铸造工艺计算机辅助设计技术的特点

时间:2019-05-13 23:12:02下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《铸造工艺计算机辅助设计技术的特点》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《铸造工艺计算机辅助设计技术的特点》。

第一篇:铸造工艺计算机辅助设计技术的特点

铸造工艺CAD

在铸造工艺设计过程中,有许多繁琐的数学计算和大量的查表选择等工作,仅凭工艺设计人员的个人经验和手工操作,不但要花费很多时间,而且设计结果往往因人而异,很难保证铸件质量,60年代以来,特别是进入80年代后,随着电子计算机技术的迅猛发展,计算机辅助设计技术在工业中得到愈来愈广泛的应用,也为铸造工艺设计的科学化、精确化提供了良好的工具,成为铸造技术开发和生产发展的重要内容之一。

典型的铸造工艺CAD系统工作过程是:

1)接收用户送给的铸件图纸,在以工程图方式接收时可自行进行三维造型;

2)工艺分析和报价;

按需要从任一角度或对铸件任一部分结构加以观察,根据三维实体计算铸件重量和不同部位的模数,计算浇冒口等工艺数据,进行铸件的初步设计,估算成本并提出报价。

3)进行铸件的详细设计;

从建立的铸件三维实体抽取数据进行三维凝固模拟并修改铸件设计,然后自动生成相应的铸型、芯盒或模具图。

4)铸型、芯盒和模具经数控加工成形,进行浇铸和检验,收集生产中的数据供质量跟踪和知道以后的铸件设计。

目前铸造工艺CAD的软件功能一般是单一的,分为铸件设计、凝固模拟和模样加工等相对独立的系统。铸造工艺CAD的特点

首先将零件图通过数字化仪或其他图形输入设备输入计算机内,然后根据要求标出浇注位置和分型面的位置,进一步绘出加工余量及不铸孔、槽的符号,以及拨模斜度,并标出尺寸,形成铸件图;以此为依据进行铸件模数和重量计算、进行补缩系统和浇注系统设计;将设计计算的结果以图形方式加到铸件图上,再绘出砂芯形状,算出芯头间隙、芯头压紧环、防压环、积砂槽和芯头分块线及尺寸等,从而形成一个完整的工艺图;最后绘制出铸造工艺卡片。将图形由绘图仪输出,完全取代了手工绘制工艺图和描图、晒图等繁琐工序,而且修改、存档方便,大大提高了设计效率。

与传统的铸造工艺设计方法相比,用计算机设计铸造工艺有如下特点:

1)计算准确、迅速、消除了人为的计算误差。

2)可同时对几个不同的方案进行工艺设计和比较,从而找出较好的方案。

第二篇:铸造工艺方案

铸造工艺管理

工艺工作做为机械制造业的基础工作,贯穿于企业生产的全过程。工艺工作的完成不仅是工艺部门的任务,还需要公司各个职能部门的配合与辅助。这也使得工艺管理变成一项综合管理,各职能部门都有相应的工艺职能。

铸造生产是一个复杂的多工序组合的工艺过程,它包括以下主要工序:生产工艺准备,根据要生产的零件图、生产批量和交货期限,制定生产工艺方案和工艺文件;绘制铸造工艺图;新工艺的验证及整顿;最后生产现场的工艺管理等。本公司铸造分厂铸造工艺管理规程主要包括以下几方面:

1.铸造工艺方案制定原则是保证铸件的质量。根据砂型铸造工艺的过程及联系本厂实际情况,铸造工艺方案的确定应首先保证铸件形成,并最大限度的减少铸造缺陷,保证铸件质量。

2.在本厂铸造工艺工作中,工艺规程文件主要包括:工艺守则、砂型铸造工艺卡片、毛胚图、工艺附图、木型工艺卡片等。

3.铸造工艺图的设计,主要根据用户使用要求以及结合本厂实际情况设计或改进的零件尺寸、形状,确定铸造方式。

4.工艺验证主要方法就是通过小批试制来考核工艺工艺方案的合理性,并通过不断的整顿,力求完善该方案,并在验证之后做出总结。

5.生产现场的工艺管理除了确保产品质量以外,还要求能够提高生产效率、节约资源和降低能耗,并尽可能的改善劳动条件。

6.为了加强工艺管理,还应该收集工艺情报,其内容主要包括:国内外的新技术、新工艺,相关的新工艺标准、手册,相关先进工艺规程等。对收集的工艺情报还要进行加工,科学管理。最后是工艺的标准化。

