第一篇:缸体铸造工艺试制总结
缸 体
试 制
2011年4月 结 鉴定材料
总
缸体试制总结
缸体
材质:ZG35,毛单重:3.2吨,是云南铜业铜电解阳极平整矫耳目机组上用高受压液压缸,工作压力:21MPa,试验压力31.5 MPa,超声波按JB/T5000.8 Ⅳ级锻件标准,着色探伤按JB/T5000.15 Ⅳ级标准。
本产品制做难度重点在铸造工序,铸件质量得到保证,才能满足试压和探伤的要求。从铸造角度讲,本产品的结构为单开口筒状,只能出单芯头,因为试压和探伤的要求,又不能下芯撑,故在确保此产品铸造中无夹砂、疏松、气孔、裂纹等影响试压和探伤的缺陷时,对中芯的固定也是难点之一。
经专业技术人员会商后,确定以下铸造工艺方向(具体工艺参见后附《缸体铸造工艺简图》):
1、分型面选择:为确保缸体整体质量,特别是缸壁质量均匀性,在浇注时缸壁必需保持立向;由于其受压面在缸底较多,故缸底也应向下,法兰面朝上;从而将分型面选取在缸口法兰上顶面,这样即利于分箱,也利于冒口的安放,能更好确保产品质量。
2、砂芯固定及排气:根据确定的分型面,以及不能下芯撑因素,中芯只有全部固定在盖箱上,需工艺和操作上共同保证其强度和稳固性。因此在中芯内的主芯骨用φ25钢筋围成桶状焊牢,并焊接固定在盖箱箱档上。制芯时中芯就直接打制在盖箱上,保证其强度。中芯为单芯头,必需加强排气,以免砂芯内气体浸入铸件内影响其强度。因此中芯内需加入干草绳,草绳应多处设置,均匀分布(间距约250~300mm),每处用单草绳,并延伸到盖箱顶面外,利于引导芯内气体排出。
3、补缩:良好的补缩才能确保铸件的致密度,从而保证其强度。本产品需工艺上创造顺序凝固趋势,以确保补缩效果。首先缸底采用成型外冷铁,厚度180mm,激冷其最先凝固;其次,缸体侧壁加大拔模斜度,下薄上厚,补缩畅通(且钢水内夹杂物上浮容易);最后,从法兰顶面(分型面)上就开始挖冒口(相当于增加冒口补帖),且冒口采用Fuseco公司的保温板与Ferrux707覆盖剂配合使用,提高其补缩效果。
4、浇注系统:为利于钢水的杂质上浮排出,采用底注式会收到较好效果,但底注式又不利于本产品的顺序凝固方式。经综合考虑,采用阶梯入水,底部2 道水口开在铸件下部1/3处,分型面处再开2道。上面的2道要采用底返式,确保钢水先从下部水口进水。所有内浇道均用φ70成型耐火砖,直浇道用φ90成型耐火砖。
5、其它:全部型(芯)砂用CO2水玻璃自硬砂,利用其强度高、成型好,保证型腔尺寸和强度,型内无散砂等杂质。涂料为醇基石英粉涂料,刷涂三遍以上,厚度大于1.5mm。砂型需全部上窑烘干,烘烤温度180℃~200℃,保温时间6小时。合箱时,确保型腔内干净无散砂等杂质,合箱后6小时内浇注。钢水需包内吹氩净化,浇注温度控制在1560±10℃,点注冒口2~3次。打箱时间大于72小时,打箱后立即清砂,清砂完后按热处理退火工艺立即进炉退火,在400℃时出炉进行热切割冒口,切割冒口的温度≥350℃,其后立即进炉进行正火加回火的热处理工艺。成品铸件需退火后方可切割冒口,清理干净的铸件正火后交金工车间加工。
本次试制共干两件缸体,毛坯表面无裂纹、夹砂、缩孔等铸造缺陷,交金工粗加工后试压和探伤均通过,达到产品设计要求。不足之处法兰上部加工后有部分气孔,分析原因为砂型烘烤不到位,产品质量有待进一步改进完善。
2011年4月20日
第二篇:铸造工艺方案
铸造工艺管理
工艺工作做为机械制造业的基础工作,贯穿于企业生产的全过程。工艺工作的完成不仅是工艺部门的任务,还需要公司各个职能部门的配合与辅助。这也使得工艺管理变成一项综合管理,各职能部门都有相应的工艺职能。
铸造生产是一个复杂的多工序组合的工艺过程,它包括以下主要工序:生产工艺准备,根据要生产的零件图、生产批量和交货期限,制定生产工艺方案和工艺文件;绘制铸造工艺图;新工艺的验证及整顿;最后生产现场的工艺管理等。本公司铸造分厂铸造工艺管理规程主要包括以下几方面:
