2018考研数一高数常考4大重要知识点总结(写写帮推荐)

时间:2019-05-12 01:39:13下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《2018考研数一高数常考4大重要知识点总结(写写帮推荐)》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《2018考研数一高数常考4大重要知识点总结(写写帮推荐)》。

第一篇:2018考研数一高数常考4大重要知识点总结(写写帮推荐)

凯程考研辅导班,中国最权威的考研辅导机构

2018考研数一高数常考4大重要知识点

总结

常数项级数的敛散性的判别、幂级数的收敛域及和函数、幂级数的展开式及傅里叶的展开式是考研数学一中常考的知识点,需要考生复习时多重视,下面凯程考研就具体和大家来谈谈,且针对这几个难点给大家的复习提点建议。

一、常数项级数的敛散性的判别

十年中2009和2014年考过两次常数项级数的敛散性的判别,2014年的这个题很多考生基本上得了零分,常数项级数的敛散性的判别是一个难点:这个题考了三角函数的和差化积和比较审敛法。其实若从历年考研数学一的考题中,我们可以归纳总结出对常数项级数的考查,考研考查的方法重点是比较审敛法,而作为基准级数的是P-级数。

二、幂级数的收敛域及和函数

考生可以看到,对级数这一章,数一的同学要将幂级数的和函数作为重点知识来复习,十年中幂级数的和函数的考题最多。幂级数的和函数又分为先导后积、先积后导。两种方法大家都要掌握。

三、幂级数的展开式

考生可以将高数上册的泰勒展开式做一个拓展就是高数下册的幂级数的展开式,考研考查的主要是几何级数展开式。

四、傅里叶的展开式

2008年数学一考了一个傅里叶的展开式,傅里叶的展开式一般对数一的同学来说以小题的形式考的,但2008年出了黑马,这个题提醒考生在数学的学习过程中要复习全面,不可以有所偏颇,但在复习过程中要把握复习深度,对傅里叶级数的掌握只需掌握基础知识即可。

针对高数中的这一难点,2018年的考生在未来的学习过程中应该制定详细的复习规划:

1)、基础过关 Now-6 月,高数:同济六版;线代:同济五版;概率:浙大四版。系统复习,夯实基础:熟练掌握基本概念、基本理论和基本方法

2)、专题训练 7月---9月,针对常考的题型进行大量的练习,归纳题型,总结方法,突破重难点题型、方法和技巧

凯程考研辅导班,中国最权威的考研辅导机构

3)、综合突破 10月---11月,对综合题进行窜讲,形成对考研的整体认识,将知识体系结构搭建起来。

4)、全真模拟 11月---12月,转化为得分,现场模拟考研是什么样子,查漏补缺,实战演练

5)、考前攻坚 12月(考前两周),回归基础、攻克难点

页 共 2 页

第二篇:大一高数一知识点总结

大一高数一知识点总结有哪些呢?我们一起来看看吧!以下是小编为大家搜集整理提供到的大一高数一知识点总结,希望对您有所帮助。欢迎阅读参考学习!

一、集合间的基本关系

1.“包含”关系—子集

注意:有两种可能(1)A是B的一部分,;(2)A与B是同一集合。

反之: 集合A不包含于集合B,或集合B不包含集合A,记作A B或B A

2.“相等”关系:A=B(5≥5,且5≤5,则5=5)

实例:设 A={x|x2-1=0} B={-1,1} “元素相同则两集合相等”

即:①任何一个集合是它本身的子集。AA

②真子集:如果AB,且A B那就说集合A是集合B的真子集,记作A B(或B A)

③如果 AB, BC ,那么 AC

④如果AB 同时 BA 那么A=B

3.不含任何元素的集合叫做空集,记为Φ

规定: 空集是任何集合的子集,空集是任何非空集合的真子集。

有n个元素的集合,含有2n个子集,2n-1个真子集

二、集合及其表示

1、集合的含义:

