数理统计学习感想(精选5篇)

时间:2019-05-12 11:28:38下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《数理统计学习感想》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《数理统计学习感想》。

第一篇:数理统计学习感想

数理统计学习感想

现实中常常存在这种情况,我们所掌握的数据只是部分单位的数据或有限单位的数据,而我们所关心的却是整个总体甚至是无限总体的数量特征。例如民意测验谁会当选主席?体育锻炼对增强心脏功能是否有益?某种新药是否提高疗效?全国婴儿性别比例如何?等等。这时只靠部分数据的描述是无法获得总体特征的知识。我们利用统计推断的方法来解决。所谓统计推断就是以一定的置信标准要求,根据样本数据来判断总体数量特征的归纳推理的方法。统计推断是逻辑归纳法在统计推理的应用,所以称为归纳推理的方法。统计推断可以用于总体数量特征的估计,也可以用于对总体某些假设的检验,所以又有不同的推断方法

下面就参数估计和假设检验的基本概念及原理简单谈谈。

参数估计是根据从总体中抽取的样本估计总体分布中包含的未知参数的方法。它是统计推断的一种基本形式,是数理统计学的一个重要分支,分为点估计和区间估计两部分。参数估计包括点估计和区间估计两种方法。

点估计是依据样本估计总体分布中所含的未知参数或未知参数的函数。通常它们是总体的某个特征值,如数学期望、方差和相关系数等。点估计问题就是要构造一个只依赖于样本的量,作为未知参数或未知参数的函数的估计值。构造点估计常用的方法是:①矩估计法。用样本矩估计总体矩,如用样本均值估计总体均值。②最大似然估计法。于1912年由英国统计学家R.A.费希尔提出,利用样本分布密度构造似然函数来求出参数的最大似然估计。③最小二乘法。主要用于线性统计模型中的参数估计问题。④贝叶斯估计法。基于贝叶斯学派(见贝叶斯统计)的观点而提出的估计法。、区间估计是依据抽取的样本,根据一定的正确度与精确度的要求,构造出适当的区间,作为总体分布的未知参数或参数的函数的真值所在范围的估计。例如人们常说的有百分之多少的把握保证某值在某个范围内,即是区间估计的最简单的应用。1934年统计学家J.奈曼创立了一种严格的区间估计理论。求置信区间常用的三种方法:①利用已知的抽样分布。②利用区间估计与假设检验的联系。③利用大样本理论。假设检验是抽样推断中的一项重要内容。它是根据原资料作出一个总体指标是否等于某一个数值,某一随机变量是否服从某种概率分布的假设,然后利用样本资料采用一定的统计方法计算出有关检验的统计量,依据一定的概率原则,以较小的风险来判断估计数值与总体数值(或者估计分布与实际分布)是否存在显著差异,是否应当接受原假设选择的一种检验方法。

假设检验的一般步骤

1、提出检验假设(又称无效假设,符号是H0))和备择假设(符号是H1)。H0:样本与总体或样本与样本间的差异是由抽样误差引起的; H1:样本与总体或样本与样本间存在本质差异; 预先设定的检验水准为0.05;当检验假设为真,但被错误地拒绝的概率,记作α,通常取α=0.05或α=0.01。

2、选定统计方法,由样本观察值按相应的公式计算出统计量的大小,如X2值、t值等。根据资料的类型和特点,可分别选用Z检验,T检验,秩和检验和卡方检验等。

3、根据统计量的大小及其分布确定检验假设成立的可能性P的大小并判断结果。若P>α,结论为按α所取水准不显著,不拒绝H0,即认为差别很可能是由于抽样误差造成的,在统计上不成立;如果P≤α,结论为按所取α水准显著,拒绝H0,接受H1,则认为此差别不大可能仅由抽样误差所致,很可能是实验因素不同造成的,故在统计上成立。P值的大小一般可通过查阅相应的界值表得到。

假设检验应注意的问题

1、做假设检验之前,应注意资料本身是否有可比性。

2、当差别有统计学意义时应注意这样的差别在实际应用中有无意义。

3、根据资料类型和特点选用正确的假设检验方法。

4、根据专业及经验确定是选用单侧检验还是双侧检验。

5、当检验结果为拒绝无效假设时,应注意有发生I类错误的可能性,即错误地拒绝了本身成立的H0,发生这种错误的可能性预先是知道的,即检验水准那么大;当检验结果为不拒绝无效假设时,应注意有发生II类错误的可能性,即仍有可能错误地接受了本身就不成立的H0,发生这种错误的可能性预先是不知道的,但与样本含量和I类错误的大小有关系。

