以判定齐次方程组 只有零解。当 时,的列向量组 线性相关,此时齐次线性方程组 有非零解,且齐次线性方程组 的解向量可以通过 个线性无关的解向量(基础解系)线性表示。
3)非齐次线性方程组与线性表示的联系
非齐次线性方程组 是否有解对应于向量 是否可由 的列向量组 线性表示,即使等式 成立的一组数 就是非齐次线性方程组 的解。当非齐次线性方程组 满足 时,它有唯一解。这一点也正好印证了一个重要定理:“若 线性无关,而 线性相关,则向量 可由向量组 线性表示,且表示方法唯一”。性质1.对于方阵 有:
方阵 可逆ó
ó 的行列向量组均线性无关ó ó 可由克莱姆法则判断有唯一解,而 仅有零解 对于一般矩阵 则有: ó 的列向量组线性无关
ó 仅有零解,有唯一解(如果有解)
性质2.齐次线性方程组 是否有非零解对应于系数矩阵 的列向量组是否线性相关,而非齐次线性方程组 是否有解对应于 是否可以由 的列向量组线性表出。
以上两条性质可视为是将线性相关、行列式、秩、线性方程组几部分知识联系在一起的桥梁。
应记住的一些性质与结论 1.向量组线性相关的有关结论:
1)向量组 线性相关ó向量组中至少存在一个向量可由其余 个向量线性表出。2)向量组线性无关ó向量组中没有一个向量可由其余的向量线性表出。
3)若 线性无关,而 线性相关,则向量 可由向量组 线性表示,且表示法唯一。
2.向量组线性表示与等价的有关结论:
1)一个线性无关的向量组不可能由一个所含向量个数比它少的向量组线性表示。2)如果向量组 可由向量组 线性表示,则有
3)等价的向量组具有相同的秩,但不一定有相同个数的向量; 4)任何一个向量组都与它的极大线性无关组等价。3.常见的线性无关组:
1)齐次线性方程组的一个基础解系; 2)、、这样的单位向量组; 3)不同特征值对应的特征向量。4.关于秩的一些结论: 1); 2); 3); 4);
5)若有、满足,则 ; 6)若 是可逆矩阵则有 ; 7)若 可逆则有 ; 8)。
4.线性方程组的解:
1)非齐次线性方程组 有唯一解则对应齐次方程组 仅有零解;
2)若 有无穷多解则 有非零解; 3)若 有两个不同的解则 有非零解;
4)若 是 矩阵而 则 一定有解,而且当 时有唯一解,当 时有无穷多解; 5)若 则 没有解或有唯一解。
四、特征值与特征向量
相对于前两章来说,本章不是线性代数这门课的理论重点,但却是一个考试重点。其原因是解决相关题目要用到线代中的大量内容——既有行列式、矩阵又有线性方程组和线性相关,“牵一发而动全身”。本章知识要点如下: 1.特征值和特征向量的定义及计算方法 就是记牢一系列公式如、、和。常用到下列性质:
若 阶矩阵 有 个特征值,则有 ;
若矩阵 有特征值,则、、、、、分别有特征值、、、、、,且对应特征向量等于 所对应的特征向量; 2.相似矩阵及其性质
定义式为,此时满足、、,并且、有相同的特征值。
需要区分矩阵的相似、等价与合同:矩阵 与矩阵 等价()的定义式是,其中、为可逆矩阵,此时矩阵 可通过初等变换化为矩阵,并有 ;当 中的、互逆时就变成了矩阵相似()的定义式,即有 ;矩阵合同的定义是,其中 为可逆矩阵。
由以上定义可看出等价、合同、相似三者之间的关系:若 与 合同或相似则 与 必等价,反之不成立;合同与等价之间没有必然联系。3.矩阵可相似对角化的条件
包括两个充要条件和两个充分条件。充要条件1是 阶矩阵 有 个线性无关的特征向量;充要条件2是 的任意 重特征根对应有 个线性无关的特征向量;充分条件1是 有 个互不相同的特征值;充分条件2是 为实对称矩阵。4.实对称矩阵及其相似对角化
阶实对称矩阵 必可正交相似于对角阵,即有正交矩阵 使得,而且正交矩阵 由 对应的 个正交的单位特征向量组成。
可以认为讨论矩阵的相似对角化是为了方便求矩阵的幂:直接相乘来求 比较困难;但如果有矩阵 使得 满足(对角矩阵)的话就简单多了,因为此时
而对角阵 的幂 就等于,代入上式即得。引入特征值和特征向量的概念是为了方便讨论矩阵的相似对角化。因为,不但判断矩阵的相似对角化时要用到特征值和特征向量,而且 中的、也分别是由 的特征向量和特征值决定的。
五、二次型
本章所讲的内容从根本上讲是第五章《特征值和特征向量》的一个延伸,因为化二次型为标准型的核心知识为“对于实对称矩阵 存在正交矩阵 使得 可以相似对角化”,其过程就是上一章相似对角化在 为实对称矩阵时的应用。本章知识要点如下:
1.二次型及其矩阵表示。2.用正交变换化二次型为标准型。3.正负定二次型的判断与证明。
