第一篇:总结减压阀的几种基本性能
总结减压阀的几种基本性能及作用
(1)调压范围
它是指减压阀输出压力P2的可调范围,在此范围内要到规定的精度。调压范围主要与调压弹簧的刚度有关。
(2)压力特性
它是指流量g为定值时,因输入压力波动而引起输出压力波动的特性。输出压力波动越小,减压阀的特性越好。输出压力必须低于输入压力—定值才基本上不随输入压力变化而变化。
(3)流量特性
它是指输入压力—定时,输出压力随输出流量g的变化而变化的持性。当流量g发生变化时,输出压力的变化越小越好。一般输出压力越低,它随输出流量的变化波动就越小。
减压阀的作用
减压阀的作用原理是靠阀内流道对水流的局部阻力降低水压,水压降的范围由连接阀瓣的薄膜或活塞两侧的进出口水压差自动调节。近年来又出现一些新型减压阀,如定比式减压阀。定比减压原理是利用阀体中浮动活塞的水压比控制,进出口端减压比与进出口侧活塞面积比成反比。这种减压阀工作平稳无振动;阀体内无弹簧,故无弹簧锈蚀、金属疲劳失效之虑;密封性能良好不渗漏,因而既减动压(水流动时)又减静压(流量为0时);特别是在减压的同时不影响水流量。水流通过减压阀虽有很大的水头损失,但由于减少了水的浪费并使系统流量分布合理、改善了系统布局与工况,因此总体上讲仍是节能的。减压阀的每一档弹簧只在一定的出口压力范围内适用,超出范围应更换弹簧。在介质工作温度比较高的场合,一般选用先导活塞式减压阀或先导波纹管式减压阀。介质为空气或水(液体)的场合,一般宜选用直接作用薄膜式减压阀或先导薄膜式减压阀。介质为蒸汽的场合,宜选用先导活塞式减压阀或先导波纹管式减压阀。为了操作、调整和维修的方便,减压阀一般应安装在水平管道上。
如需减压阀的选型,报价,参数,型号,请继续关注易卖工控。
第二篇:汽车性能总结
第二章
汽车的动力性
1、汽车动力性的含义和三个评价指标。
汽车的动力性是指汽车在良好路面上直线行驶时,由汽车受到的纵向外力决定的、所能达到的平均行驶速度。
评价指标:最高车速、加速时间、最大爬坡度
2、汽车的四类行驶阻力以及道路阻力包含的内容。滚动阻力Ff、空气阻力Fw、坡度阻力Fi、加速阻力Fj 内容:滚动阻力和坡度阻力。滚动阻力 Ff = G*cosα*f;坡度阻力 Fi=G*sinα,因 sinα≈ i;从而Fi=G*i.; f+i= ψ: ψ为道路阻力系数 3.影响滚动阻力系数的因素
(1)车速ua 车速越高,滚动阻力越大
(2)轮胎结构
子午线轮胎比斜交轮胎的滚动阻力小20%~30%
(3)气压
气压越高,轮胎变形及由其产生的迟滞损失就越小,滚动阻力也越小 硬路面:轮胎气压越高,滚动阻力也越小;塑性路面:轮胎气压越高,滚动阻力也越大
(4)驱动力
驱动力系数的增加,滚动阻力系数迅速增加。硬路面:驱动力越大,滚动阻力系数越大;气压越高,滚动阻力系数越大
(5)路面条件
上高速公路时,轮胎气压应该适当高一些。在松软路面、泥泞路面、雪地行驶时,可适当降低轮胎气压
(6)转向
离心力导致前、后轮产生侧偏力,侧偏力沿行驶方向产生分力使滚动阻力增加。
4.空气阻力的分类及各阻力产生的原因。(汽车直线行驶时受到的空气作用力在行驶方向的分力称为空气阻力。)P52
分类:压力阻力(形状阻力、干扰阻力、内循环阻力、诱导阻力)、摩擦阻力
压力阻力(占91%):作用在汽车外形表面上的法向压力的合力在行驶方向上的分力。
形状阻力(58%):汽车行驶时,前部空气被压缩压力升高,后部形成涡流区产生负压使压力降低,前后压力差便形成了形状阻力。
干扰阻力(14%):车辆行驶时车表面突起物引起的空气阻力。
内循环阻力(12%):冷却发动机、车内通风等所需空气流经车体内部时形成的阻力。诱导阻力(9%):汽车上部和下部空气压力不同,其差值在水平方向上的分力即为诱导阻力 摩擦阻力(9%):由于空气粘性作用在车身表面产生的切向力的合力在行驶方向的分力 5.写出用汽车结构参数和使用参数表示的汽车行驶方程式。
6.附着率、附着力定义。
附着率:汽车直线行驶时,充分发挥驱动力作用时要求的最低附着系数
地面对轮胎切向反作用力的极限值(最大值)即为附着力。7.影响附着系数的因素。