6、判断结论时不能绝对化,应注意无论接受或拒绝检验假设,都有判断错误的可能性。区间估计与假设检验有区别也有联系。

(一)主要区别:

1、参数估计是以样本资料估计总体参数的真值,假设检验是以样本资料检验对总体参数的先验假设是否成立;

2、区间估计求得的是求以样本估计值为中心的双侧置信区间,假设检验既有双侧检验,也有单侧检验;

3、区间估计 立足于大概率,假设检验立足于小概率。

(二)主要联系:

1、都是根据样本信息推断总体参数;

2、都以抽样分布为理论依据,建立在概率论基础之上的推断;

3、二者可相互转换,形成对偶性。

另外,在统计推断中,我们是利用样本统计量估计和推测总体参数的。那么,很重要的一点就是要保证样本的代表性。因为如果从总体中抽取出来的样本缺乏代表性,那么利用这个样本提供的信息是难以准确有效地推测总体的某些分布特征的。因此,搞好统计推断的前提条件就是要利用随机抽样,尽量减小抽样误差。有关抽样的方法主要有以下几种:

1. 简单随机抽样

如果总体中每个个体被抽到的机会是均等的(即抽样的随机性),并且在抽取一个个体之后总体内成分不变(抽样的独立性),这种抽样方法称为简单随机抽样。简单随机抽样是最简单的抽样方法,它简便易行,使用范围广。常用的方式有:抽签法、随机数字表法等。

抽签法:先将总体中每个个体编上号码,再将每个号码写在签上,将签充分混合后,从中抽取n个(即样本的容量)签,与被抽到的签号相应的个体就进入样本。

随机数字表法:利用随机数字表抽样是简单随机抽样中常用的一种方法。随机数字表是用电子随机编号器编成的,由许多随机数排列起来的数字表。例如,要从30人的班级中抽选出5个学生作为样本,先把这30个学生编号,然后任意从表中的一个数字作为起点,或向上、向下、向左、向右的数字,选用其头两位按顺序选取5个。凡是编号与选取的数字相同者,定为被选对象,构成样本。

除利用随机数字表产生随机数字外,还可以利用计算机编制程序,或在计算机上产生随机数,这样抽样也很方便。

2.机械随机抽样

机械随机抽样要先将总体中的所有个体按一定顺序编号,然后按确定的相等距离抽取个体(间隔距离的大小依据所需样本与总体中个体数目的比率而定)。例如,要从1000个学生中抽取10名学生作为样本,可将这1000名学生从1—1000编号后,先从1—100编号中随机抽出一个号码,假定是39,以下从39号开始,每隔100个号码抽取一个,抽到39,139,239,…939共10个编号,这些编号对应的学生就构成容量为10的样本。

3.分层随机抽样 分层随机抽样也称类型随机抽样。先把总体按一定标准分为同质的若干层或类型,然后在每层或类型中随机抽样。采用分层随机抽样时应遵循一个基本原则,即所分的各层内的差异要尽量小,二层与层之间的差异要尽量大。对一个总体来说,怎样分层要视具体情况而定,分层的标准可以是一个,也可以是多个。例如,研究某校高三毕业生的数学推理能力,可按文、理分层,各自取样。而要调查某省高中二年级学生的实验能力,在抽样时就应考虑性别、城乡、学校是否重点、家庭等等各种因素,以这几个标准作为分层标准,依次分层,再抽取样本。

在把总体分好层次后,如何将样本容量n合理地分到各层中去,常用的方法是根据各层人数的多少按比例抽取。

4.整群随机抽样

从总体中抽取出来的研究对象,不是以个体为单位,而是以整群作为单位的抽样方法,称为整群随机抽样。例如,要了解某市某年化学学科高考的成绩,可以以学校为单位进行随机抽样。