1.铸造工艺方案制定原则是保证铸件的质量。根据砂型铸造工艺的过程及联系本厂实际情况,铸造工艺方案的确定应首先保证铸件形成,并最大限度的减少铸造缺陷,保证铸件质量。
2.在本厂铸造工艺工作中,工艺规程文件主要包括:工艺守则、砂型铸造工艺卡片、毛胚图、工艺附图、木型工艺卡片等。
3.铸造工艺图的设计,主要根据用户使用要求以及结合本厂实际情况设计或改进的零件尺寸、形状,确定铸造方式。
4.工艺验证主要方法就是通过小批试制来考核工艺工艺方案的合理性,并通过不断的整顿,力求完善该方案,并在验证之后做出总结。
5.生产现场的工艺管理除了确保产品质量以外,还要求能够提高生产效率、节约资源和降低能耗,并尽可能的改善劳动条件。
6.为了加强工艺管理,还应该收集工艺情报,其内容主要包括:国内外的新技术、新工艺,相关的新工艺标准、手册,相关先进工艺规程等。对收集的工艺情报还要进行加工,科学管理。最后是工艺的标准化。
第三篇:国内汽车发动机缸体铸件铸造技术发展趋势
国内汽车发动机缸体铸件铸造技术发展趋势 吴殿杰
(机械工业第九设计研究院有限公司)
提要:介绍了国内发动机缸体铸造工艺和生产设备情况,同时指出了缸体铸件的熔炼、造型、清理等铸造技术的发展方向,特别介绍了代表未来先进水平的铝镁合金压铸技术、计算机模拟技术和快速成形技术的研究应用情况。
关键词:汽车发动机;缸体;铸造技术;发展趋势;铸件 1国内车用发动机市场需求
我国汽车产业近年来发展迅速,主要汽车企业(集团)2011年年底形成整车产能1 841万辆,相应发动机产能已达到年产1 671万台。随着社会经济快速发展和人民生活水平不断提高,我国汽车国产化进程不断加快,汽车消费需求旺盛,汽车保有量保持快速增长趋势。2006年至2010年,汽车保有量年均增加951万辆;据分析,目前中国的汽车保有量为7 000多万辆,到2020年将达到2亿辆,也就是每年将净增1 300万辆,考虑到汽车报废等因素,每年净增量将在2 000万辆左右。巨大的汽车市场保有量,必将促进汽车发动机缸体市场的大发展,表1为2007~2020年国内汽车发动机缸体铸件生产及预测情况。2国内发动机缸体铸件铸造工艺及生产设备 2.1熔化工艺和设备
缸体铸造所用的熔炼设备大多为冲天炉—中频感应炉双联熔炼,也有采用中频感应炉—中频感应炉双联熔炼,而使用变频感应炉作为保温炉的企业亦在不断增加。为了节能和环保,部分企业的冲天炉采用水冷热风除尘方式,用具有高发热值的铸造焦取代冶金焦,以提高铁液温度,保证铁液质量,增强熔化效率。一汽铸造公司的冲天炉熔化过程控制采用微机等集散式控制系统,冲天炉熔炼铁液的检测采用测温仪、碳当量检测仪和化学成分直读光谱仪等。从掌握的汽车行业铸造厂资料来看,哈尔滨东安机械厂、上汽通用和安徽奇瑞等许多车间的熔化设备多数以中频炉为主。当然,熔化设备的选择主要考虑当地的能源供应状况;但从熔炼质量看,这些熔炼设备都能满足供货需求,与世界先进水平基本接近。随着工业废钢的生产量增加,国内已经采用以废钢增碳的熔化工艺来生产缸体等薄壁高强度合金铸铁件,这为提高铸件质量和稳定生产提供了可靠的保证。一汽铸造公司使用国产10 t中频熔化炉,采用废钢增碳熔化技术生产高强度灰铸铁,铸件各项指标均达到国际同类水平,抗拉强度达230-320 MPa,硬度达180-220 HB,内腔清洁度要求小于3 000 mg。
总之,国内熔化设备的水平不断提高,不论是冲天炉还是电炉,均已接近世界先进水平。关键的电器控制元件引进后,电炉产品的总体水平已满足生产要求,熔化效率都有提高,但在运行过程中仍会出现小问题,有待设备生产厂家进一步降低设备故障率。