“集合”这个词首先让我们想到的是上体育课或者开会时老师经常喊的“全体集合”。数学上的“集合”和这个意思是一样的,只不过一个是动词一个是名词而已。

所以集合的含义是:某些指定的对象集在一起就成为一个集合,简称集,其中每一个对象叫元素。比如高一二班集合,那么所有高一二班的同学就构成了一个集合,每一个同学就称为这个集合的元素。

2、集合的表示

通常用大写字母表示集合,用小写字母表示元素,如集合A={a,b,c}。a、b、c就是集合A中的元素,记作 a∈A,相反,d不属于集合A,记作 dA。

有一些特殊的集合需要记忆:

非负整数集(即自然数集)N 正整数集 N*或 N+

整数集Z 有理数集Q 实数集R

集合的表示方法:列举法与描述法。

①列举法:{a,b,c……}

②描述法:将集合中的元素的公共属性描述出来。如{xR| x-3>2} ,{x| x-3>2},{(x,y)|y=x2+1}

③语言描述法:例:{不是直角三角形的三角形}

例:不等式x-3>2的解集是{xR|x-3>2}或{x|x-3>2}

强调:描述法表示集合应注意集合的代表元素

A={(x,y)|y= x2+3x+2}与 B={y|y= x2+3x+2}不同。集合A中是数组元素(x,y),集合B中只有元素y。

3、集合的三个特性

(1)无序性

指集合中的元素排列没有顺序,如集合A={1,2},集合B={2,1},则集合A=B。

例题:集合A={1,2},B={a,b},若A=B,求a、b的值。

解:,A=B

注意:该题有两组解。

(2)互异性

指集合中的元素不能重复,A={2,2}只能表示为{2}

(3)确定性

集合的确定性是指组成集合的元素的性质必须明确,不允许有模棱两可、含混不清的情况。

三、集合间的基本关系

1.子集,A包含于B,记为:,有两种可能

(1)A是B的一部分,(2)A与B是同一集合,A=B,A、B两集合中元素都相同。

反之: 集合A不包含于集合B,记作。

如:集合A={1,2,3 },B={1,2,3,4},C={1,2,3,4},三个集合的关系可以表示为,B=C。A是C的子集,同时A也是C的真子集。

2.真子集:如果AB,且A B那就说集合A是集合B的真子集,记作A B(或B A)

3、不含任何元素的集合叫做空集,记为Φ。Φ是任何集合的子集。

4、有n个元素的集合,含有2n个子集,2n-1个真子集,含有2n-2个非空真子集。如A={1,2,3,4,5},则集合A有25=32个子集,25-1=31个真子集,25-2=30个非空真子集。

例:集合 共有 个子集。(13年高考第4题,简单)

练习:A={1,2,3},B={1,2,3,4},请问A集合有多少个子集,并写出子集,B集合有多少个非空真子集,并将其写出来。

解析:

集合A有3个元素,所以有23=8个子集。分别为:①不含任何元素的子集Φ;②含有1个元素的子集{1}{2}{3};③含有两个元素的子集{1,2}{1,3}{2,3};④含有三个元素的子集{1,2,3}。

集合B有4个元素,所以有24-2=14个非空真子集。具体的子集自己写出来。

第三篇:大一高数总结

大一高数总结

---姓名:孙功武 学号:1506011012 转眼间,大一已经过去一半了,高数学习也有了一个学期了,仔细一想高数也不是传说的那么可怕,当然也没有那么容易。

有人说,高数是一棵高数,很多人挂在了上面。但是,只要努力,就能爬上这棵高树,凭借它的高度,便能看到更远的风景。

首先,不能有畏难情绪。一进大学,就听到很多师兄师姐甚至老师说高数很难学,有很多人挂科了。这基本上是事实,但是或多或少夸张了点吧。事实上,当我们抛掉那些畏难情绪,心无旁骛的学习高数时,他并不是那么难,至少不是那种难到学不下去的。所以我们要有信心去学好它,有好大学的第一步。