标签: 线性代数总结
.学习线性代数总结
2009年06月14日 星期日 上午 11:12
学习线性代数总结
线性代数与数理统计已经学完了,但我认为我们的学习并没有因此而结束。我们应该总结一下这门课程的学习的方法,并能为我们以后的学习和工作提供方法。这门课程的学习目标:《线性代数》是物理系等专业的一门重要的基础课,其主要任务是使学生获得线性代数的基本思想方法和行列式、线性方程组、矩阵论、二次型、线性空间、线性变换等方面 的系统知识,它一方面为后继课程(如离散数学、计算方法、等课程)提供一些所需的基础理论和知识;另一方面还对提高学生的思维能力,开发学生智能、加强“三基”(基础知识、基本理论、基本理论)及培养学生创造型能力,培养学生的抽象思维和逻辑推理能力等重要作用。同时随着计算机及其应用技术的飞速发展,很多实际问题得以离散化而得到定量的解决。作为离散化和数值计算理论基础的线性代数,为解决实际问题提供了强有力的数学工具。
我总结了《线性代数》的一些学习方法,可能有的同学会认为这已经为时过晚,但我不这么认为。从这门课程中,我们学会的不仅仅是线性代数的一些相关知识(行列式、线性方程组、矩阵论、二次型、线性空间、线性变换等方面的系统知识),更重要的是,从这门课程中我们应该掌握一种很重要的思想——学习如何去使用工具的方法。这个工具狭隘的讲是线性代数这门数学知识,但从广义地说:这个工具应该是生活中的一切工具(如电脑软件的学习方法、机器的操作方法、科学调查方法等)。在这门课程给我的感触就是:这门课告诉我们如何去学知识的方法。
我认为:学习任何一门知识的方法是:
一、明确我们要学习什么知识或者要掌握哪些方面的技能。
只能我们明白我们自己要学习什么之后,我们才会有动力去学习,在我们的大学里,有些同学不明白学习课本知识有何作用,认为学习与不学习没有什么区别,或者认为学习课本知识没有多大的作用,就干脆不学(当然我在这里没有贬低任何人的意思)。不过我认为学习好自己的专业的知识,掌握专业技能是每个大学生的天职。
二、知道知识是什么,了解相关知识的概念和定义。
这是学习的一切学习的基础,只有把握这个环节,我们的学习实践活动才能得以开展,知识是人类高度概括、总结的经验,不可能像平常说话那么通俗易懂。所以我们要想把知识学好,就得在概念上下功夫。例《线性代数》这门课程中的实二次型,那我们首先得非常清楚的知到,什么叫做实二次型。否则这一块的知识没有办法开展。
三、要知到我们学的知识可以用到何处,或者能帮我们解决什么问题。
其实这一点和第一点有点重复。但是对于我们的课本知识非常得有用,因为我们现在所学的课本知识。说句实在话,我们确实不知到能为我们生活中能解决什么问题,但如果我们知到它能用到何处,相信将来一定会有用。有一句话说得好,书到用时方恨少,说得是这个道理。总之,我们现在要为以后遇到问题而积累解决问题的方法,我们现在是在为以后的人生在打基础。
四、学习相关概念后,要学会如何去操作。
像《线性代数》这门课程,在这一点就体现得很突出。如在我们学习正交矩阵这个概念后,我们得要学会如何去求正交矩阵;再如,当我们认识了矩阵的对角化定义之后,我们得掌握如何去将一个矩阵对角化。其
实,就是学会如何去操作,这是我们掌握数学工具的使用方法的重要途径,所以这部分的工作是我们的学习中心和重点。只有掌握了这部分,我们才能在以后学习或者生活中遇到相似的问题,就有了这个工具去为我们解决实际的问题。
五、将所学习的知识反作用于生活(即将所学的知识用到实处)。
这才是我们学习的真正目的所在。一个人的解决问题的能力应该和他所掌握的知识成正比。学之所用才叫学到实处,才能发挥真正学习的作用。记得这个给我印象最深的是:在我们学C++编程时,有一道题是讲的是用一百元钱去买母鸡、公鸡、小鸡。母鸡5元钱一只,公鸡3元钱一只,小鸡3只一元,并且母鸡、公鸡、小鸡的总数为一百只,求有多少种可能。
这其实就是一道最简单的线性代数题了,设x代表小鸡,y代表公鸡,z代表母鸡:则根据题意有线性方程组
x3+3y+5z=100
x+y+z=100
解此线性方程组得
x=3z/4+75
y=-7z/4+25 z=z
用z作为循环变量控制,这个程序不到十行就可以编出来。这就说明学习知识总会有用的,只要我们去积累,只要我们现在把基础打牢,我相信以后解决问题的方法多了,大脑用活了,我们的竞争力就强了,自然在社会上有一席之地。