目前,大批量流水线生产的汽车铸造行业采用大吨位中(变)频炉熔化也是一种趋势。如安徽芜湖奇瑞60万台发动机缸体铸造及原一汽大宇发动机有限公司铸铁厂(现为上海通用烟台动力)熔炼炉和保温炉全部采用美国应达8 t容量的中频炉和20 t容量的保温炉。近10年来,随着静态变频装置的发展,其效率和安全性能不断提高而投资呈逐年下降的趋势,使得铸造厂采用中频感应电炉来代替工频感应电炉熔炼铁合金和非铁合金变得越来越普遍。目前,国内几乎停止制造工频坩埚式感应电炉。另外,采用高功率密度的中频感应电炉的熔化时间较工频炉大大缩短,常见配置见表2。表2中(变)频电源与电炉的配置方式 2.2造型工艺和设备
缸体是发动机上最关键、最复杂的铸件,其壁厚最薄处往往不到3 mm,缸体铸件生产应用最广的仍然是湿型粘土砂,具有成型性能好、能耗低、噪音小、污染少、效率高、运行可靠等优点的静压造型线及气冲造型线使用较为广泛。近年来,国内外造型线制造厂家对造型机的不断改进,先后已出现气冲加压实、气流增益气冲加压实、静压加压实、主动多触头压实、成型挤压等加砂方式,砂型硬度更加均匀化,成为缸体铸件生产首选的造型设备。另外,对于发动机缸体铸件年产量万台左右的厂家,如潍柴四川柴油机厂和康明斯四川五粮液等大中型柴油机缸体铸造企业,均采用pepset自硬砂工艺和三乙胺冷芯盒工艺,这也是节能低碳的最佳选择。国内清华大学、济南铸锻所等早已研制静压造型线,苏州铸造机械厂和保定维尔的静压造型线以及无锡华佩线已有数条投入使用,但他们在整线性能和铸型质量一致性方面还显得不足。因此,国内汽车铸件生产所用造型线多以进口为主,济南铸造锻压机械研究所捷迈铸造工程公司为扬动股份有限公司提供了一条砂箱尺寸为1 000 mm×750 mm×320 mm的静压造型线,该线主机选用德国HWS公司的静压造型机,辅机由国内提供,是国内单主机布线生产率最高的造型线,代表了当今世界的最高造型技术水平。气冲造型问世几十年,其技术发展也在不断提高和进步,与其它现代化湿型砂造型方法一样,都是追求提高砂型紧实的均匀性,从而保证砂型表面光洁,尺寸精确,内部致密。为保证这一点,国外近几年又有了新发展,见表3。表3国外造型线发展趋势 2.3制芯工艺和设备
目前,国内汽车铸造厂缸体生产所用砂芯如水套砂芯、曲轴箱砂芯、缸筒与顶端砂芯、前后端面砂芯等依各厂条件不同,分别采用冷芯盒制芯、热芯盒制芯或覆膜壳芯制芯。冷芯盒工艺因其芯砂流动性、溃散性、生产率、节能和砂芯精度优于其它制芯工艺,在国内汽车发动机缸体铸造行业得到广泛应用。从今后趋势看,其应用范围将不断扩大。
另外,采用锁芯工艺,利用砂芯上开设的工艺孔,二次填砂固化,使多个砂芯组合为一个整体组合砂芯,然后整体涂料、烘干,这样铸件尺寸精度可大大提高,总体尺寸误差不超过0.3 mm。多数厂家采用计算机控制的“制芯中心”使全部制芯过程实现自动化。
制芯等设备主要有德国兰佩冷芯制芯机、西班牙洛拉门迪制芯中心、日本浪速等,国产热芯设备有单工位、两工位、四工位等,壳芯设备有K763/874壳芯机等,可满足复杂、薄壁、高精度铸件对砂芯质量的要求。2.4砂处理工艺和设备 2.4.1粘土湿型砂处理
砂处理工艺对铸件产量和质量至关重要。在大批量流水线生产条件下,型砂周期循环使用,国内汽车行业都非常重视反复使用过程中型砂性能的变化规律,力求选择好的砂处理工艺流程,并采用逐级多点检测和自动控制。随着高压、气冲及静压造型工艺对型砂要求严格性的不断提高,相当多厂家进口了大容量高速混砂设备,如一汽二铸厂采用2套200t/h砂处理单元,分别都配有美国国家工程公司辛普森22G高效混砂机和连续双盘冷却器,整个系统配有各种检测仪器,通过中央控制室模拟控制;哈尔滨东安发动机公司和天津内燃机厂等引进日本新东公司SSD型砂处理系统,回砂采用测温加水(MIA)和测湿加水(MIC)装置以及型砂成型性控制仪,配以先进的检测系统,通过自动化监控向静压造型线提供合格的型砂;上海通用、烟台动力、安徽奇瑞等公司采用塔式结构的砂处理单元,使用国外公司的高效混砂机,旧砂冷却系统以及计算机控制系统,并将旧砂破碎、磁选、筛分、增湿冷却、辅料定量、混砂等工艺布置在24 m×24 m×25 m左右的空间内,这也是目前国外较先进的布置形式。