其次,课前预习很重要。每个人学习习惯不同,有些人习惯预习,有些人觉得预习不适合自己。每次上课前,把课本上的内容仔细地预习一下,或者说先自学一下,把知识点先过一遍,能理解的自己先理解好,到课堂上时就会觉得有方向感,不会觉得茫然,并且自己预习时没有理解的地方在课堂上听老师讲后就能解决了,比较有针对性。

然后,要把握课堂。课堂上老师讲的每一句话都是有可能是很有用的,如果错过了就可能会使自己以后做某些习题时要走很多弯路,甚至是死路。我们主要应该在课堂上认真听讲,理解解题方法,我们现在需要的是方法,是思维,而不是仅仅是例题本身的答案。我们学习高数不是为了将来能计算算数,而是为了获得一种思想,为了提高我们的思维能力,为了能够用于解决现实问题。此外,要以教材为中心。虽说“尽信书,不如无书”,但是,就算教材不是完美的,但是教材上包含了我们所要掌握的知识点,而那些知识点,便是我们解题的基础。书上的一些基本公式、定理,是我们必须掌握的。

最后,坚持做好习题。做题是必要的,但像高中那样搞题海战术就不必要了。做好教材上的课后习题和习题册就足够了,当然,前提是认真地做好了。对于每一道题,有疑问的地方就要解决,不能不求甚解,尽量把每一个细节都理解好,这样的话,做好一题,就能解决很多类型的题了。

下面是我对这学期的学习重点的一些总结:

一、函数

1.判断两个函数是否相同

一个函数相同的确定取决于其定义域和对应关系的确定,因此判断两个函数是否相同必须判断其定义域是否相同,且要判断表达式是否同意即可。2.判断函数奇偶性

判断函数的奇偶性,主要的方法就是利用定义,其次是利用奇偶的性质,即奇(偶)函数之和还是奇(偶)函数;两个奇函数积是偶函数;两个偶函数之积仍是偶函数;一积一偶之积是奇函数。

3.求极限的方法 利用极限的四则运算法则、性质以及已知的极限求极限。①

lim f(x)(1)limf(x)g(x)lim g(x)AB;(2)lim f(x)g(x)lim f(x)lim g(x)AB;(3)当B0时,limf(x)lim f(x)A;g(x)lim g(x)B(4)lim kf(x)klim f(x)kA;(k为常数)

lim f(x)An;(k为常数)(5)limf(x)nn(6)limnf(x)nlim f(x)nA;(f(x)0)(n为正整数)。②

sinx1;x0x 1n(2)lim(1)e。x0n(1)lim4.判断函数的连续性

函数股连续的定义:设函数y=f(x)在点x0的某个临域内有意义,如果当自变量的增量xx-x0趋于0时,对应的函数的f(x0x)0。那么就称增量yf(x0x)f(x0)也趋向0,即limx0函数y=f(x)在点x0出连续。

二、导数 1.求显函数导数; 2.求隐函数导数; 3.“取对数求导法”;

4.求由参数方程所表达的函数的导数; 5.求函数微分;

三、基本初等函数求导公式 0 x1(1)(C)(2)(x)axlna ex(3)(ax)(4)(ex)11 (5)(logax)(6)(lnx)xlnaxcosx sinx(7)(sinx)(8)(cosx)sec2x csc2x(9)(tanx)(10)(cotx)tan xseccot xcsc(11)(secx)x(12)(cscx)x

(13)(arcsinx)1(1-x2)(15)(arctanx)11x2

四、基本积分公式

(1)0dxC;z x1(3)xdx1C;(5)11x2dxarctanxC;(7)cosxdxsinxC;(9)dxcos2xsec2xdxtanxC;((11)sec xtan xdxsecxC;(13)exdxexC;(15)shxdxchxC;

五、常用积分公式

(14)(arccosx)1(1-x2)(16)(arccotx)11x2 2)kdxkxC(k为常数);(4)dxxln|x|C;(6)11x2dxarcsinxC;(8)cosxdxsinxC;