总之:我个人觉得学习知识很有用处。虽然就业压力在压着大家,大家为就业而奔波,但至少现在找工作不是我们的重点。把我们手头上的事做好才是最关键,我还是喜欢军训中我的那个“胖胖”所说的话:“一个萝卜,一个坑”,一步一个脚印,脚踏实地。相信我们80年后或90年后的一代能够担任起国家建设的重任和使命。
楼主 大 中 小 发表于 2008-10-10 23:50 只看该作者
线性代数超强总结.√ 关于 :
①称为 的标准基,中的自然基,单位坐标向量;
② 线性无关;
③ ; ④ ;
⑤任意一个 维向量都可以用 线性表示.√ 行列式的计算:
① 若 都是方阵(不必同阶),则
②上三角、下三角行列式等于主对角线上元素的乘积.③关于副对角线:
√ 逆矩阵的求法:
① ②
③
④
⑤
√ 方阵的幂的性质:
√ 设,对 阶矩阵 规定: 为 的一个多项式.√ 设的列向量为 , 的列向量为,的列向量为 , √ 用对角矩阵 左乘一个矩阵,相当于用 的对角线上的各元素依次乘此矩阵的行向量; 用对角矩阵 右乘一个矩阵,相当于用 的对角线上的各元素依次乘此矩阵的列向量.√ 两个同阶对角矩阵相乘只用把对角线上的对应元素相乘,与分块对角阵相乘类似,即:
√ 矩阵方程的解法:设法化成当 时,√
和 同解(列向量个数相同),则: ① 它们的极大无关组相对应,从而秩相等;
② 它们对应的部分组有一样的线性相关性;
③ 它们有相同的内在线性关系.√ 判断 是 的基础解系的条件:
①
线性无关;
②
是 的解;
③
.①
零向量是任何向量的线性组合,零向量与任何同维实向量正交.②
单个零向量线性相关;单个非零向量线性无关.③
部分相关,整体必相关;整体无关,部分必无关.④
原向量组无关,接长向量组无关;接长向量组相关,原向量组相关.⑤
两个向量线性相关 对应元素成比例;两两正交的非零向量组线性无关.⑥
向量组 中任一向量
≤ ≤ 都是此向量组的线性组合.⑦
向量组 线性相关 向量组中至少有一个向量可由其余 个向量线性表示.向量组 线性无关 向量组中每一个向量 都不能由其余 个向量线性表示.⑧
维列向量组 线性相关 ;
维列向量组 线性无关.⑨
.⑩
若 线性无关,而 线性相关,则 可由 线性表示,且表示法惟一.?
矩阵的行向量组的秩等于列向量组的秩.阶梯形矩阵的秩等于它的非零行的个数.?
矩阵的行初等变换不改变矩阵的秩,且不改变列向量间的线性关系.矩阵的列初等变换不改变矩阵的秩,且不改变行向量间的线性关系.向量组等价
和 可以相互线性表示.记作: 矩阵等价
经过有限次初等变换化为.记作:
?
矩阵 与 等价
作为向量组等价,即:秩相等的向量组不一定等价.矩阵 与 作为向量组等价
矩阵 与 等价.?
向量组 可由向量组 线性表示
≤.?
向量组 可由向量组 线性表示,且,则 线性相关.向量组 线性无关,且可由 线性表示,则 ≤.?
向量组 可由向量组 线性表示,且,则两向量组等价;
?
任一向量组和它的极大无关组等价.?
向量组的任意两个极大无关组等价,且这两个组所含向量的个数相等.?
若两个线性无关的向量组等价,则它们包含的向量个数相等.?
若 是 矩阵,则 ,若,的行向量线性无关;
若,的列向量线性
无关,即: 线性无关.线性方程组的矩阵式
向量
式
矩阵转置的性质:
矩阵可逆的性质:
伴随矩阵的性质:
线性方程组解的性质:
√ 设 为 矩阵,若 ,则 ,从而 一定有解.当 时,一定不是唯一解.,则该向量组线性相关.是 的上限.√ 矩阵的秩的性质:
①
②
≤
③
≤
④
⑤
⑥ ≥ ⑦
≤ ⑧
⑨
⑩
且 在矩阵乘法中有左消去律:
标准正交基
个 维线性无关的向量,两两正交,每个向量长度为1..是单位向量
.√ 内积的性质:
① 正定性:
② 对称性:
③ 双线性:
施密特
线性无关,单位化:
正交矩阵
.√
是正交矩阵的充要条件: 的 个行(列)向量构成 的一组标准正交基.√ 正交矩阵的性质:①
;
②
;
③
是正交阵,则(或)也是正交阵;
④ 两个正交阵之积仍是正交阵; ⑤ 正交阵的行列式等于1或-1.的特征矩阵
.的特征多项式
.的特征方程
.√ 上三角阵、下三角阵、对角阵的特征值就是主对角线上的 各元素.√ 若 ,则 为 的特征值,且 的基础解系即为属于 的线性无关的特征向量.√
√ 若 ,则 一定可分解为 =、,从而 的特征值为: ,.√ 若 的全部特征值,是多项式,则:
①的全部特征值为 ;
② 当 可逆时, 的全部特征值为 , 的全部特征值为.√
√
与 相似
(为可逆阵)
记为:
√
相似于对角阵的充要条件: 恰有 个线性无关的特征向量.这时, 为 的特征向量拼成的矩阵,为对角阵,主对角线上的元素为 的特征值.√