常州法迪尔克公司开发的MXC 30~120 t/h系列变频式冷却混砂机实现了混砂机创新性的突破,在沈阳华晨、常柴股份等20余家发动机铸造厂得到推广。其砂处理系统布置简单,减少了设备、厂房的基础投入;采用调速变频,降低能耗,型砂混制更均匀;充分发挥膨润土的效率,降低加入量,有效控制型砂温度。表4为部分铸造公司选用的砂处理设备参数。表4部分铸造公司选用的砂处理设备参数
2.4.2粘土湿型砂旧砂(混合型旧砂)热法再生处理线 国内一些汽车发动机铸造厂由于使用砂芯数量较多,落砂时有大量溃散砂芯(这些砂芯几乎都是树脂砂芯)流入到旧砂中,使旧砂量远远超过砂系统的容纳量,迫使必须抛弃大量的旧砂以保持砂处理系统平衡,在所抛弃的旧砂中,不仅有芯头、清理的废砂以及除尘细粉,还有许多落砂时不易破碎的型砂块,形成混合型旧砂。如果把这种混合型旧砂作为废砂(废弃物)抛弃,不仅造成了资源浪费,而且废弃旧砂堆放既占场地,又污染环境,还需大量的运输费用。为减少这类混合型旧砂的产生,有的发动机缸体铸造厂采用热法再生:如哈尔滨东安汽车发动机公司引进意大利的热法再生设备已在生产中应用;一汽铸造公司引进日本热法再生和机械再生结合技术,处理芯砂和型、芯砂混合砂已在生产中得到应用。粘土湿型旧砂再生技术的应用近年来有了突破,实践证明湿型粘土旧砂经热法再生后的LOI值、热膨胀率、发气量、角形系数及灰分含量等指标都优于新砂。但就目前国内铸造行业现状而言,粘土湿型砂热法再生技术的推广仍不如预期的那么广泛,仅有宜宾五粮液康明斯发动机缸体铸造厂以及东风、一拖等大型铸造厂、长三角地区的吴江、昆山等地建有热法焙烧炉用于旧砂再生。最近国外流行一种集铸造与热处理于一体,即落砂、再生和热处理三合一的工艺,国内已陆续有一些采用自硬砂工艺生产铝缸体的铸造厂在落砂清理工序中推广这种工艺。在焙烧炉中,砂型和砂芯的树脂粘结剂所含有的许多能量在与炉中高温及富氧气氛接触燃烧后会被释放,而伴随着粘结剂的燃烧,砂型和砂芯中的型砂就会散落下来。炉顶安装的轴流风扇产生的高速气流向下吹向缸体铸件,将散落的型砂带向炉底。高速气流流过不规则形状的缸体铸件会产生压差,这种压差引起铸件内部和外部的气流扰动,从而将松动的型砂带走。与此同时,高速风扇也使炉内气流分布达到最佳状态,从而使炉内温差保持在很小的范围内。铸件从清洁铸造三合一系统出来后,在完成了固溶热处理的同时,型砂和芯砂都已去除干净。型(芯)砂在漏斗形炉底上被收集在一起。炉底装有流态床,用于对型(芯)砂进行最后清理。粘结剂残留的微粒被分离并被排放。型(芯)砂在炉内被完全再生,经过气力输送到造型、制芯工部。炉内废气集中排放,通过旋风分离器、灼烧器、换热器,最后经过袋式过滤除尘器,清洁后的气体才被排放到大气。
总之,新建铸造工厂必须考虑旧砂再生处理;对已建成投产的铸造工厂,可增加旧砂再生,或将旧砂集中到就近专业处理工厂再生后使用。这已经是一种发展趋势,是国家节能减排、可持续发展的需要。2.5清理工艺和设备
目前,缸体铸件经去除浇冒口后,在清理线上打磨外表面,然后进入鼠笼式抛丸室清理,已是一种常规工艺。生产多品种缸体时,部分厂家采用夹持式高效抛丸清理机进行抛丸。普遍采用各种自动化和机械化专用清理线和高效缸体鼠笼抛丸机以及机械手对缸体进行整体清理,然后用手工对缸体逐个精整及吹净水套内腔残留物。经尺寸检查,气密性试验,铣加工定位点及终检后,进行涂漆或其它防锈处理,成为合格缸体铸件。以钢丸代替铁丸进行抛丸清理,采用机器人分拣缸体铸件,采用浇冒口去除机去除浇冒口以及采用X射线和超声波探伤仪检验内部缺陷等方法已为越来越多的厂家采用。天津丰田等铸造厂都对金属炉料进行抛丸、破碎、净化和称量,以提高熔化效率和铁液质量。表5为国内现有抛丸清理设备的主要技术参数。2.6检测技术和装备