第三篇:CAD(计算机辅助设计技术

CAD(计算机辅助设计技术)

1、CAD 技术简史

CAD技术起步于50 年代。60年代,随着计算软硬件技术的发展,CAD开始迅速发展。在这个时期,CAD技术的出发点是用传统的三视图来表达零件,以图纸为媒介进行技术交流,这就是二维计算机绘图技术。这种以二维绘图为目标的CAD技术一直持续到70年代末期。以后作为CAD技术的一个分支而相对独立稳定地发展。早期应用较为广泛的是CADAM软件,近十年来占据绘图市场主导地位的是Autodesk公司的AutoCAD软件。目前,中国的CAD用户特别是早期用户中,二维绘图仍占相当大的比重。

2、CAD技术史上的几场革命

自从50年代CAD技术发展以来,到今天的广泛应用,此间经历了几次大的技术性革命,历述如下:

2.1 第一次CAD技术革命--曲面造型系统

60年代出现的三维CAD系统只是简单的线框式系统,它只能表达基本的几何信息,不能有效地表达几何数据间的拓扑关系。由于缺乏形体的表面信息,CAE及CAM均无法实现。

进入70年代,正值飞机和汽车工业蓬勃发展的时期。,此间飞机及汽车制造中遇到的大量的自由曲面问题,在当时只能用多截面视图和特征纬线的方式来进行表达。由于三视图方法表达的不完整性以及工业上的应用的需求的推动,此时法国人提出了贝赛尔算法使得用计算机处理曲线及曲面问题变的可行。同时,法国达索飞机制造公司也基于此算法,在二维绘图系统CADAM的基础上,开发出以表面模型为特点的三维造型系统CATIA。CATIA的出现,标志着计算机辅助设计技术从单纯模仿工程图纸的三视图模式中解放出来,首次实现以计算机完整描述产品零件的主要信息,同时也使得CAM技术的开发有了实现的基础。曲面造型系统CATIA为人类带来了第一次CAD技术革命,改变了以往只能借助油泥模型来近似表达曲面的工作方式。在这个时期,CAD技术价格极其昂贵,软件商品化程度也很低。只有少数几家受到国家财政支持的军火商,在70年代冷战时期才有条件独立开发或依托某厂商发展CAD技术。例如:

* CADAM由美国洛克希德(Lochheed)公司支持

* CALMA--由美国通用电气(GE)公司支持

* CV--由美国波音(Boeing)公司支持

* IDEAS--由美国国家航空及宇航局(NASA)支持

* UG--由美国麦道(MD)公司开发

* CATIA--由法国达索(Dassault)公司支持

这时的CAD技术主要应用于军用工业。同时一些民用主干工业,如汽车巨人也开始开

发一些曲面系统为自己服务,如:

* SURP--大众汽车公司

* PDGS--福特汽车公司

* EUCLID--雷诺汽车公司

另外丰田和通用等汽车公司也开发了自己的CAD系统但由于无军方支持,开发经费及

经验不足,其开发出来的软件商品化程度较军方支持的系统要低,功能覆盖面和软件水平

亦相差较大。

2.2 第二次CAD技术革命--曲面造型技术

80年代初,CAD系统的价格依然令一般企业望而却步。这使得CAD技术无法拥有更广阔的市场。为使自己的产品更有特色,以CV、SDRC、UG为代表的系统开始朝各自的发展方向前进。70年代末到80年代初,由于计算机技术的大跨步前进,CAD、CAM技术也开始有了较大发展。SDRC公司在当时星球大战的背景下,由美国宇航局支持及合作,开发出了许多分析模块,用以降低巨大的太空实验费用,同时在CAD技术方面也进行了许多开拓;UG则着在曲面技术的基础上发展CAM技术,用以满足麦道飞机零部件的加工需求;CV 和CALMV则将主要精力都方在CAD 市场份额的争夺上。