10)dxsin2xcsc2xdxcotxC;12)cscxcotxdxcscxC;xdxax14)alnaC;(16)chxdxshxC。((((1)tanxdxln|cosx|C;(2)cotxdxln|sinx|C;(3)secxdxln|secxtanx|C;(4)cscxdxln|cscxcotx|C;11xdxarctanC;a2x2aa11xa(6)2dxln||C;xa22axa1x(7)dxarcsinC;aa2x2(5)(8)(9)1a2x21x2a2dxln(xx2a2)C;dxln|xx2a2|C.五、常微分方程

第四篇:大一高数学习总结

大一高数学习总结

——姓名:刘禹尧

学号:13145222

转眼之间大一已经过去了一半,高数的学习也有了一学期,仔细一想,高数也不是传说中的那么可怕,当然也没有那么容易,前提是自己真的用心了。

有人戏称高数是一棵高树,很多人就挂在了上面。但是,只要努力,就能爬上那棵高树,凭借它的高度,便能看到更远的风景。

首先,不能有畏难情绪。一进大学,就听到很多师兄师姐甚至是老师说高数非常难学,有很多人挂科了,这基本上是事实,但是或多或少有些夸张了吧。事实上,当我们抛掉那些畏难的情绪,心无旁骛地去学习高数时,它并不是那么难,至少不是那种难到学不下去的。所以,我们要有信心去学好它时,就走好了第一步。

其次,课前预习很重要。每个人的学习习惯可能不同,有些人习惯预习,有些人觉得预习不适合自己。每次上新课前,把课本上的内容仔细地预习一下,或者说先自学一下,把知识点先过一遍,能理解的先自己理解好,到课堂上时就会觉得有方向感,不会觉得茫然,并且自己预习时没有理解的地方在课堂上听老师讲后就能解决了,比较有针对性。

然后,要把握课堂。课堂上老师讲的每一句话都有可能是很有用的,如果错过了就可能会使自己以后做某些题时要走很多弯路,甚至是死路。我们主要应该在课堂上认真听讲,理解解题方法,我们现在所需要的是方法,是思维,而不仅仅是例题本身的答案,我们学习高数不是为了将来能计算算术,而是为了获得一种思想,为了提高我们的思维能力,为了能够用于解决现实问题。此外,要以教材为中心。虽然说“尽信书不如无书”,但是,就算教材不是完美的,但是教材上包含了我们所要掌握的知识点,而那些知识点是便是我们解题的基础。书上的一些基本公式、定理,是我们必须掌握的。

最后,坚持做好习题。做题是必要的,但像高中那样搞题海战术就不必要了。做好教材上的课后题和习题册就足够了,当然,前提是认真地做好了。对于每一道题,有疑问的地方就要解决,不能不求甚解,尽量把每一个细节都理解好,这样的话做好一道题就能解决很多同类型的题了。

下面是我对这学期学习重点的一些总结:

1、判断两个函数是否相同

一个函数的确定取决于其定义域和对应关系的确定,因此判断两个函数是否相同必须判断其定义域是否相同,且要判断函数表达式是否统一即可。

2、判断函数奇偶性

判断函数的奇偶性,主要的方法就是利用定义,其次是利用奇偶的性质,即奇(偶)函数之和仍是奇(偶)函数;两个奇函数之积是偶函数;两个偶函数之积仍是偶函数;一奇一偶之积是奇函数。

3、数列极限的求法

利用数列极限的四则运算法则、性质以及已知极限求极限。(1)若数列分子分母同时含n,则同除n的最高次项。

(2)若通项中含有根式,一般采用先分子或分母有理化,再求极限的方法。(3)所求数列是无穷项和,通常先用等差或等比数列前n项求和公式求出,再求极限。(4)利用两边夹逼定理求数列极限,方法是将极限式中的每一项放大或缩小,并使放大、缩小后的数列具有相同的极限。通式为形如1的无穷次方的不定式,一般采用两个重要极限中等于e的那个式子求解。