主要取决于路面的种类和状况,还与轮胎结构和气压、车速、车轮运动状况等有一定的关系
8、会应用“汽车的驱动与附着条件“(计算题)P57
9、掌握三大平衡图的组成,以及利用三大平衡图分析汽车动力性的方法。(填空、选择题)P63.10、分析主减速器传动比对汽车动力性和燃油经济性的影响。(简答题)(P78图2-34)主减速器的传动比即传动系统的最小传动比,决定汽车的最高车速Vamax。
i01>i02>i03处在同一档时,i01的后备功率最大、燃油经济性最差;i03的后备功率最小、燃油经济性最好。i01的Vamax/Vp>1,动力性好,燃油经济性差;i02的Vamax/Vp=1,动力性和燃油经济性都比较好;i03的Vamax/Vp< 1,动力性差,燃油经济性好。(Vp-发动机最大功率对应的车速)
第三章
汽车的燃油经济性
1、等速百公里燃油消耗量的计算公式。
Q 燃油消耗率b,发动机功率Pe,燃油密度γ
2、写出汽车的后备功率方程式,分析后备功率对汽车动力性和燃料经济性的影响。后备功率方程式:Pe=1/ŋT(Pf+Pw)
对动力性的影响:后备功率可用来使汽车加速或爬坡,以及拖带挂车,故后备功率越大,汽车的动力性越好。
对燃料经济性的影响:后备功率越小,负荷率越大,汽车燃料经济性就越好。通常负荷率约 80%~90%时,汽车燃料经济性最好。但负荷率太大会造成发动机经常在全负荷工况下工作,反而不利于提高汽车燃料经济性。
3、分析影响汽车燃油经济性的主要因素。提示:六个主要因素:燃油消耗率、行驶阻力、传动效率、停车怠速油耗、汽车附件消耗和制动能量损失。
燃油消耗率:主要和发动机负荷率及发动机自身的种类、设计制造水平有关。发动机负荷率越低,燃油消耗率b显著增高,发动机后备功率大,动力性好,但此时 燃油经济性差。
行驶阻力:减轻汽车质量、降低空气阻力有利于节省燃油,提高汽车燃油经济性。
传动效率:其越高,油耗越低,汽车燃油经济性越好。提高传动系统的设计水平、制造装配工艺、按规程进行维修保养,以及尽可能使用直接挡行驶等措施,都可以提高传动效率。
停车怠速油耗:不熄火的怠速停车,会在不增加行驶里程的情况下消耗燃油,降低燃油经济性。汽车附件消耗:它的能量,最终也来自燃油,会降低燃油经济性。制动能量损失:频繁的加速、减速制动,会增加油耗,降低燃油经济性。
4、分析如何从汽车的结构方面入手提高汽车的燃油经济性。
缩减尺寸与轻量化、提高发动机设计水平、增加传动系档位数(并提高效率)和优化汽车外形与轮胎。
5、分析如何从汽车的使用方面入手提高汽车的燃油经济性。
中速行驶、尽量使用高挡、合理拖挂、正确的保养与调整:(1)制动器间隙要合适(2)轮毂轴承预紧度调整要正常(3)轮胎气压要合适(4)各部件间的润滑情况
6、分析为什么在接近于低速的中等车速时汽车的燃油经济性比较好。
低速时Fw↓,Ff↓,但负荷率↓,b ↑;高速时Fw↑,Ff↑,但负荷率↑,b ↓
第五章
汽车的制动性
1、制动性的三个评价指标,制动效能的两个评价指标,制动时汽车方向稳定性的三个方面。三个评价指标:制动效能;制动效能恒定性;制动时的方向稳定性。两个评价指标:制动距离与制动减速度。
三个方面:制动中不发生跑偏、侧滑或前轮失去转向能力的性能。
2、地面制动力、制动器制动力和附着力Fϕ三者之间的关系。地面制动力Fτ=/r,;制动器制动力Fμ=
/r,Fµ取决于制动器的类型、结构尺寸、制动器摩擦副的摩擦因数及车轮半径,并与踏板力成正比,与附着力Fϕ无关。足够的制动器制动力+较高的附着力(切向力)=较高的地面制动力
3、制动距离的含义,汽车的制动过程包括的四个过程(匀速运动、变减速运动、匀减速运动、停止运动。),影响制动距离的因素。
在良好路面上,汽车以一定初速(100km/h)从踩到制动踏板至停车经过的距离即为制动距离。
影响制动距离的因素:路面条件、载荷条件、制动初速度;踏板力(或者制动系管路压力)、地面的附着情况、车辆载荷有关,制动器的热工况。
4、影响制动效能恒定性的两个因素,汽车制动跑偏的两个因素。制动效能恒定性的两个因素:制动器摩擦副材料及制动器结构