尽管有了表面模型,CAM的问题可以基本解决。但由于表面模型只能表达形体的表面信息,难以准确表达零件的其它特性,如质量、重心、惯性矩等,对CAE十分不利,最大的问题在于分析的前处理特别困难。基于对于CAD/CAE一体化技术发展的探索,SDRC公司于1979年发布了世界上第一个完全基于实体造型技术的大型CAD/CAE软件--I-DEAS。由于实体造型技术能够精确表达零件的全部属性,在理论上有助于统一CAD、CAE、CAM的模型表达,给设计带来了惊人的方便性。它代表着未来CAD技术的发展方向。基于这样的共识,一时间实体造型技术呼声满天下。可以说,实体造型技术的扑几应普及应用标志着CAD发展史上的第二次技术革命。

实体造型技术带来了算发改进和未来发展的希望的同时,也带来了数据计算量的极度膨胀。因此,在当时的硬件条件下,实体造形的计算及显示速度很慢,在实际应用中作设计显的很勉强。由于以实体模型为基础的CAE本身就属于高层次技术,普及面窄;另外,在算法和系统效率的矛盾面前,许多赞成实体造型技术的公司并没有下大力气去开发它,而是转去开发相对容易的表面造型技术,各公司的技术因此再度分道扬镳,实体造型技术因此没能在整个行业迅速推广。推动此次技术革命的SDRC公司也与幸运之神擦肩而过,失去了一次大发展的机会。在此后的十年里,随着硬件性能的提高,实体造型技术又逐渐为众多CAD系统所采用。在这段技术跌宕起伏的时期,CV公司最先在曲面算发上取得突破,计算速度提高很大。由于CV提出集成各种软件,为企业提供全方解决的思路,并采取了将软件的运行平台向价格较低的小型机转移等有利措施,一举成为CAD领域的领导者,市场份额上升到第一位,兼并了CALMA公司,实力迅速膨胀。

2.3 第三次CAD技术革命--参数化技术

正当CV公司业绩蒸蒸日上以及实体造型技术逐渐普及之时,CAD技术的研究又重大发展。如果说在此之前的造型技术都属于无约束自由造型的话,进入80年代中期,CV公司内部以高级副总裁为首的一批人提出了一种比无约束自由造型更新颖、更好的算法--参数化实体造型方法,这种算法主要有以下特点:基于特征、全尺寸约束、全数据相关、尺寸驱动设计修改。

当时的参数化技术还有很多技术难点有待攻克,CV公司内部也就是否投资参数化技术展开激烈争论。由于参数化技术核心算法与以往系统有本质差别,若采用参数化技术,势必要将全部软件重写,投资及工作量将非常惊人。另一点就是,当时技术主要用于航空和汽车工业,参数化技术还不能为这些工业中所需的大量自由曲面提供有效的工具,更何况当时CV软件在市场、上呈供不应求之势。因此,CV公司内部否决了参数化方案。

策划参数化技术的这些人在新是想无法实现的情况下集体离开了CV公司,令成立了一家参数化技术公司(Parametric Technology Corp.PTC),开始研制名为Pro/ENGINEER的参数化软件。早期的Pro/ENGINEER软

件性能很低,只能完成简单的工作,但由于第一次实现了尺寸驱动零件设计修改,使人们看到了它给设计者带来的方便性。

80年代末,计算机技术迅猛发展,硬件成本大幅度下降,CAD技术硬件凭台成本从二十几万元降到几万美元,很多中小企业也开始有能力使用CAD技术。由于它们的设计工作量并不大,零件形状也不复杂,更重要的是他们无钱投资大型高档软件,因此他们把目光投向了中低档的Pro/ENGINEER软件。PTC也正是因为瞄准了这一中档市场,才迎合了众多中小企业在CAD上的需求,一举取得成功。进入90年代,参数化技术变得比较成熟起来,充分体现出其在许多通用件、零部件设计上存在的、简便易行的优势。踌躇满志的PTC也因此先行挤占了低端AutoCAD市场,以致于在几乎所有、CAD公司的营业额都在呈上升趋势的情况下,Autodesk公司的营业额却增长缓慢,市场排名连续下挫。继而,PTC公司又试图进入高端CAD市场,与CATIA、SDRC、CV、UG等群雄在汽车及飞机制造业市场逐鹿。目前,PTC在CAD市场份额排名已名列前茅。可以说,参数化技术的应用主导了CAD发展史上的第三次技术革命。