4、函数极限的求法(1)用数列求极限方法,(2)在一点处连续,则在此处极限等于此处函数值,(3)分段函数,在某点极限存在,则此处左右极限都存在且相等。

(4)利用无穷小量的特性以及无穷小量与无穷大量的关系求极限。即无穷小量与有界变量之积仍是无穷小量;有限个无穷小量之积仍是无穷小量;有限个无穷小量之代数和仍为无穷小量等。无穷小量与无穷大量的关系是互为倒数。

5、判断函数连续性

利用函数连续性的等价定义,对于分段函数在分界点的连续性,可用函数在某点连续的充要条件以及初等函数在其定义域内是连续函数的结论等来讨论函数的连续性。两个重要函数

第五篇:考研数学高数重要知识点

考研数学高数重要知识点

摘要:从整个学科上来看,高数实际上是围绕着、导数和积分这三种基本的运算展开的。对于每一种运算,我们首先要掌握它们主要的计算方法;熟练掌握计算方法后,再思考利用这种运算我们还可以解决哪些问题,比如会计算以后:那么我们就能解决函数的连续性,函数间断点的分类,导数的定义这些问题。这样一梳理,整个高数的逻辑体系就会比较清晰。

函数部分:

函数的计算方法很多,总结起来有十多种,这里我们只列出主要的:四则运算,等价无穷小替换,洛必达法则,重要,泰勒公式,中值定理,夹逼定理,单调有界收敛定理。每种方法具体的形式教材上都有详细的讲述,考生可以自己回顾一下,不太清晰的地方再翻到对应的章节看一看。

接下来,我们来说说直接通过定义的基本概念:

通过,我们定义了函数的连续性:函数在处连续的定义是,根据的定义,我们知道该定义又等价于。所以讨论函数的连续性就是计算。然后是间断点的分类,讨论函数间断点的分类,需要计算左右。

再往后就是导数的定义了,函数在处可导的定义是存在,也可以写成存在。这里的式与前面相比要复杂一点,但本质上是一样的。最后还有可微的定义,函数在处可微的定义是存在只与有关而与无关的常数使得时,有,其中。直接利用其定义,我们可以证明函数在一点可导和可微是等价的,它们都强于函数在该点连续。

以上就是这个体系下主要的知识点。

导数部分:

导数可以通过其定义计算,比如对分段函数在分段点上的导数。但更多的时候,我们是直接通过各种求导法则来计算的。主要的求导法则有下面这些:四则运算,复合函数求导法则,反函数求导法则,变上限积分求导。其中变上限积分求导公式本质上应该是积分学的内容,但出题的时候一般是和导数这一块的知识点一起出的,所以我们就把它归到求导法则里面了。

能熟练运用这些基本的求导法则之后,我们还需要掌握几种特殊形式的函数导数的计算:隐函数求导,参数方程求导。我们对导数的要求是不能有不会算的导数。这一部分的题目往往不难,但计算量比较大,需要考生有较高的熟练度。

然后是导数的应用。导数主要有如下几个方面的应用:切线,单调性,极值,拐点。每一部分都有一系列相关的定理,考生自行回顾一下。

这中间导数与单调性的关系是核心的考点,考试在考查这一块时主要有三种考法:

①求单调区间或证明单调性;

②证明不等式;

③讨论方程根的个数。

同时,导数与单调性的关系还是理解极值与拐点部分相关定理的基础。另外,数学三的考生还需要注意导数的经济学应用;数学一和数学二的考生还要掌握曲率的计算公式。

积分部分:

一元函数积分学首先可以分成不定积分和定积分,其中不定积分是计算定积分的基础。对于不定积分,我们主要掌握它的计算方法:第一类换元法,第二类换元法,分部积分法。这三种方法要融会贯通,掌握各种常见形式函数的积分方法。

熟练掌握不定积分的计算技巧之后再来看一看定积分。定积分的定义考生需要稍微注意一下,考试对定积分的定义的要求其实就是两个方面:会用定积分的定义计算一些简单的;理解微元法(分割、近似、求和、取)。至于可积性的严格定义,考生没有必要掌握。