国内大批量生产发动机铸件的厂家都拥有先进的检测仪器和严格的质量保证体系。一般都采用先进的直读光谱仪和红外碳硫仪进行成分检测与控制,利用先进的电子金相显微镜进行精确的金相组织分析,先进的电子拉力试验机可以进行各种金属材料的拉伸、压缩、弯曲等试验,采用三坐标测量机对缸体铸件、模具、芯盒进行自动精确测量,检测水平一直在国内同行业中领先。表6为某铸造厂铸件检测设备及其主要技术参数。
2.7压铸工艺和设备 2.7.1铝合金压铸件
随着人们对环保、轻量化的要求日益提高,汽车发动机缸体逐渐转向采用压铸生产。
目前,发展迅速的有广州东风本田发动机公司、重庆长安汽车集团、长安铃木汽车公司、上海乾通汽车附件公司(3 550 t/年)、乔治费歇尔(苏州)有限公司以及哈尔滨东安动力公司等;此外,长春一汽集团(2 700 t/年)、重庆渝江压铸集团、宜兴江旭铸造公司(3 200 t/年)、广东鸿图科技公司(3 000 t/年)、宁波合力模具科技公司、徐航压铸有限公司、重庆渝美合资公司、重庆蓝黛实业公司以及高要鸿泰精密压铸有限公司等均引进大型压铸机自动生产线生产发动机缸体等铝合金压铸件。由传统铸造方法转向压铸法生产铝合金汽车缸体已经成为一个发展趋势,仅2008一个,国内不同厂家从布勒公司引入了7条2 700 t级别的铝合金发动机缸体生产线。由此可见,我国汽车缸体压铸生产规模在逐步扩大,生产水平也在不断提高,预计在今后铝合金发动机缸体的比例将达到60%~75%。
铝合金缸体压铸工艺如下:熔化采用快速集中熔炼炉,熔化能力一般为1 500~2 000 kg/h,以洁净能源天然气作燃料,控温精度±5℃,炉衬寿命长。大型压铸机选用铝合金定量保温炉,可以在压铸过程中缩短定量循环时间,降低能耗、减少废品率,从而降低成本。压铸机采用压铸岛单元式布置,每台压铸机需要完成铝液精炼、浇注、压铸、取件、冷却、切边、铣浇口、初打磨、检验(在线检测)和装筐等工序,然后进行时效、抛丸、精打磨等后续工序,最后入库。
大型压铸机单元采用取件机械手和喷涂机械手。全自动压铸机采用计算机管理系统实现整个压铸过程检测、存储、计算和记录;强化和提高质量控制手段和检测水平,采用专用真空直读光谱仪对铝合金成分进行快速分析,采用进口仪器对铝液的含氢量、非金属夹杂物、熔渣和铝密度进行检测。
随着压铸工业中一些高新技术的不断出现,如两模板压铸机的应用;采用铝合金390的整套压铸技术压铸出全铝气缸体,摒弃了原来铝合金压铸气缸体中缸筒内铸入铸铁套的方法。近年来,铝合金压铸的柴油发动机壳体已经问世,这是压铸件进入柴油发动机领域的前奏。另外,压铸充型过程理论水平将逐步提高,生产技术也将不断改进;压铸工艺参数的检测技术将不断普及和提高;压铸生产过程中自动化程度逐步完善,并日益普及;电子计算机技术的应用更加广泛和深入;大型压铸件的工艺技术逐步成熟。此外,已研究出各种消除气孔缺陷的工艺方法,如真空压铸、ACRAD压铸(精速密Accurate Rapid Dense)、充氧压铸、匀加速的慢压射技术、局部加压技术等;更有挤压铸造和半固态成型(含流变成型与触变成型)等技术。所有这些,无疑给压铸法注入了新的活力,进而使生产具有高强度、高致密度、可热处理、可焊接等特性的压铸零件成为可能。2.7.2镁合金压铸件
发动机缸体采用镁合金压铸件以实现汽车轻量化也呈不断扩大势态,2010年全国汽车达到1 806万辆时镁合金使用量为6.13万t(仅限于汽车变速箱壳体、制动壳体和方向盘等),这标志着中国镁合金压铸工艺技术正在向国际水平推进。