2.4 第四次CAD技术革命--变量化技术

参数化技术的成功应用,使它几乎成为CAD业界的标准,许多软件厂商纷纷起步赶。但是技术理论上的认可并非意味、着实践上的可行性。由于CATIA、CV、UG、EDCLID都在原来的非参数化模型的基础上开发集成了许多其它应用软件,包括CAM、PIPING和CAE接口等,在CAD方面也做了许多应用模块开发;重新开发一套完全参数化的造型系统将花费很大的人力财力。因此他们采用的参数化系统基本上是在原有模型基础上进行局部、小块的修补。考虑到这种“参数化技术”的不完整性以及需要很长的过渡时期,CV、CATIA、UG在推出自己的参数技术以后,均宣称自己是采用复合建模技术,并强调复合建模技术的优越性。

这种复合建模技术,并非完全基于实体,难以全面应用参数化技术。由于参数化技术和非参数化技术内核有本质不同用参数化技术造型后进入非参数化系统后还要进行内部卷转换,才能被系统接受,而大量的转换极易导致数据丢失或其它不利条件。这养的系统由于在参数化和非参数化两方面都不占优势,系统整体竞争力不高,只能依靠某些实用性模块上的特殊能力来增强竞争力。

SDRC公司在1990前摸索了几年参数化技术后,也面临着同样的抉择:是同样采用逐步修补的方式,继续将其I-DEAS软件参数化下去,还是全部改写。SDRC的开发人员积数年的参数化研究经验,发现参数化技术有许多不足。首先,全尺寸约束的硬性规定干扰和制约着设计者创造力和想象力的发挥;其次,如在设计中关键的拓扑关系发生改变,失去了某些约束特征也会造成系统数据混乱。

基于以上的原因,SDRC的开发人员大胆地提出了一种更为先进的实体造型技术--变量化技术,作为今后的开发方向。SDRC的决策者们同意了该方案,并决定从根本上解决这一问题。从1990年到1993年,SDRC公司投资一亿美元,于1993年推出了全新体系结构的I-DEAS Master Series软件。在早期的大型CAD软件中,这是唯一一家在90年代将软件彻底从写的厂家。

变量化技术既保持了参数化技术的原有优点,同时又克服了它的许多不足之处。它的成功应用,为CAD技术的发展提供了更大得空间和机遇。SDRC几年来业务的快速增长,证明了它走的这条充满风险的研发道路是正确的。截止到去年,SDRC的市场排名已由I-DEAS MS1发布时的第九名,上升至第三位。无疑,变量化技术成就了SDRC,也驱动了CAD发展史上的第四次技术革命。

3、结语

纵观 CAD技术将近三四十年的发展历程,可见众多厂商的成败无不与其技术发展密切相关。CAD技术基础理论的每次重大进展,无一不带动了CAD/CAE/CAM整体技术的提高以及制造手段的更新。技术的发展,永无止境。没有一种技术是常青树,CAD技术将一直处于不断的发展和探索之中。正是这种此消彼长的互动与交替,造就了今天CAD技术兴旺与繁荣,促进了工业的高速发展。

第四篇:铸造工艺工程师岗位职责

铸造工艺工程师岗位职责5篇

1、产品工艺的开发与评估;

2、工序能力分析和提升;

3、分析材料在工艺中的适用性;

4、供应商工艺评审。

铸造工艺工程师岗位职责(二)

1、根据工艺规范,跟踪批产铸件的生产,不断完善工艺;

2、负责编制工艺规范规定的技术文件;

3、参与新产品试制过程中工艺跟踪;

4、参与分析铸件废品原因;

5、参与制订工艺实施技术方案;

6、负责资料的汇总至资料室备案

铸造工艺工程师岗位职责(三)

1、对新选供应商进行现场考察、能力审核和手续审批;

2、开发工艺装备,下发试制通知单,签订技术协议,跟踪新品开发过程;

3、对供应商进行过程管理,工艺纪律稽查,提升供应商配套水平;

4、负责根据产品产能需求,进行产品外协件工艺布局;

5、对供应商生产工序变更进行审核、验证,并负责批准;

6、负责审核设计更改对工艺合理性,提出修改要求,并完成新增外协件工艺布局;

7、对外协工艺工作有主导权:负责外协工艺日常工作的综合管理,合理调配外协工作内容,提升工作质量。

铸造工艺工程师岗位职责(四)