然后是定积分这一块相关的定理和性质,这中间我们就提醒考生注意两个定理:积分中值定理和微积分基本定理。这两个定理的条件要记清楚,证明过程也要掌握,考试都直接或间接地考过。

至于定积分的计算,我们主要的方法是利用牛顿—莱布尼兹公式借助不定积分进行计算,当然还可以利用一些定积分的特殊性质(如对称区间上的积分)。

一般来说,只要不定积分的计算没问题,定积分的计算也就不成问题。定积分之后还有个广义积分,它实际上就是把积分过程和求的过程结合起来了。考试对这一部分的要求不太高,只要掌握常见的广义积分收敛性的判别,再会进行一些简单的计算就可以了。

会计算积分了,再来看一看定积分的应用。定积分的应用分为几何应用和物理应用。其中几何应用包括平面图形面积的计算,简单的几何体(主要是旋转体)体积的计算,曲线弧长的计算,旋转曲面面积的计算。物理应用主要是一些常见物理量的计算,包括功,压力,质心,引力,转动惯量等。其中数学一和数学二的考生需要全部掌握;数学三的考生只需掌握平面图形面积的计算,简单的几何体(主要是旋转体)体积的计算。这一部分题目的综合性往往比较强,对考生综合能力要求较高。

这就是高等数学整个学科从三种基本运算的角度梳理出来的主要知识点。除此之外,考生需要掌握的知识点还有多元函数微积分,它实际上是将一元函数中的,连续,可导,可微,积分等概念推广到了多元函数的情况,考生可以按照上面一样的思路来总结。

下载2018考研数一高数常考4大重要知识点总结(写写帮推荐)word格式文档
下载2018考研数一高数常考4大重要知识点总结(写写帮推荐).doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    2018考研数学冲刺:高数常考题型总结

    http://www.xiexiebang.com/kaoyan/ 考研数学冲刺:高数常考题型总结 2018考研已经进入冲刺阶段,文都网校考研小编帮大家梳理了在考研数学高数中的常考题型。高等数学是考研数......

    考研高数知识点总结(含五篇)

    综合理解是在基础知识点基础上进行的,加强综合解题能力的训练,熟悉常见的考题的类型,下面是小编为你带来的考研高数知识点总结,希望对你有所帮助。高等数学是考研数学的重中之......

    考研高数精华知识点总结:分段函数范文大全

    凯程考研 历史悠久,专注考研,科学应试,严格管理,成就学员! 考研高数精华知识点总结:分段函数 高等数学是考研数学考试中内容最多的一部分,分值所占比例也最高。为此我们为大家整理......

    高数知识点总结

    高数重点知识总结 1、基本初等函数:反函数(y=arctanx),对数函数(y=lnx),幂函数(y=x),指数函数(yax),三角函数(y=sinx),常数函数(y=c) 2、分段函数不是初等函数。 x2xxlim1 3、无穷......

    大一高数(下)期末考试总结,期末考试必备(共5篇)

    河北科技大学2003级 高等数学(下)期末考试试题1 一、填空题(共15分) 1. (5分) 微分方程y3y2y0的通解为2. (5分) 设D是平面区域|x|2,|y|1,则x(xy)d. D 3. (5分) 设zf(exy),其中f......

    金融常考知识点总结

    1.传统的中央银行的三大基本职能¡发行的银行3. 汇率的标价方法(1)直接标价法:以一定单位衍生性金融工具是指有基础性工具派生而来,其金融市场的主体——交易者。金融市场的客......

    《三国演义》常考知识点总结

    《三国演义》常考知识点总结 【中考乐冲刺“做的更少考得更好”】 1、《三国演义》中忠义的化身是关羽,我们所熟知的他忠、义、勇、谋、傲的事情分别有:千里走单骑、华容道义......

    数的整除知识点总结

    一.数的分类第一种分法:树状图韦恩图整数正整数零负整数整数自然数负整数零正整数正奇数正偶数第二种分法整数奇数偶数整数奇数偶数第三种分法:正整数素数1合数整数素数合数1......