可对角化的充要条件:
为 的重数.√ 若 阶矩阵 有 个互异的特征值,则 与对角阵相似.与 正交相似
(为正交矩阵)√ 相似矩阵的性质:①
若 均可逆
②
③
(为整数)
④,从而 有相同的特征值,但特征向量不一定相同.即: 是 关于 的特征向量, 是 关
于 的特征向量.⑤
从而 同时可逆或不可逆
⑥
⑦
√ 数量矩阵只与自己相似.√ 对称矩阵的性质:
① 特征值全是实数,特征向量是实向量;
② 与对角矩阵合同;
③ 不同特征值的特征向量必定正交; ④
重特征值必定有 个线性无关的特征向量;
⑤ 必可用正交矩阵相似对角化(一定有 个线性无关的特征向量, 可能有重的特征值,重
数=).可以相似对角化
与对角阵 相似.记为:
(称 是 的相似标准型)
√ 若 为可对角化矩阵,则其非零特征值的个数(重数重复计算).√ 设 为对应于 的线性无关的特征向量,则有:
.√ 若 , ,则:.√ 若 ,则 ,.二次型
为对称矩阵
与 合同
.记作:
()
√ 两个矩阵合同的充分必要条件是:它们有相同的正负惯性指数.√ 两个矩阵合同的充分条件是:
√ 两个矩阵合同的必要条件是: √
经过
化为 标准型.√ 二次型的标准型不是惟一的,与所作的正交变换有关,但系数不为零的个数是由
惟
一确定的.√ 当标准型中的系数 为1,-1或0时,则为规范形.√ 实对称矩阵的正(负)惯性指数等于它的正(负)特征值的个数.√ 任一实对称矩阵 与惟一对角阵 合同.√ 用正交变换法化二次型为标准形: ①
求出 的特征值、特征向量; ②
对 个特征向量单位化、正交化;
③
构造(正交矩阵), ;
④
作变换 ,新的二次型为 , 的主对角上的元素 即为 的特征值.正定二次型
不全为零,.正定矩阵
正定二次型对应的矩阵.√ 合同变换不改变二次型的正定性.√ 成为正定矩阵的充要条件(之一成立):
①
正惯性指数为 ; ②的特征值全大于 ; ③的所有顺序主子式全大于 ; ④
合同于,即存在可逆矩阵 使 ; ⑤
存在可逆矩阵,使
(从而); ⑥
存在正交矩阵,使
(大于).√ 成为正定矩阵的必要条件:;
.b
b s
.k ao
y a n.c o m
内容相互纵横交错 线性代数复习小结
概念多、定理多、符号多、运算规律多、内容相互纵横交错,知识前后紧密联系是线性代数课程的特点,故考生应充分理解概念,掌握定理的条件、结论、应用,熟悉符号意义,掌握各种运算规律、计算方法,并及时进行总结,抓联系,使学知识能融会贯通,举一反三,根据考试大纲的要求,这里再具体指出如下:
行列式的重点是计算,利用性质熟练准确的计算出行列式的值。
矩阵中除可逆阵、伴随阵、分块阵、初等阵等重要概念外,主要也是运算,其运算分两个层次,一是矩阵的符号运算,二是具体矩阵的数值运算。例如在解矩阵方程中,首先进行矩阵的符号运算,将矩阵方程化简,然后再代入数值,算出具体的结果,矩阵的求逆(包括简单的分块阵)(或抽象的,或具体的,或用定义,或是用公式 A-1= 1 A*,或 A用初等行变换),A和A*的关系,矩阵乘积的行列式,方阵的幂等也是常考的内容之一。
关于向量,证明(或判别)向量组的线性相关(无关),线性表出等问题的关键在于深刻理解线性相关(无关)的概念及几个相关定理的掌握,并要注意推证过程中逻辑的正确性及反证法的使用。
向量组的极大无关组,等价向量组,向量组及矩阵的秩的概念,以及它们相互关系也是重点内容之一。用初等行变换是求向量组的极大无关组及向量组和矩阵秩的有效方法。
在 Rn中,基、坐标、基变换公式,坐标变换公式,过渡矩阵,线性无关向量组的标准正交化公式,应该概念清楚,计算熟练,当然在计算中列出关系式后,应先化简,后代入具体的数值进行计算。
行列式、矩阵、向量、方程组是线性代数的基本内容,它们不是孤立隔裂的,而是相互渗透,紧密联系的,例如 ?OA?O≠0〈===〉A是可逆阵〈===〉r(A)=n(满秩阵)〈===〉A的列(行)向量组线性无关〈===〉AX=0唯一零解〈===〉AX=b对任何b均有(唯一)解〈===〉A=P1 P2 „PN,其中PI(I=1,2,„,N)是初等阵〈===〉r(AB)=r(B)<===>A初等行变换
I〈===〉A的列(行)向量组是Rn的一个基〈===〉A可以是某两个基之间的过渡矩阵等等。这种相互之间的联系综合命题创造了条件,故对考生而言,应该认真总结,开拓思路,善于分析,富于联想使得对综合的,有较多弯道的试题也能顺利地到达彼岸。