1、产品工艺的开发与评估;

2、工序能力分析和提升;

3、分析材料在工艺中的适用性;

4、供应商工艺评审。

铸造工艺工程师岗位职责(五)

1、负责新产品铸造工艺开发工作,解决铸造过程中的技术问题;

2、根据客户需求制定和改进铸造工艺文件;

3、负责铸造模具验证、原料选型及性能验证等;

4、开展新工艺、新技术试验,不断提高铸件质量,减少废品损失,降低制造成本;

5、编制生产规范、技术标准等,并组织实施,负责对现场生产人员进行技术指导和质量分析,协助质量部解决相关质量问题;

6、配合质量部、生产部门,检查、督促生产人员按有关标准、工艺、规范进行生产操作。

第五篇:铝合金轮毂铸造技术工艺研究论文

摘要:铝合金轮毂本身不仅美观大方,而且非常的轻便、实用,再加上其时尚的外观,得到人们的喜欢。针对常见的铝合金轮毂制造工艺,一般会选择使用铸造技术,不过一旦出现铸造不当的问题,就可能会引发质量问题。本文针对汽车铝合金轮毂铸造的重要性进行分析,进而阐述常见的铸造技术,最终通过工艺的分析,希望可以掌握不同铸造工艺的实际特点,最终保证产品的质量。

关键词:铝合金;轮毂;铸造

随着制造业的不断发展,铝合金部件在飞机制造、汽车制造之中得到广泛的发展与应用。随着汽车工业轻量化的发展,汽车的铝合金轮毂研究成为当前汽车工业的核心内容。但是考虑到其部件结构相对复杂、尺寸的多样性,所以铝合金轮毂在进行浇注的时候很难去控制其大尺寸部件的精度以及热量分布。针对铝合金发展,铸件内部质量以及表面精度就成为发展的难题。

1铝合金轮毂铸造的重要性

在汽车的生产制造中,汽车的铝合金轮毂铸造工艺对于生产具有重要的意义。通过铝合金的应用,可以达到简单轻便、节能减排的要求。铝合金本身带有轻质的特性,所以对于车辆的制动能量有着直接的影响,并且其有效的运用还会帮助汽车提升其加速功能,从而降低汽车的油耗,实现环境保护目标。另外,汽车的铝合金轮毂本身具有减震性强、散热快等特点,当铝合金材料与轮胎实现相互分离之后,就可以降低其震动性,这样在帮助用户提升驾驶舒适度的同时也能够帮助汽车延长使用寿命。铝合金轮毂铸坯本身的强度较低,这样可以满足纹路的绘制与加工,并且还能够推动汽车的轮毂朝着多样化的形态发展,帮助用户增强其视觉效果,这样在满足工艺优化、增强机械性能的同时也能够提升轮毂本身的制造利用率,最终满足轮毂新型工艺的发展需求[1]。

2汽车铝合金轮毂常用的铸造技术

目前,在汽车制造工艺之中,铝合金轮毂凭借其本身的优良性能得到广泛的应用。对于铝合金轮毂而言,其常用的铸造技术包含了下述三种,通过具体的探讨,就能了解三种铸造技术的实际问题。

2.1压力铸造

压力铸造主要是在高压的作用之下实现铝合金液体高速度的型腔充填,再配合上一定的压力,这样就可以让铝合金的液体达到凝固的状态,最终获取需要的铸件。利用压力铸造生产工艺所生产出来的铝合金轮毂,其机械性能非常良好,同时还具有较高的致密性,其表面的强度和硬度偏高,可以满足铸件尺寸的保障,最终达到表面光洁的需求。但是这一种铸造技术本身存在的不足之处在于,无法利用热处理工艺来满足轮毂性能的提升,主要是因为在充填成型的过程中,铝合金液体的成型速度较快,这样就无法完全的排除型腔之中的气体,对于无法正常排除的气体,会通过气孔的形式存在于铸件之中,这样就会影响到铸件的质量。为了能够解决这一问题,通过相应的研究,开发出一种无气孔的压力铸造工艺,其中的充氧压力鋳造法就是最具有代表性的方法之一。这一种方法的出现,其本身不但具备传统压力鋳造法的优点,同时也克服气孔本身的问题,通过这一种方法生产出来的铝合金轮毂,不仅拥有较高的机械性能,同时其质量更加的轻巧,能够满足高级车辆的使用[2]。