为了增强样本对总体的代表性,弥补整群抽样的不均匀性,可以采用整群随机抽样内部再进行分层随机抽样的两阶段随机抽样法。例如,要调查某省小学二年级学生的身体情况,抽样就可以分为两步。先将全省分为若干部分,从中随机抽取几个部分作为全省小学二年级学生的代表。接着在抽取的各部分中,再按性别、家庭、民族、学校等标准,以此进行分层抽样。在这种做法中,第一阶段中的样本,对于第二阶段来说又是总体。所以,在比较大的调查研究中,采用整群随机抽样与分层随机抽样相结合的做法是比较恰当的。

第二篇:数理统计学习感想

数理统计学习感想

学习了一学期的数理统计,我学会了如何在生活中运用所学的知识去解决一些问题。

现实中常常存在这种情况,我们所掌握的数据只是部分单位的数据或有限单位的数据,而我们所关心的却是整个总体甚至是无限总体的数量特征。例如,民意测验谁会当选主席?体育锻炼对增强心脏功能是否有益?某种新药是否提高疗效?全国婴儿性别比例如何?等等。这时只靠部分数据的描述是无法获得总体特征的知识。

我们利用统计推断的方法来解决。所谓统计推断就是以一定的置信标准要求,根据样本数据来判断总体数量特征的归纳推理的方法。统计推断是逻辑归纳法在统计推理的应用,所以称为归纳推理的方法。统计推断可以用于总体数量特征的估计,也可以用于对总体某些假设的检验,所以又有不同的推断方法。下面就参数估计和假设检验的基本概念及原理简单谈谈。

参数估计是根据从总体中抽取的样本估计总体分布中包含的未知参数的方法。它是统计推断的一种基本形式,是数理统计学的一个重要分支,分为点估计和区间估计两部分。参数估计包括点估计和区间估计两种方法。

点估计是依据样本估计总体分布中所含的未知参数或未知参数的函数。通常它们是总体的某个特征值,如数学期望、方差和相关系数等。点估计问题就是要构造一个只依赖于样本的量,作为未知参数或未知参数的函数的估计值。构造点估计常用的方法是:①矩估计法。用样本矩估计总体矩,如用样本均值估计总体均值。②最大似然估计法。于1912年由英国统计学家R.A.费希尔提出,利用样本分布密度构造似然函数来求出参数的最大似然估计。③最小二乘法。主要用于线性统计模型中的参数估计问题。④贝叶斯估计法。基于贝叶斯学派(见贝叶斯统计)的观点而提出的估计法。

区间估计是依据抽取的样本,根据一定的正确度与精确度的要求,构造出适当的区间,作为总体分布的未知参数或参数的函数的真值所在范围的估计。例如人们常说的有百分之多少的把握保证某值在某个范围内,即是区间估计的最简单的应用。1934年统计学家J.奈曼创立了一种严格的区间估计理论。求置信区间常用的三种方法:①利用已知的抽样分布。②利用区间估计与假设检验的联系。③利用大样本理论。

假设检验是抽样推断中的一项重要内容。它是根据原资料作出一个总体指标是否等于某一个数值,某一随机变量是否服从某种概率分布的假设,然后利用样本资料采用一定的统计方法计算出有关检验的统计量,依据一定的概率原则,以较小的风险来判断估计数值与总体数值(或者估计分布与实际分布)是否存在显著差异,是否应当接受原假设选择的一种检验方法。

假设检验的一般步骤

1、提出检验假设(又称无效假设,符号是H0))和备择假设(符号是H1)。H0:样本与总体或样本与样本间的差异是由抽样误差引起的; H1:样本与总体或样本与样本间存在本质差异; 预先设定的检验水准为0.05;当检验假设为真,但被错误地拒绝的概率,记作α,通常取α=0.05或α=0.01。

2、选定统计方法,由样本观察值按相应的公式计算出统计量的大小,如X2值、t值等。根据资料的类型和特点,可分别选用Z检验,T检验,秩和检验和卡方检验等。

3、根据统计量的大小及其分布确定检验假设成立的可能性P的大小并判断结果。若P>α,结论为按α所取水准不显著,不拒绝H0,即认为差别很可能是由于抽样误差造成的,在统计上不成立;如果P≤α,结论为按所取α水准显著,拒绝H0,接受H1,则认为此差别不大可能仅由抽样误差所致,很可能是实验因素不同造成的,故在统计上成立。P值的大小一般可通过查阅相应的界值表得到。