关于特征值、特征向量。一是要会求特征值、特征向量,对具体给定的数值矩阵,一般用特征方程 ?OλE-A?O=0及(λE-A)ξ=0即可,抽象的由给定矩阵的特征值求其相关矩阵的特征值(的取值范围),可用定义Aξ=λξ,同时还应注意特征值和特征向量的性质及其应用,二是有关相似矩阵和相似对角化的问题,一般矩阵相似对角化的条件。实对称矩阵的相似对角化及正交变换相似于对角阵,反过来,可由A 的特征值,特征向量来确不定期A的参数或确定A,如果A是实对称阵,利用不同特征值对应的特征向量相互正交,有时还可以由已知λ1的特征向量确定出λ2(λ2≠λ1)对应的特征向量,从而确定出A。三是相似对角化以后的应用,在线性代数中至少可用来计算行列式及An.将二次型表示成矩阵形式,用矩阵的方法研究二次型的问题主要有两个:一是化二次型为标准形,这主要是正交变换法(这和实对称阵正交相似对角阵是一个问题的两种提法),在没有其他要求的情况下,用配方法得到标准形可能更方便些;二是二次型的正定性问题,对具体的数值二次型,一般可用顺序主子式是否全部大于零来判别,而抽象的由给定矩阵的正定性,证明相关矩阵的正定性时,可利用标准形,规范形,特征值等到证明,这时应熟悉二次型正定有关的充分条件和必要条件。
一、注重对基本概念的理解与把握,正确熟练运用基本方法及基本运算。
线性代数的概念很多,重要的有:
代数余子式,伴随矩阵,逆矩阵,初等变换与初等矩阵,正交变换与正交矩阵,秩(矩阵、向量组、二次型),等价(矩阵、向量组),线性组合与线性表出,线性相关与线性无关,极大线性无关组,基础解系与通解,解的结构与解空间,特征值与特征向量,相似与相似对角化,二次型的标准形与规范形,正定,合同变换与合同矩阵。
往年常有考生没有准确把握住概念的内涵,也没有注意相关概念之间的区别与联系,导致做题时出现错误。
例如,矩阵A=(α1,α2,„,αm)与B=(β1,β2„,βm)等价,意味着经过初等变换可由A得到B,要做到这一点,关键是看秩r(A)与r(B)是否相等,而向量组α1,α2,„αm与β1,β2,„βm等价,说明这两个向量组可以互相线性表出,因而它们有相同的秩,但是向量组有相同的秩时,并不能保证它们必能互相线性表现,也就得不出向量组等价的信息,因此,由向量组α1,α2,„αm与β1,β2,„βm等价,可知矩阵A=(α1,α2,„αm)与B=(β1,β2,„βm)等价,但矩阵A与B等价并不能保证这两个向量组等价。
又如,实对称矩阵A与B合同,即存在可逆矩阵C使CTAC=B,要实现这一点,关键是二次型xTAx与xTBx的正、负惯性指数是否相同,而A与B相似是指有可逆矩阵P使P-1AP=B成立,进而知A与B有相同的特征值,如果特征值相同可知正、负惯性指数相同,但正负惯性指数相同时,并不能保证特征值相同,因此,实对称矩阵A~BAB,即相似是合同的充分条件。
线性代数中运算法则多,应整理清楚不要混淆,基本运算与基本方法要过关,重要的有:
行列式(数字型、字母型)的计算,求逆矩阵,求矩阵的秩,求方阵的幂,求向量组的秩与极大线性无关组,线性相关的判定或求参数,求基础解系,求非齐次线性方程组的通解,求特征值与特征向量(定义法,特征多项式基础解系法),判断与求相似对角矩阵,用正交变换化实对称矩阵为对角矩阵(亦即用正交变换化二次型为标准形)。
二、注重知识点的衔接与转换,知识要成网,努力提高综合分析能力。
线性代数从内容上看纵横交错,前后联系紧密,环环相扣,相互渗透,因此解题方法灵活多变,复习时应当常问自己做得对不对?再问做得好不好?只有不断地归纳总结,努力搞清内在联系,使所学知识融会贯通,接口与切入点多了,熟悉了,思路自然就开阔了。
例如:设A是m×n矩阵,B是n×s矩阵,且AB=0,那么用分块矩阵可知B的列向量都是齐次方程组Ax=0的解,再根据基础解系的理论以及矩阵的秩与向量组秩的关系,可以有
r(B)≤n-r(A)即r(A)+r(B)≤n
进而可求矩阵A或B中的一些参数
再如,若A是n阶矩阵可以相似对角化,那么,用分块矩阵处理P-1AP=∧可知A有n个线性无关的特征向量,P就是由A的线性无关的特征向量所构成,再由特征向量与基础解系间的联系可知此时若λi是ni重特征值,则齐次方程组(λiE-A)x=0的基础解系由ni个解向量组成,进而可知秩r(λiE-A)=n-ni,那么,如果A不能相似对角化,则A的特征值必有重根且有特征值λi使秩r(λiE-A)<n-ni,若A是实对称矩阵,则因A必能相似对角化而知对每个特征值λi必有r(λiE-A)=n-ni,此时还可以利用正交性通过正交矩阵来实现相似对角化。