2.2低压铸造

低压铸造方法的基本原理在于:在具有良好密闭性的坩埚之中直接装入铸造铝合金液体,然后让液体始终能够保持在浇注所需要的温度层次,之后让压缩空气直接通过液体的表面,通过坩埚与型腔之间形成的压力差,这样就可以在低压的作用之下,让坩埚之中的液体从升液管逐渐上升,在经过输液通道、铸型浇口之后,就会直接压入连接到坩埚的模具之中,进而获取想要的铝合金铸件。其本身具有成型效果良好、平稳性较强、纯净度较高、生产效率高、收的率高等特点。由于低压铸造技术本身具有这一部分的特点,所以在日本的丰田汽车公司和美国福特汽车公司之中都选择使用这一种技术工艺。低压铸造技术虽然优点较多,但是在实际的应用环节依旧会有诸多不足之处产生,如铸造的时间较长、生产设备投资成本较大、升液管容易损坏等。只要可以将上述的问题逐一的克服和解决,那么对于大范围的推广与应用这一铸造技术,也能够起到积极的推动作用。

2.3重力加压铸造

重力加压铸造技术是将传统的重力铸造技术结合压力铸造技术,在进行充型的时候,需要在重力作用下完成,其金属液体凝固的过程也需要在压力的作用之下完成。这一种铸造技术本身兼顾了传统重力铸造以及压力铸造的优点,进而弥补铸造之中的缺陷问题,在铝合金轮毂的铸造之中能够取得良好的应用前景。这一种铸造技术,其本身的特点在于:浇注系统本身的体积较小,所以能够大幅度的提升铝合金液体的利用率;浇注系统本身的结构非常的简单,通过大量的实践证明,这一种铸造技术工艺的应用大幅度降低铸件夹渣导致的报废几率,并且还能够提升铸件本身的成品率[3]。

3汽车铝合金轮毂铸造工艺关键技术分析

对于汽车铝合金轮毂铸造工艺而言,其关键技术主要包含了铸件与浇铸的关键技术、合理的选择关键材料以及铝合金参数、明确浇筑的实际尺寸、控制加热处理铸造工艺参数这几个方面。通过关键技术的分析与研究,对于后续的铝合金轮毂制造工艺的探讨也有积极的推动作用。

3.1铸件与浇铸的关键技术

在汽车轮毂生产关键技术增强的过程中,还需要确保铸件本身的指标,能够正确的选择浇铸的方式。在满足铸件本身的指标中,还需要做好技术指标的科学合理选择,在铸造16寸的铝合金轮毂的时候,需要按照零件制造的标准,通过HB963之中的III类型来进行合理的选择,然后针对指定的零件,则考虑使用II类型标准来进行验收,对于汽车轮毂材料的化学成分,其本身主要是由ZL205A类型的铝合金组成,针对铸件,需要对其尺寸进行逐一的检查,并且按照CT12的标准来进行轮毂尺寸的合理验收。铝合金轮毂的浇注方法,主要是根据不同的铸造工艺来进行集中式的比较,由于铸造本身的率用率较高,再加上成本的浪费较少,所以其铸件本身的成功率偏高,并且制造者的熟练程度带来的影响较小,所以在国内逐渐成为重要的轮毂生产铸造手段。

3.2合理的选择关键材料以及铝合金参数

针对铝合金轮毂铸造,需要合理的选择关键材料以及铝合金配比使用参数,在铸造方式确定之后,就需要对其技术指标进行及时的确定,并且按照相对应的流程来实现对铝合金的轮毂铸造。另外,铝合金轮毂铸造所使用的材料以及辅助的材料都需要做好正确的配比和选择,同时制定合理的、科学的材料清单,一般会考虑到坚硬的铝合金属,如Mg,AI和Cu,但是未能将轮毂本身高度可塑性的特征实现,另外还包含了超硬铝材料AI,Zn和Mg系组成zi。按照不同的金属优势分析,在进行轮毂铸造的时候,就需要通过铝合金化学成分来进行检验,并且针对不同的元素形态都需要做好针对性的检验,然后做好配合的合理优化,这样就可以提升铝合金轮毂本身的强度、力学性能以及可塑性,这样就能够进一步增强铝合金轮毂本身的使用率。