目前,镁合金的应用已引起我国科研部门的高度重视,早在国家“十五”科技攻关计划中,镁合金项目已被列为重大专项。国内部分企业,如吉利在2007年已经实现了汽车减重10%~14%的初期目标。其轻量化目标是在发动机上全面实施铝镁合金化。乔治费歇尔(苏州)在供应奇瑞和长城等铝合金发动机缸体基础上,正在考虑镁合金发动机缸体压铸项目投产。
汽车镁合金压铸件“入门”要求很高,必须取得一系列的质量体系认证以及生产环境认证,通常包括:ISO9002、QS9000、TS16949等质量体系认证。大型镁合金压铸件生产具有一定的技术难度,这也是需要投入大量人力财力的。由于以上多种因素,向镁合金压铸领域投资应持积极审慎态度,并采取正确的投资策略。2.8发动机缸体凝固模拟软件的应用 目前,国内部分汽车铸造厂家采用凝固模拟软件对发动机缸体铸造过程进行仿真模拟,使整个铸造过程清晰明了地表现出来,以提高铸件的质量及降低成本。
例如,亚新科国际铸造(山西)有限公司的缸体、缸盖铸件在现实生产中经常出现在缩松、渗漏缺陷,如TC6112缸体的渗漏比率高达30%~50%,造成巨大损失。通过使用国内外最先进的模拟凝固软件对产品的浇注状况进行分析;通过UG建立各种设计方案的三维模型,再利用Patran建立它们的有限元模型,然后对各种方案充型过程和凝固过程进行数值模拟。主要模拟了发动机缸体充型过程的速度场与温度场、凝固过程的温度场,以及对可能产生缩孔、缩松等缺陷的区域进行预测。完成模拟后,对各种浇注系统设计方案的充型、凝固过程及缩孔、缩松等缺陷的预测进行了对比分析,从模拟结果中得出最佳的工艺方案。目前ProCAST、Anycasting、CAStsoft CAD/CAE、ABAQUS、华铸CAE铸造模拟凝固软件、INTECAST凝固模拟软件、FT Star凝固模拟软件和SRIFCast充型凝固模拟软件等相继开发,模拟软件在发动机缸体铸造方面的开发应用呈不断扩大趋势。2.9快速成形制造技术的应用
快速成形制造技术又称为快速原型制造技术,它包括立体光刻技术、分层实体制造技术、选择性激光烧结技术、熔融沉积技术、三维印刷技术、热塑性材料选择性喷洒和无模型树脂砂型快速制造工艺等成型方法,集成了CAD技术、数控技术、激光技术和材料技术等现代科技成果,是先进制造技术的重要组成部分。
与传统制造方法不同,快速成型从零件的CAD几何模型出发,通过软件分层离散和数控成型系统,用激光束或其它方法将材料堆积而形成实体零件,所以又称为材料添加制造法。由于它把复杂的三维制造转化为一系列二维制造的叠加,因而可以在不用模具和工具的条件下几乎能够生成任意复杂形状的零部件,极大地提高了生产效率。与数控加工、铸造、金属冷喷涂、硅胶模等制造手段一起,快速自动成型已成为现代模型、模具和零件制造的强有力手段,是目前适合我国国情的实现金属零件的单件或小批量敏捷制造的有效方法,尤其在汽车发动机缸体铸件等领域已得到了应用。例如,选区激光烧结与铸造技术结合,可有效地应用于发动机设计开发阶段中样机的快速制造,保证产品开发速度,提高产品的开发质量,大大降低开发成本,推动产品早日进入市场。国内已经开发出V8发动机的缸体熔模,利用选区激光烧结成型技术直接制作蜡模,无需开模具,因而大大节省了制造周期和费用,其成型时间为42 h,铸造周期20天。如果按传统制作方法开模具制造,至少需要6个月的时间,费用上百万。此项技术为客户节省大量的时间和开发成本。