假设检验应注意的问题

1、做假设检验之前,应注意资料本身是否有可比性。

2、当差别有统计学意义时应注意这样的差别在实际应用中有无意义。

3、根据资料类型和特点选用正确的假设检验方法。

4、根据专业及经验确定是选用单侧检验还是双侧检验。

5、当检验结果为拒绝无效假设时,应注意有发生I类错误的可能性,即错误地拒绝了本身成立的H0,发生这种错误的可能性预先是知道的,即检验水准那么大;当检验结果为不拒绝无效假设时,应注意有发生II类错误的可能性,即仍有可能错误地接受了本身就不成立的H0,发生这种错误的可能性预先是不知道的,但与样本含量和I类错误的大小有关系。

6、判断结论时不能绝对化,应注意无论接受或拒绝检验假设,都有判断错误的可能性。

区间估计与假设检验有区别也有联系。

(一)主要区别:

1、参数估计是以样本资料估计总体参数的真值,假设检验是以样本资料检验对总体参数的先验假设是否成立;

2、区间估计求得的是求以样本估计值为中心的双侧置信区间,假设检验既有双侧检验,也有单侧检验;

3、区间估计 立足于大概率,假设检验立足于小概率。

(二)主要联系:

1、都是根据样本信息推断总体参数;

2、都以抽样分布为理论依据,建立在概率论基础之上的推断;

3、二者可相互转换,形成对偶性。

另外,在统计推断中,我们是利用样本统计量估计和推测总体参数的。那么,很重要的一点就是要保证样本的代表性。因为如果从总体中抽取出来的样本缺乏代表性,那么利用这个样本提供的信息是难以准确有效地推测总体的某些分布特征的。因此,搞好统计推断的前提条件就是要利用随机抽样,尽量减小抽样误差。有关抽样的方法主要有以下几种:

1. 简单随机抽样

如果总体中每个个体被抽到的机会是均等的(即抽样的随机性),并且在抽取一个个体之后总体内成分不变(抽样的独立性),这种抽样方法称为简单随机抽样。简单随机抽样是最简单的抽样方法,它简便易行,使用范围广。常用的方式有:抽签法、随机数字表法等。

抽签法:先将总体中每个个体编上号码,再将每个号码写在签上,将签充分混合后,从中抽取n个(即样本的容量)签,与被抽到的签号相应的个体就进入样本。

随机数字表法:利用随机数字表抽样是简单随机抽样中常用的一种方法。随机数字表是用电子随机编号器编成的,由许多随机数排列起来的数字表。例如,要从30人的班级中抽选出5个学生作为样本,先把这30个学生编号,然后任意从表中的一个数字作为起点,或向上、向下、向左、向右的数字,选用其头两位按顺序选取5个。凡是编号与选取的数字相同者,定为被选对象,构成样本。

除利用随机数字表产生随机数字外,还可以利用计算机编制程序,或在计算机上产生随机数,这样抽样也很方便。2.机械随机抽样

机械随机抽样要先将总体中的所有个体按一定顺序编号,然后按确定的相等距离抽取个体(间隔距离的大小依据所需样本与总体中个体数目的比率而定)。例如,要从1000个学生中抽取10名学生作为样本,可将这1000名学生从1—1000编号后,先从1—100编号中随机抽出一个号码,假定是39,以下从39号开始,每隔100个号码抽取一个,抽到39,139,239,…939共10个编号,这些编号对应的学生就构成容量为10的样本。

3.分层随机抽样

分层随机抽样也称类型随机抽样。先把总体按一定标准分为同质的若干层或类型,然后在每层或类型中随机抽样。采用分层随机抽样时应遵循一个基本原则,即所分的各层内的差异要尽量小,二层与层之间的差异要尽量大。对一个总体来说,怎样分层要视具体情况而定,分层的标准可以是一个,也可以是多个。例如,研究某校高三毕业生的数学推理能力,可按文、理分层,各自取样。而要调查某省高中二年级学生的实验能力,在抽样时就应考虑性别、城乡、学校是否重点、家庭等等各种因素,以这几个标准作为分层标准,依次分层,再抽取样本。