又比如,对于n阶行列式我们知道:
若|A|=0,则Ax=0必有非零解,而Ax=b没有惟一解(可能有无穷多解,也可能无解),而当|A|≠0时,可用克莱姆法则求Ax=b的惟一解;
可用|A|证明矩阵A是否可逆,并在可逆时通过伴随矩阵来求A-1;
对于n个n维向量α1,α2,„αn可以利用行列式|A|=|α1α2„αn|是否为零来判断向量组的线性相关性;
矩阵A的秩r(A)是用A中非零子式的最高阶数来定义的,若r(A)<r,则A中r阶子式全为0;
求矩阵A的特征值,可以通过计算行列式|λE-A|,若λ=λ0是A的特征值,则行列式|λ0E-A|=0;
判断二次型xTAx的正定性,可以用顺序主子式全大于零。
凡此种种,正是因为线性代数各知识点之间有着千丝万缕的联系,代数题的综合性与灵活性就较大,同学们整理时要注重串联、衔接与转换。
三、注重逻辑性与叙述表述
线性代数对于抽象性与逻辑性有较高的要求,通过证明题可以了解考生对数学主要原理、定理的理解与掌握程度,考查考生的抽象思维能力、逻辑推理能力。大家复习整理时,应当搞清公式、定理成立的条件,不能张冠李戴,同时还应注意语言的叙述表达应准确、简明。
线性代数中常见的证明题型有:
证|A|=0;证向量组α1,α2,„αt的线性相关性,亦可引伸为证α1,α2„,αt是齐次方程组Ax=0的基础解系;证秩的等式或不等式;证明矩阵的某种性质,如对称,可逆,正交,正定,可对角化,零矩阵等;证齐次方程组是否有非零解;线性方程组是否有解(亦即β能否由α1,α2„,αs线性表出);对给出的两个方程组论证其同解性或有无公共解;证二次型的正定性,规范形等。
《线性代数》是一门研究线性问题的数学基础课,线性代数实质上是提供了自己独特的语言和方法,将那些涉及多变量的问题组织起来并进行分析研究,是将中学一元代数推广为处理
大的数组的一门代数。
线性代数有两类基本数学构件.一类是对象:数组;一类是这些对象进行的运算。在此基础之上可以对一系列涉及数组的数学模型进行探讨和研究,从而解决实际问题.既然线性代数有自己独特的内容,我们就要用适当的学习方法面对。这里给出五点建议:
一、线性代数如果注意以下几点是有益的.由易而难 线性代数常常涉及大型数组,故先将容易的问题搞明白,再解决有难度的问题,例如行列式定义,首先将3阶行列式定义理解好,自然可以推广到n阶行列式情形;
由低而高 运用技巧,省时不少,无论是行列式还是矩阵,在低阶状态,找出适合的计算方法,则可自如推广运用到高阶情形;
由简而繁 一些运算法则,先试用于简单情形,进而应用于复杂问题,例如,克莱姆法则,线性方程组解存在性判别,对角化问题等等;
由浅而深线性代数中一些新概念如秩,特征值特征向量,应当先理解好它们的定义,在理解基础之上,才能深刻理解它们与其他概念的联系、它们的作用,一步步达到运用自如境地。
二、注重对基本概念的理解与把握,正确熟练运用基本方法及基本运算。
1、线性代数的概念很多,重要的有:
代数余子式,伴随矩阵,逆矩阵,初等变换与初等矩阵,正交变换与正交矩阵,秩(矩阵、向量组、二次型),等价(矩阵、向量组),线性组合与线性表出,线性相关与线性无关,极大线性无关组,基础解系与通解,解的结构与解空间,特征值与特征向量,相似与相似对角化,二次型的标准形与规范形,正定,合同变换与合同矩阵。
2、线性代数中运算法则多,应整理清楚不要混淆,基本运算与基本方法要过关,重要的有:
行列式(数字型、字母型)的计算,求逆矩阵,求矩阵的秩,求方阵的幂,求向量组的秩与极大线性无关组,线性相关的判定或求参数,求基础解系,求非齐次线性方程组的通解,求特征值与特征向量(定义法,特征多项式基础解系法),判断与求相似对角矩阵,用正交变换化实对称矩阵为对角矩阵(亦即用正交变换化二次型为标准形)。
三、注重知识点的衔接与转换,知识要成网,努力提高综合分析能力。
线性代数从内容上看纵横交错,前后联系紧密,环环相扣,相互渗透,因此解题方法灵活多变,学习时应当常问自己做得对不对?再问做得好不好?只有不断地归纳总结,努力搞清内在联系,使所学知识融会贯通,接口与切入点多了,熟悉了,思路自然就开阔了。
四、注重逻辑性与叙述表述
线性代数对于抽象性与逻辑性有较高的要求,通过证明题可以了解学生对数学主要原理、定理的理解与掌握程度,考查学生的抽象思维能力、逻辑推理能力。大家学习整理时,应当搞清公式、定理成立的条件,不能张冠李戴,同时还应注意语言的叙述表达应准确、简明。