汽车发动机缸体的铸造生产中,模板、芯盒、压铸模的制造往往采用机加工的方法完成,此过程不仅周期长、耗资大,而且从模具设计到加工制造是一个多环节的复杂过程,其模具的制造过程极其复杂,开发周期长,研发成本大。不能适用于当前迅速响应市场的需求,而快速成型技术恰好满足了汽车发动机快速制造的要求。采用该技术与传统铸造相结合的方法能够非常迅速地实现从设计到产品的过程,减少中间环节,加快产品投放市场的速度,节省开发成本。例如用激光烧结的方法制作砂型,首先要根据零件的三维CAD模型设计出组合砂型模型。为了与以后的批量生产工艺靠近,砂型模型应尽量与通过模具制作的砂型模型保持一致,将砂型模型的各部分经过软件的分层处理转换为快速成型设备的加工文件,就可以进行激光烧结成型了。如北京某技术中心开发的快速成型用的树脂砂与通常使用的热固化树脂砂极为相似,只不过对粒径分布和形态,树脂成分及表面处理等方面有更严格的指标。成型时的层厚一般为0.2 mm,精度可控制在±0.25 mm以内。由于激光扫描的速度很快,树脂在成型时不能达到完全固化。成型后将未烧结的浮砂清除后,砂型一般要放到加热箱中进行二次固化。经二次固化后的砂型可达到与射芯机制得的砂型相同的性能。由于发动机的部件大多采用砂型铸造,因此快速砂型铸造已成为发动机样机试制的最常用和最有效的方法。山东省汽车零部件快速设计制造工程技术研究中心为某汽车厂采用快速铸造方法生产的四缸发动机的蜡模及铸件,按传统金属铸件方法制造,模具制造周期约需半年,费用几十万。用快速铸造方法,快速成型铸造熔模3天,铸造10天,使整个试制任务比原计划提前了5个月。
国内华中科技大学已经研制出了世界最大成型空间为1 200 mm×1 200 mm的基于粉末床的激光烧结技术快速成型装备。据悉,已有200多家国内外用户购买和使用这项技术及装备,为我国关键行业核心产品的快速自主开发提供了有力手段。我国一些铸造企业应用该技术后,将复杂铸件的交货期由传统的3个月左右缩短到10天左右。我国发动机制造商将大型六缸柴油发动机的缸盖砂芯研制周期由传统方法的5个月左右缩短至一周左右。3结束语
随着清洁化、节能化、轻量化以及智能化理念的不断拓展及不断成为发动机缸体铸造行业的研发重点,低碳排放、节能低污染、可再生循环利用及可持续发展的发动机缸体绿色铸造工艺和技术装备将呈现在世人面前。
第四篇:铸造工艺工程师岗位职责
铸造工艺工程师岗位职责5篇
1、产品工艺的开发与评估;
2、工序能力分析和提升;
3、分析材料在工艺中的适用性;
4、供应商工艺评审。
铸造工艺工程师岗位职责(二)
1、根据工艺规范,跟踪批产铸件的生产,不断完善工艺;
2、负责编制工艺规范规定的技术文件;
3、参与新产品试制过程中工艺跟踪;
4、参与分析铸件废品原因;
5、参与制订工艺实施技术方案;
6、负责资料的汇总至资料室备案
铸造工艺工程师岗位职责(三)
1、对新选供应商进行现场考察、能力审核和手续审批;
2、开发工艺装备,下发试制通知单,签订技术协议,跟踪新品开发过程;
3、对供应商进行过程管理,工艺纪律稽查,提升供应商配套水平;
4、负责根据产品产能需求,进行产品外协件工艺布局;
5、对供应商生产工序变更进行审核、验证,并负责批准;
6、负责审核设计更改对工艺合理性,提出修改要求,并完成新增外协件工艺布局;
7、对外协工艺工作有主导权:负责外协工艺日常工作的综合管理,合理调配外协工作内容,提升工作质量。
铸造工艺工程师岗位职责(四)
1、产品工艺的开发与评估;
2、工序能力分析和提升;
3、分析材料在工艺中的适用性;
4、供应商工艺评审。
铸造工艺工程师岗位职责(五)
1、负责新产品铸造工艺开发工作,解决铸造过程中的技术问题;
2、根据客户需求制定和改进铸造工艺文件;
3、负责铸造模具验证、原料选型及性能验证等;
4、开展新工艺、新技术试验,不断提高铸件质量,减少废品损失,降低制造成本;
5、编制生产规范、技术标准等,并组织实施,负责对现场生产人员进行技术指导和质量分析,协助质量部解决相关质量问题;
6、配合质量部、生产部门,检查、督促生产人员按有关标准、工艺、规范进行生产操作。
第五篇:3试制总结
鉴定资料(4)
柳拖牌LT254、LT354、LT800、LT804、LT850、LT854、LT900、LT904、LT950、LT954、LT1000、LT1004型轮式拖拉机