汽车制动跑偏的两个因素:1.左右车轮制动力不相等2.悬架导向杆系与转向系拉杆在运动学上不协调
5、纵向附着系数、侧向附着系数和滑动率之间的关系图(P155图5-7),利用该图会分析ABS的基本原理。左侧:地面附着力随汽车制动力矩的增加,能提供足够的地面制动力,此时的侧向力系数也较大,具有足够的抗侧滑能力,—稳定区。右侧:随制动力矩的增大,地面制动力减小,抱死侧滑。
ABS系统:用滑移率作为参数,通过调节制动压力来控制车轮的转速,达到防抱死的目的。汽车在制动时,将汽车车轮的滑移率控制在15%~20%之间,制动车轮始终在纵向峰值附着系数最大处附近的狭小滑移率范围内滚动,既保证了转向操纵和制动方向的稳定性,又获得最小制动距离。同时又可以获得较大的侧向力系数(也就是说,能兼顾相对最大的纵向制动力和横向抓地力),从而使汽车获得最佳的制动效能和方向稳定性。
6、会利用汽车的结构参数求解汽车的同步附着系数,在此基础上,分析汽车的制动过程(哪个车轮先抱死)。1.)某汽车前轴轴质量为满载总质量的40%,轴距为2.6m,质心高度为0.9m,该车制动力分配系数为0.6,求该车的同步附着系数。
2.)已知某汽车质量为m=4000kg,前轴负荷1350kg,后轴负荷为2650kg,hg=0.88m,L=2.8m同步附着系数为0.6,试确定前后制动器制动力分配比例。
1)前轮先抱死拖滑,然后后轮抱死拖滑;稳定工况,但丧失转向能力,附着条件没有充分利用。2)后轮先抱死拖滑,然后前轮抱死拖滑;后轴可能出现侧滑,不稳定工况,附着利用率低。3)前、后轮同时抱死拖滑;可以避免后轴侧滑,附着条件利用较好。
7、P161页汽车在不同附着系数的路面上的制动过程要求会分析。(前后轮的地面制动力和制动器制动力怎么变化)
从图中看,同步附着系数是ϕo=0.39;ϕ<ϕo前轮先抱死,ϕ>ϕo后轮先抱死,ϕ=ϕo前、后轮同时抱死。
第六章
汽车的操纵稳定性
1、轮胎的侧偏特性。
侧偏特性是指侧偏力、回正力矩与侧偏角的关系,它是研究汽车操纵稳定性的基础。
2、影响侧偏特性的因素。
轮胎尺寸、型式和结构参数:大尺寸、钢丝子午线;轮胎的扁平率:适当小;轮胎气压:适当高;垂直载荷:适当大;地面切向反作用力:FX 适当大,FY 适当小;路面干湿状态:越湿,最大侧偏力越小
3、稳态转向特性的五个表征参数。(会计算稳定性因数、会求汽车的特征车速或临界车速等)转向半径、前后轮侧偏角之差、稳定性因数 K、特征车速与临界车速、静态储备系数
稳定性因数:
特征车速:临界车速:
第三篇:炼钢用耐火材料的基本性能
炼钢用耐火材料的基本性能
炼钢用耐火材料主要有以下几方面:
1)转炉用耐火材料
目前转炉的炉帽、出钢口、前后大面、熔池和炉底均用镁碳砖;耳轴和渣线部位使用高强度镁碳砖。
镁碳砖中MgO含量一般为70~75%,石墨含量为16~20%,体积密度为2.8~2.9g/cm3,耐压强度25~30MPa。
高强度镁碳砖,成分同镁碳砖,但耐压强度为30~42MPa。
2)电炉用耐火材料
电炉的炉底、炉坡和熔池为镁砂整体打结,或使用镁碳砖和焦油沥青结合的镁砖;热点和渣线区,使用优质镁碳砖;炉门口两侧及出钢El为镁砖、铬镁砖;电炉炉盖为高铝砖或高铝不烧砖。
3)超高功率电炉用耐火材料
超高功率电炉的永久衬为镁石,炉门侧柱为镁铬砖,渣线为镁砖,热点区为镁碳砖,炉壁为镁碳砖,偏心底和熔池为镁砖,出钢口为镁碳砖,电炉盖为高铝砖,出钢孔填料为高铁白云石填充料。
4)平炉用耐火材料
平炉熔炼室由炉底、前后墙和炉顶构成,其所用的耐火材料有:轻质粘土砖、粘土砖、镁砖等,而炉顶采用铬镁砖和镁铝砖等优质碱性耐火材料。
从各种炼钢炉的工作状况可以看出,耐火材料的工作环境是十分恶劣的,因此,不管使用什么耐火材料,都必须具有以下性能:
(1)耐高温,具有较高的耐火度。
(2)耐高温钢水和炉渣的侵蚀和冲刷。
(3)炼钢炉为间歇作业,要求耐火材料具有良好的抗热震性和抗剥落性。
(4)具有较高的机械强度,能承受炉体倾动和装入炉料的冲击作用而不损坏。
第四篇:炼钢用耐火材料的基本性能
炼钢用耐火材料的基本性能有哪些?