总之,数学题目千变万化,有各种延伸或变式,同学们要在学习过程中一定要认真仔细地预习和复习,华而不实靠押题碰运气是行不通的,必须要重视三基,多思多议,不断地总结经验与教训,做到融会贯通。
第四篇:浅谈线性代数学习感想
从线性代数知识内容感想浅谈当代应用
一、前言感想
从大学大一下半学期开始,学校就开设了这门课程,经过一个学期的学习,对其中的一些知识要点也有了深刻的认识与体会。在我的身边,线性代数被不少同学排斥,足见这门课给同学们造成的困难。在这门课的学习过程中,很多同学上课听不懂,一上课就想睡觉{包括我自己},公式定理理解不了,知道了知识但不会做题,记不住等问题。慢慢的,我发现,只要有正确的方法,再加上自己的努力,就可以学好它。一定要重视上课听讲,不能使线代的学习退化为自学。上课时,老师的一句话就可能使你豁然开朗,就可能改变你的学习方法甚至改变你的生。上课时一定要“虚心”,即使老师讲的某个题自己会做也要听一下老师的思路。
当然,说句实话,线性代数给我个人的感觉是要比高数《微积分》要难许多。首先,它涉及到的知识内容有很多,很多都是前后关联的;其次,它其中的定义概念很多,重点知识也要熟记才能够得心应手的应用;第三,概念抽象,很难去理解,只能是通过做题来理解加深印象;最后,计算繁琐,一步错,步步错,需要耐心仔细等等。这些都是个人的一些感受。而我课余为了多加强练习,也从网上找了很多试题来练习等等方法。下面就说说一些个人感觉线性代数的基本应用。
二、当代应用
矩阵。应该说矩阵是一种非常常见的数学现象。从学校的课表、工厂里的生产进度表、价目表、数据分析表等等都可以看到它的影子,它是表述或处理大量的生活、生产与科研问题的有力的工具。矩阵的重要作用主要是它能把头绪纷繁的十五按一定的规则清晰地展现出来,并通过矩阵的运算或变各种换来揭示事物之间的内在联系。
矩阵的初等变化,矩阵的秩,初等矩阵,线性方程组的解。向量组的线性相关,向量空间,向量组的秩等,这些都是线性代数的核心概念。如我们土木老师所说的,通过计算机并广泛应用于解决桥梁设计,交通规划,石油勘探,经济管理等科学领域。
当然,线性代数也应用于自然科学和社会科学中。线性代数在数学、物理学和技术学科中也有各种重要应用,因而它在各种代数分支中占居首要地位;线性代数方法是指使用线性观点看待问题,并用线性代数的语言描述它、解决它(必要时可使用矩阵运算)的方法。这是数学与工程学中最主要的应用之一。
三、结束语
随着学习的深入,我终于渐渐体会到了线性代数的高深。在计算机、工程等各个领域的关联又是如此密切。当然,也不得不佩服老师能把这样一门学科学的精妙,同时又能够传授给学生。老师也已经尽心尽力做了他应该做的事了,尽管我不能把这门学科很好的掌握,但也只能上课用心的去听课,平时多花时间去练习吧。但愿自己期末考试能不挂科,而是稳稳的过吧。还是感谢线代,给我带来了刻骨铭心的心灵启蒙盛宴。
第五篇:线性代数的学习
线性代数被不少同学称为“天书”,足见这门课给同学们造成的困难。
在这门课的学习过程中,你是否也遇到了上课听不懂,一上课就想睡觉,公式定理理解不了,知道了知识但不会做题,记不住等问题。不要怕,线性代数的学习是有章可循的,只要有正确的方法,再加上自己的努力,任何学科都不会“打倒”你。
线性代数是一门对理工科学生极其重要数学学科。线代课本的前言上就说:“在现代社会,除了算术以外,线性代数是应用最广泛的数学学科了。”你是不是觉得这好像是在吹,的确,我们的线代教学的一个很大的问题就是对线性代数的应用涉及太少,课本上涉及最多的只能算解线性方程组了,但这只是线性代数很初级的应用。我只上大二,对线性代数的应用了解的也不多。但是,线性代数在计算机数据结构、算法、密码学、对策论等等中都有着相当大的作用。
没有应用到的内容很容易忘,我现在高数还基本记得,但线代已忘了大半。因为高数在很多课程中都有广泛的应用,尤其第二学期开设的大学物理课。所以,如果有时间的话,要尽可能地到网上或图书馆了解线性代数在各方面的应用。如:《线性代数》(居余马等编,清华大学出版社)上就有线性代数在“人口模型”、“马尔可夫链”、“投入产出数学模型”、“图的邻接矩阵”等方面的应用。也可以试着用线性代数的方法和知识证明以前学过的定理或高数中的定理,如老的高中解析几何课本上的转轴公式,它就可以用线性代数中的过渡矩阵来证明。觉得线性代数难懂和琐碎也跟教学中没有涉及线代的应用有很大关系。