试制工作总结
广西柳拖车辆有限公司
二〇一一年五月
试 制 工 作 总 结
一、概述
柳拖牌LT254、LT354、LT800、LT804、LT850、LT854、LT900、LT904、LT950、LT954、LT1000、LT1004型轮式拖拉机,是我公司根据国内外市场需求和农机行业发展趋势,并综合广西壮族自治区特殊的地理作业环境开发的品种,可利用公司现有的工艺装备组织生产。是公司一个新的经济增长点。
2010年6月中旬,与我公司合作的“洛阳聚翔科技有限公司”完成图纸设计,试制蓝图下发到我公司试制中心,随即展开产品试制。编制了专用件零件清单及标准件清单,我公司下发了自制件计划和外购外协件采购计划,每种机型各投料2台套。本次开发试制,柴油机主要是配套力佳SL2100ABT、江动TY3100、东方红LR4B5-T134-U2、LR4M5-T134-U2、LR4M5-T134X-U2、LR4M3Z-T134-U2、LR4M3Z-T134X-U2型四缸发动机,并对前驱动桥总成、后驱动轮总成、分动箱总成、前配重以及电气、液压提升、进气系统、液压管路等进行了改进设计。
在零件试制过程中,对一些关键件进行工艺分析,组织做好模具、工装等生产前准备。2011年元月下旬完成零部件试制,所有零部件均由质保部进行检验入库,由试制车间领用进入整机装配。装配调试完成,由质保部负责整机检测,产品试验室负责进行产品性能测试。于4月下旬完成了全部试制任务,随即展开可靠性试验。
二、产品试制情况
我公司的系列轮拖是在现有的成熟工艺基础上开发生产的,并对部分总成进行改进设计,大部份零件都是借用,基本按现有的工艺生产。在装配过程中,由“洛阳聚翔科技有限公司”委派技术员两名,熟练装配工两名对我公司的的技术员和装配工进行现场培训,并指导装配;试制车间承担机罩上支架底座焊合件、部份改进零部件的机加工,整机的装配和试车工作,其余总成或零件由制造部负责安排外协。自制零件的组织协调以及外购外协零件的采购由采购部总体负责。样机试制过程中,技术部门对驾驶室和安全架安装、液压输油管路、散热器安装、油箱安装等部位进行了技术改进。同时进行小批试生产技术准备,编制了工艺文件,设计制造了部装小车、总装小车以及部分装配专用工具。公司对部装、总装场地进行了安排,并组织调配了相应的资源。于2010年12月完成24台样机的小批量试生产。在此期间同步进行了产品性能测试和可靠性试验。
本次试制工作,各部门高度重视,保证了试制工作的顺利展开,经样机检测和试验,各项技术指标都达到了设计要求。
三、试制过程中存在的问题及解决方法
本次样机试制总体情况良好,通过整机试装和试验考核,主要工艺工装满足该系列产品的生产要求,各项技术性能指标达到了产品设计要求。在产品装配、试验中发现了一些问题,目前均采取了措施予以解决。主要有:
1、由于所用电瓶厂商不同,导致电瓶架不合。
2、机罩左右固定点尺寸偏差。
3、线束与仪表不匹配,需设计改进。
4、液压转向油箱加油困难,需改进设计。
5、标准件部份不符,已改进。
6、部份油管设计不合理。
整体来看,产品技术性能及制造质量达到设计要求,满足使用需要,不存在结构性和技术性问题。试验中出现的漏油和液压提升的问题,属于装配过程中的人为因素,在以后的整机装配时,合理布置装配工艺和加强现场管理,问题就可以解决。今后应加强制造质量和检验控制。
总之,新产品开发是一项系统工程,需要各部门通力协作才能够取得成效。因为企业员工的技术水平有限,拖柳拖LT254/LT354/LT800/LT804 /LT850/LT854/LT900/LT904/LT950/LT954/LT1000/LT1004轮式拖拉机本身尚有很大的改进余地,相信通过鉴定组专家的精心指导一定会使该产品技术水平提高到一个全新的层次。