在把总体分好层次后,如何将样本容量n合理地分到各层中去,常用的方法是根据各层人数的多少按比例抽取。

4.整群随机抽样

从总体中抽取出来的研究对象,不是以个体为单位,而是以整群作为单位的抽样方法,称为整群随机抽样。例如,要了解某市某年化学学科高考的成绩,可以以学校为单位进行随机抽样。

为了增强样本对总体的代表性,弥补整群抽样的不均匀性,可以采用整群随机抽样内部再进行分层随机抽样的两阶段随机抽样法。例如,要调查某省小学二年级学生的身体情况,抽样就可以分为两步。先将全省分为若干部分,从中随机抽取几个部分作为全省小学二年级学生的代表。接着在抽取的各部分中,再按性别、家庭、民族、学校等标准,以此进行分层抽样。在这种做法中,第一阶段中的样本,对于第二阶段来说又是总体。所以,在比较大的调查研究中,采用整群随机抽样与分层随机抽样相结合的做法是比较恰当的。

现实生活中概率问题随处可见,学好概率论和数理统计知识十分必要,我们学到的概率统计知识仅仅是一点点皮毛,如有必要我们还需深入学习它,达到学以致用的目的,在今后的学习生活中顺利解决遇到的此类问题。

第三篇:学习概率论与数理统计感想

学习概率论与数理统计感想

作者:丁彦军

学号:1130610816

班级:1306108 摘要:概率论与数理统计是一门与生活息息相关的学科,在生活中很多方面都有很广泛的应用,通过本学期对于这门课程的学习,我更加深刻的体会到了这一点。同时,了解一些概率论的发展历史和现状有助于我们更好的理解和学习这门课程的研究对象和方法,也有助于我们掌握这门课程的精髓。

关键词:概率论

起源

发展

应用

通过这学期对概率论与数理统计这门课的学习,我认识到,概率是研究随机现象规律的学科,它为人们认识客观世界提供了重要的思维模式和解决问题的方法,同时为统计学的发展提供了理论基础。同时,通过概率课还了解了概率的意义,概率是用来度量随机事件发生可能性大小的一个量,而实际结果是事件发生或不发生这两种情况中的一种。

了解这些后,我对概率论和数理统计的起源和发展历史以及它目前的发展情况产生了浓厚的兴趣。英国数学家格雷舍(Galisber,1848一1928)曾经说过“任何企图将一种科目和它的历史割裂开来:,我确信,没有哪一种科目比数学的损失更大。”了解和研究概率论发展的历史,有助于我们加深对这门课程研究对象、研究方法的了解;有利于总结成功经验和失败教训,启迪我们更好地学习这门课程。

下面介绍概率论的起源和发展历史: 1.古典概率时期(十七世纪)

概率论的早期研究大约在十六世纪到十一七世纪之间。这段期间,欧洲进入文艺复兴时期,工业革命已开始蔓延。伴随工业发展提出的误差问题,伴随航海事业发展产生的天气预报问题,伴随商业发展而产生的贸易、股票、彩票和银行、保险公司等,加之人们越来越需要了解的患病率、死亡率、灾害规律等问题,急需创立一门分析研究随机现象的数学学科。概率论应社会实践的需要出现了。在这个时期,意大利著名物理学家伽俐略(GalileiGalileo,1564.2.18一1642.1.8)就曾对物理实验中出现的误差进行了科学的研究,把误差作为一种随机现象,并估计了他们产生的概率。十七世纪末,瑞士数学家伯努利对惠更斯没有解决的问题给出了解答,并第一次用到了母函数概念。伯努利的成就主要是从理论上证明了大数定理。伯努利的另一重大贡献是研究了独立重复试验概型。由于这种概型研究的是只有两个可能结果的试验,并经多次重复的结果。因此具有很普遍的意义。至今,在许多概率论专著中仍把独立重复试验概型称为“伯努利概型”。2.初等概率时期(十八世纪)