线代是一门比较费脑子的课,所以如果前一天晚上睡得太晚第二天早上的线代课就会变成“催眠课”。那么,请在第二天有线代课时晚上睡得早一点,“卧谈会”开得短一点。如果你觉得上课跟不上老师的思路那么请预习。这个预习也有学问,预习时要“把更多的麻烦留给自己”,即遇到公式、定理、结论马上把证明部分盖住,自己试着证一下,可以不用写详细的过程,想一下思路即可;还要多猜猜预习的部分会有什么公式、定理、结论;还要想一想预习的内容能应用到什么领域。当然,这对一些同学有困难,可以根据个人的实际情况适当调整,但要尽量多地自己思考。
一定要重视上课听讲,不能使线代的学习退化为自学。上课时干别的会受到老师讲课的影响,那为什么不利用好这一小时四十分钟呢?上课时,老师的一句话就可能使你豁然开朗,就可能改变你的学习方法甚至改变你的一生。上课时一定要“虚心”,即使老师讲的某个题自己会做也要听一下老师的思路。
上完课后不少同学喜欢把上课的内容看一遍再做作业。实际上应该先试着做作业,不会时看书,做完作业后再看书。这样,作业可以帮你回忆老师讲的内容,重要的是这些内容是自己回忆起来的,这样能记得更牢,而且可以通过作业发现自己哪些部分还没掌握好。作业尽量在上课的当天或第二天做,这样能减少遗忘给做作业造成的困难。做作业时遇到不会的题可以问别人或参考同学的解答,但一定要真正理解别人的思路,绝对不能不弄清楚别人怎么做就照抄。大学生学习线性代数时留给做题的时间比较少,应该适当多做些题。
线性代数的许多公式定理难理解,但一定要理解这些东西才能记得牢,理解不需要知道它的证明过程的每一步,只要能从生活实际想到甚至朦朦胧胧地想到它的“所以然”就行了。
学习线代及其它任何学科时都要静下心来,如果你学习前“心潮澎湃”就请用一两分钟时间平静下来再开始学习。遇到不会做的题时不要去想“这道题我怎么又不会做”等与这道题无关的东西,一心想题,这样解出来的可能性会大很多。
关于解题思路的问题不是一下子能讲清楚的,《道乐吉学习方法(大学生版)》这本书讲解题思路讲得非常好,而且上面讲的解题方法对各门理科课都适用。我在此只想说做完题后要想想答案上的方法和自己的方法是怎么想出来的,尤其对于自己不会做的题或某个题答案给出的解法非常好且较难想到,然后将这种思路“存档”,即“做完题后要总结”。线性代数作为一门数学,体现了数学的思想。
人们总是在扩展数的范围,复数就是实数的扩展。矩阵是数的扩展,如一个电阻的阻值可以用一个实数来表示,而一个二端口电阻的“阻值”可以用一个2*2矩阵来表示。
数学上的方法是相通的。比如,考虑特殊情况这种思路。线性代数中行列式按行或列展开公式的证明就是从更简单的特殊情况开始证起;解线性方程组时先解对应的齐次方程组,这些都是先考虑特殊情况。高数上解二阶常系数线性微分方程时先解其对应的齐次方程,这用的也是这种思路。
数学讲究和谐。规定0!=1是为了和谐。行列式的计算法和矩阵乘法也是和谐的,线性代数以后的内容中就会体现出这种和谐。
通过思想方法上的联系和内容上的联系,线性代数中的内容以及线性代数与高数甚至其它学科可以联系起来。只要建立了这种联系,线代就不会像原来那样琐碎。
方法真的很难讲,因为篇幅实在有限,而方法包含许多细节的内容很难讲出来甚至我都意识不到,而它们会对学习起很大的作用,要把这些细节都写出来几十万字绝对不够。所以细节上的优化是需要自己来完成的。在此我推荐两本学习方法的书,一本是《道乐吉学习方法(大学生版)》,我理科方面的解题思路就是套这本书的模式,对付较难的题非常管用。另一本是《孙维刚谈全班55%怎样考上北大考上清华》,我所在的中学几乎所有老师的办公室都有这本书。我的“做完题要总结”,“上课想到老师前面”,“注重知识之间的联系”等等方法都来自这本书。看学习方法书一定要将上面的方法应用于实际,把学习方法书当小说看或书上的适合自己的方法应用得不充分,那还不如把学习方法书扔了。
还有,学习方法与现在很畅销的成功学类书上讲的方法是相通的,要掌握好的学习方法也要多看企业战略管理、领导艺术、时间管理、励志等方面的书。
学习效果是效率与时间的乘积,好方法能带来高效率,但如果不下工夫照样学不好。要记住:好成绩是学出来的!说谁不学都考得好那是在胡扯(暂不考虑造成学习不太努力的人学习好的其它细节因素,这些因素不是大部分人现在都具有的)。
以上是我的一些不成熟的观点,不能算介绍经验,只能说是与大家讨论。我关注的东西主要是我没有做到或做好的地方,我能没有意识地做到的地方我就不容易想到也就不容易写出来,但这些没有写出的地方可能对你很重要,所以你可能觉得这篇文章对你作用不大,这也是我这篇文章的问题之一。所以希望大家能尽可能地“找我的麻烦”,即找到我上面所说内容中不完善甚至完全错误或没有涉及到的地方,这样也能帮助我改进我的学习方法。