来源:中国耐火材料网
1)转炉用耐火材料
目前转炉的炉帽、出钢口、前后大面、熔池和炉底均用镁碳砖;耳轴和渣线部位使用高强度镁碳砖。
镁碳砖中MgO含量一般为70~75%,石墨含量为16~20%,体积密度为2.8~2.9g/cm3,耐压强度25~30MPa。
高强度镁碳砖,成分同镁碳砖,但耐压强度为30~42MPa。
2)电炉用耐火材料
电炉的炉底、炉坡和熔池为镁砂整体打结,或使用镁碳砖和焦油沥青结合的镁砖;热点和渣线区,使用优质镁碳砖;炉门口两侧及出钢El为镁砖、铬镁砖;电炉炉盖为高铝砖或高铝不烧砖。
3)超高功率电炉用耐火材料
超高功率电炉的永久衬为镁石,炉门侧柱为镁铬砖,渣线为镁砖,热点区为镁碳砖,炉壁为镁碳砖,偏心底和熔池为镁砖,出钢口为镁碳砖,电炉盖为高铝砖,出钢孔填料为高铁白云石填充料。
4)平炉用耐火材料
从各种炼钢炉的工作状况可以看出,耐火材料的工作环境是十分恶劣的,因此,不管使用什么耐火材料,都必须具有以下性能:
(1)耐高温,具有较高的耐火度。
(2)耐高温钢水和炉渣的侵蚀和冲刷。
(3)炼钢炉为间歇作业,要求耐火材料具有良好的抗热震性和抗剥落性。
(4)具有较高的机械强度,能承受炉体倾动和装入炉料的冲击作用而不损坏。
第五篇:部分化工材料基本性能及其主要用途说明
部分化工材料基本性能及其主要用途说明
丁晴橡胶
基本性能:丁腈橡胶具有优良的耐油性,其耐油性仅次于聚硫橡胶和氟橡胶,并且具有的耐磨性和气密性。丁晴橡胶的缺点是不耐臭氧及芳香族、卤代烃、酮及酯类溶剂,不宜做绝缘材料。
主要用途:丁腈橡胶主要用于制作耐油制品,如耐油管、胶带、橡胶隔膜和大型油囊等,常用于制作各类耐油模压制品,如O形圈、油封、皮碗、膜片、活门、波纹管等,也用于制作胶板和耐磨零件。
聚四氟乙烯
聚四氟乙烯[PTFE,F4]是当今世界上耐腐蚀性能最佳材料之一,因此得“塑料王”之美称。它能在任何种类化学介质长期使用,基本性能:耐高温——使用工作温度达250℃。
耐低温——具有良好的机械韧性;即使温度下降到-196℃,也可保持5%的伸长率。耐腐蚀—对大多数化学药品和溶剂,表现出惰性、能耐强酸强碱、水和各种有机溶剂。耐气候——有塑料中最佳的老化寿命。
高润滑——是固体材料中摩擦系数最低者。
不粘附——是固体材料中最小的表面张力,不粘附任何物质。
无毒害——具有生理惰性,作为人工血管和脏器长期植入体内无不良反应
主要用途:广泛运用于化工、石油和制药等领域的许多问题。聚四氟乙烯密封件、垫圈、垫片.聚四氟乙烯密封件、垫片、密封垫圈是选用悬浮聚合聚四氟乙烯树脂模塑加工制成。聚四氟乙烯与其他塑料相比具有耐化学腐蚀与耐温优异的特点,它已被广泛地应用作为密封材料和填充材料