十八世纪,概率论发展很快,几乎初等概率的全部内容都在这个期间形成。法国杰出的数学家德莫哇佛尔(AbrahamDeMoiver,1667--1754)最早研究了随机变量服从正态分布的情形,发现了正态概率分布曲线。接着,他又发现,许多分布的极限正态分布,并证明了二项分布当p=q=的情形。这种证明某一分布的极限是正态分布的各种定理,以后发展成概率论的一个重要组成部分—中心极限定理。英国数学家辛普松(TnomasSimpson,1710一1761)所研究的问题中有一个对产品剔12废及检查很重要的问题:设有n件等级不同的产品,n1件属于第一级,n2属于第二级,„„,我们任意取其中的m件,试求其中取得m1件第一级, m2件第二级,„„的概率。这就是现在常用到的多项分布的情形。法国博物学家蒲丰(CometDeBuffon,1707一1788)提出了用投掷小针计算值的著名“蒲丰问题”:将一根长2l的小针投掷在距离为2a(a>l)的若干等距平行线上,可以证明针与任一直线相交的概率是p=用p≈(n为投掷次数,为针与直线相交次数),则得3.分析概率时期(十九世纪)

拉普拉斯1812年在巴黎出版了他的经典著作《分析概率论》,这部著作对十八世纪概率论的研究成果作了比较完美的总结,内容包括几何概率、伯努利定理、最小二乘法等。他还明确了概率的古典定义,证明了中心极限定理中的德莫哇佛尔—拉普拉斯形式,发展了概率论在观察和测量误差方面的应用。法国数学家泊松通过研究,发现了在概率论中占重要地位的一个分布—泊松分布。他还推广了大数定律,在1837年他的《关于民型审判的概率研究》著作中,第一次提出了“大数定律”这一名称。泊松还是第一个把概率论用到解决射击问题上的数学家。德国数学家高斯(CareFriedriehGauss)首次叙述了在统计学中十分重要的最小二乘法原理。切比雪夫(TellbllllBe)提出的不等式:p:{|X-E(X)|}D(X)2l,若an2nl。a2。给出了在未知分布情况下,随机变量与其期望之间差别概率的估计。同时,他作为基础知识在概率论和数理统计中起着十分重要的作用。4.现代概率时期(二十世纪)

二十世纪以来,美籍南斯拉夫数学家费勒(WillamFeller,1906--1970)及法国数学家列维(P·Lvey,1886一1971)在极限理论方面开展了一系列有益的研究工作。1935年,费勒找到了满足中心极限定理的充要条件,后来数学界称这个条件(limmaxnk=0)为费勒条件。英国数学Bn家费歇尔(R·A·Fihser.1890--)以医学、生物实验为背景,提出了似然方法;开创了试验设计、方差分析;确立了统计推断的基本方法(二、三十年代)。原籍波兰的美国数学家奈曼(J·Nycmna)和皮尔逊,从1928年起,建立了严格的假设检验理论。四十年代末,美国数学家瓦尔德创立了统计判决理论。由于概率论中极限理论的发展,正态分布作为统计量的地位越来越明显,统计中的大样本理论由此而得到迅猛的发展,参数估计中的极大似然估计,稳健统计,自适应估计,随机逼近、非参数统计等都发展较快。另外,贝叶斯(Bayes)统计学派在这个时期复兴并发展。

通过对概率论的发展史的了解,我对概率论课程中学习的一些知识有了更深层次的理解,列如,对于n重伯努利的问题,它在平时的生活中也有着广泛的应用价值。比如在购买股票问题中,设光顾的投资者数为n,n个人中购买股票的人数m,这就是一个n重贝努里概型。此外,概率论在各个学科和金融、保险、生物、医学、经济、运筹管理和工程技术等领域也得到了广泛应用。主要包括:极限理论、随机过程论、数理统计学、概率论方法应用、应用统计学等。概率论方法应用是一个涉及面十分广泛的领域,包括随机力学、统计物理学、保险学、随机网络、排队论、可靠性理论、随机信号处理等有关方面。熟练地掌握概率论中一些基本的方法,对于我们平时的工作和学习会有很大的帮助。同时,随着科学技术的发展,概率论的理论与应用也将得到更大的发展,带给我们的益处也将越来越多。

第四篇:学习概率论与数理统计的感想

来源于实践 应用于实践 ——学习概率论与数理统计的感想

概率论与数理统计是研究随机现象统计规律的科学,既是重要的基础理论,又是实践性很强的应用科学。

概率论是十七世纪因保险事业发展而产生的,与博弈实践有关;数理统计学源于对天文和测地学中的误差分析以及中世纪欧洲流行黑死病的统计。数理统计学与概率论这两个学科的密切联系就是基于统计数据的随机性。

概率论与数理统计具有很强的实用性,科学研究与社会活动都需要进行数据的收集、整理以及精炼的形式表达,并以此为基础进行定量或定性估计、描述和解释,预测其未来可能的发展状况。而对大量随机数据进行整理并描述评估、预测其发展正是数理统计学与概率论的重要内容。

实用性赋予了概率论与数理统计强大的生命力。17世纪概率论与数理统计作为学科诞生后,其方法就被英国古典政治经济学创始人佩蒂引进到社会经济问题的研究中,他提倡让实际数据说话,其对资本主义经济的研究从流通领域进入生产领域,对商品的价值量做了正确的分析。

二战后随着科技的发展特别是计算机的发展,概率论与数理统计在新的实践条件下得以迅猛发展,其理论日益完善与深入,其手段日益先进和便利,其作用日益重要和广泛,大量应用到国民经济、工农

业生产及各学科领域,许多新兴科学都是以概率论与数理统计作为基础的,如信息论、对策论、排队论、控制论等。

概率论与数理统计不仅在自然科学中发挥重要作用,实证的方法就是基于数据分析整理并推理预测,而且在社会实践中发挥着重要的不可替代的作用,这是因为:

1、人类活动的各个领域都不同程度与数据打交道,都有如何收集和分析数据的问题,因此概率论与数理统计学的理论和方法,与人类活动的各个领域都有关联。

2、组成社会的单元——人、家庭、单位、地区等,都有很大的变异性、不确定性,如果说,在自然现象中尚有一些严格的、确定性的规律,在社会现象中则绝少这规律,因此更加依靠从概率论与数理统计的角度去考察。

在工业生产中,从产品设计到工艺选定,从生产控制到质量检验,都要使用概率论与数理统计的理论与方法,从大量可能的条件组合中,通过分析试验来选定结果;在农业上,有关选种、耕作条件、肥料选择等一系列问题的解决,都与概率论与数理统计方法的应用有关;医学与生物学是概率论与数理统计方法应用最多的领域之一,人体变异是一个重要的因素,不同的人的情况千差万别,其对一种药物和治疗方法的反应也各不相同,因此,对一种药物和治疗方法的评价,就是概率论与数理统计的问题,不少国家对新药的上市和治疗方法的批准,都设定了很严格的试验和统计检验的要求;此外生活习惯、环境污染对健康的影响,也都要通过概率论与数理统计方法来分析研

究;对政策的评估也需要概率论与数理统计,抽样调查已成为研究社会现象一种最有力的工具,抽样调查从其方案的制定到数据的分析,都是以概率论与数理统计的理论和方法为基础。

概率论与数理统计的发展方向是更加实用,基于多元函数、通过建立数学模型来分析解决问题,理论更加严密,应用更加广泛,发展更加迅速。

通过一学期老师的教学,使我初步了解了概率论与数理统计的基本概念和基本理论,知道了处理随机现象的基本思想和方法,有助于培养自己解决实际问题的能力和水平。

第五篇:概率论与数理统计学习的感想

概率论与数理统计学习的感想

概率问题是研究随机现象统计规律性的学科, 是近代数学的一个重要组成部分,生活中概率与统计知识应用非常普遍,科学家对实验统计的数据的分析,企业对产品质量检查,产品的市场分析,人口普查,有奖债券,国家彩票等等都用到了概率与统计学的基本知识;许多政治选举的结果,医疗上的决定也取决于统计的数据,因此掌握基本的概率论与数理统计知识并加以灵活运用非常必要。

由于高中学过排列组合、概率统计的一些基本知识,并且生物课程中遗传学中也接触到了概率的一些知识,所以开始上概率课时并没有太大压力,基本上是在高中的基础上更深入地学习概率的有关知识。高中学习的是古典概型,等概事件,离散型随机变量,是最基础的,而大学学到的是更一般的概率统计知识,适用范围也更广。高中的一些思维模式必须转变才能适应大学的学习:在高中某一事件概率为0等价于该事件不可能事件,某一事件的概率为1就等价与该事件是必然事件,而大学中学过几何概率后才知道高中学的不全对,几何概率中边界上概率为0但也可能发生。

学习到连续型随机变量时已经与高中学习的相差很大,对连续型随机变量求其在去某值时的概率是无意义的,只能求变量落在某一范围内的概率。因为现实生活中的事件大多受到两个或多个因素影响,很多随机现象中,往往要涉及到多个随机变量,而且这些随机变量之间存在某种联系,因此多维随机变量的知识在生活中应用更广。随机变量的概率密度与分布直接反映出随机变量的分布情况,随机变量的数学期望,方差等在生活中可以帮助人们做出选择。比如大赛前选拔选手才赛,对某产品的质量估计等。

当一些随机变量的分布不易求出或不需要知道随机变量的概率分布,而只需要知道其数学期望,方差即可知道其大概分布情况。随机变量的数学期望反映了随机变量取值的平均值,而随机变量的方差反映了随机变量离开其平均值的平均偏离大小,反映了随机变量的稳定性。比如灯泡的寿命这一随机变量的数学期望越大,方差越小其品质也越好,一名学生的成绩的数学期望越大,方差越小说明其成绩越好越稳定。当然并非所有的变量数学期望越大,方差越小越好,一个参赛选手的平时成绩方差越大说明其爆发力越好,比赛时他极有可能爆发,当然也有一定的风险,但这可以作为选拔选手的参考因素之一。

数理统计部分介绍了简单随即抽样等概念以及一些常用的分布喝一些参数估计方法,这些知识在生活中有许多应用,如灯具厂生产灯泡的寿命是一个随机变量,有实际生产经验可知其服从均值为μ标准差为σ的正态分布,要了解该厂的产品质量就要对参数μ和σ进行估计。人们可以通过对一些参量的估计大概了解随机变量的分布情况。

现实生活中概率问题随处可见,学好概率论和数理统计知识十分必要,正如老师所讲,我们学到的概率统计知识仅仅是一点点皮毛,如有必要我们还需深入学习它,达到学以致用的目的,在今后的学习生活中顺利解决遇到的此类问题。

对本门课程教学的一些建议:老师可以让同学们对某一问题进行研究、调查等,试着运用所学知识解决问题;习题可以加一些定理与结论证明,让同学们真正理解定理、结论的本质。

下载数理统计学习感想(精选5篇)word格式文档
下载数理统计学习感想(精选5篇).doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    概率论与数理统计学习的感想

    概率论与数理统计学习的感想 概率问题是研究随机现象统计规律性的学科, 是近代数学的一个重要组成部分,生活中概率与统计知识应用非常普遍,科学家对实验统计的数据的分析,企业......

    《概率论与数理统计》读书感想

    《概率论与数理统计》读书感想 班级:学号:姓名: 本学期我们开设了《概率论与数理统计》这门课程。在正式学习这门课程之前,我对于它的了解仅限于高中时期所学习的简单的概率与......

    数理统计试卷(最终定稿)

    试卷名称: 数理统计I 课程所在院系: 理学院 考试班级: 学号: 姓名: 成绩: 试卷说明: 1.本次考试为闭卷考试。本试卷共4页,共八大部分,请勿......

    数理统计学习心得

    数理统计学习心得 现实中常常存在这种情况,我们所掌握的数据只是部分单位的数据或有限单位的数据,而我们所关心的却是整个总体甚至是无限总体的数量特征。例如民意测验谁会当......

    数理统计学习心得

    数理统计学习心得 现实中常常存在这种情况,我们所掌握的数据只是部分单位的数据或有限单位的数据,而我们所关心的却是整个总体甚至是无限总体的数量特征。例如民意测验谁会当......

    参加《概率论与数理统计》课程培训的一点感想

    必须转变那种妨碍学生创新精神和创新能力的教育观念、教育模式,特别是由教师单向灌输知识,以考试分数作为衡量教育成功的惟一标准以及划一呆板的教育教学制度,要下功夫造就一批......

    1-数理统计基础[最终定稿]

    《实验室资质认定评审准则》内审员培训班 彭洪2012.9 1、数理统计基础 1.1 随机变量 1.1.1随机事件和概率 观测或试验的一种结果,称为一个事件。在一定条件下进行大量重复试......

    概率论与数理统计

    概率论与数理统计,运筹学,计算数学,统计学,还有新增的应用数学,每个学校情况不太一样,每个导师研究的方向也不太一样。看你报的哪个学校了~~ 赞同数学的方向还是比较多的,比如金融,......