3.3明确浇筑的实际尺寸

在汽车轮毂浇筑尺寸确定的过程中,其实际的铸造标准就是基本的金属从开始接到到形成毛坯的一个过程:第一,针对汽车轮毂铸造之前的模型尺寸,就需要做好实际的确定,明确其加工制作主要是包含了浇注、成型、冷却、铸型排气以及顶出几个部分。第二,在具体的模具铸造之中,还需要实现上下模板的相互组合,能够将四周的模板主体直接构成分型的面状,然后通过金属液体,就能够科学的设计其排气系统的计算公式,进而将低压方式的铸造工作效率提高,最终满足实际运行环节汽车轮毂速度的全面提升。第三,在冷却轮毂的时候,还需要考虑到冷却顺序的合理选择,在不同的部位上,需要分别的设置好水冷却和保温棉[4]。

3.4控制加热处理铸造工艺参数

在对轮毂铸造工艺控制参数进行加热处理的时候,还需要有效的控制固溶温度以及固溶时效。如在合理控制固溶温度的手,还需要在汽车铝合金轮毂的铸造过程之中选择钢制轮毂生产工艺,从而对其温度进行合理的控制,防范出现温度过低或者是温度过高的情况,防范元素被改变,一般来说,其温度需要控制在533-539℃之间。在有效控制轮毂固溶的时候,应该将淬火水温控制在60℃,并且逐渐的延长其时间,确保其能够小于15s,让其时效的处理控制在161-169℃,而保温的时间则需要控制在3-4h内。

4结语

总而言之,随着时代的不断发展,汽车铝合金轮毂逐渐朝着美观化、大直径、高强度的方向发展,其生产制造研究中,也逐渐的出现了新的工艺和要求。所以通过铝合金轮毂铸造技术的研究,就能够推动其更好更快的发展。

参考文献

[1]张宏亮.关于铝合金轮毂成形工艺的应用与研究进展[J].技术与市场,2017(10):141.[2]李晓强.铝合金轮毂,汽车轮胎材料建设的新方向——针对汽车铝合金轮毂的铸造工艺研究[J].黑龙江科技信息,2016(27):124.[3]胡孟达.铝合金轮毂强力铸造工艺研究[D].燕山大学,2017.[4]侯佳新.汽车轮毂用铝锭优化及轮毂缺陷分析[D].燕山大学,2017.

下载铸造工艺计算机辅助设计技术的特点word格式文档
下载铸造工艺计算机辅助设计技术的特点.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    低压铸造的技术特点与优缺点介绍

    涟水县宏源机械厂 低压铸造的技术特点与优缺点介绍 低压铸造的技术特点与他的优缺点介绍 技术特点 (1)浇注时的压力和速度可以调节,故可适用于各种不同铸型(如金属型、砂型等......

    计算机辅助设计技术基础学习心得

    《计算机辅助设计技术基础》感想 时间过得真快,一转眼,一学期的时间就这么过去了。现在回想起来,还真是记忆深刻,难以忘怀。我们都知道,cad技术都已经发展到各行各业,涉及到各个领......

    铸造工艺实训指导书

    铸造工艺实训指导书 1. 工艺实训的内容及目的 熔模精密铸造是在古代蜡模铸造的基础上发展起来的,作为文明古国,中国是使用这一技术 较早的国家之一,远在公元前数百年,我国古代劳......

    缸体铸造工艺试制总结

    缸 体 试 制2011年4月 结 鉴定材料 总 缸体试制总结 缸体材质:ZG35,毛单重:3.2吨,是云南铜业铜电解阳极平整矫耳目机组上用高受压液压缸,工作压力:21MPa,试验压力31.5 MPa,超声波按......

    《计算机辅助设计技术基础》学习报告

    《计算机辅助设计技术基础》学习报告 卫其超200810301105机械工程及自动化081班 摘要:随着科学技术的迅猛发展,先进的电脑图形技术在设计当中得到了广泛的应用,相对于传统的徒......

    铸造安全技术操作规程

    安全技术操作规程 (铸造) “ 目录 〃安全生产守则 〃安全生产恶性违规行为的认定条款 四、制模工部 〃铸造安全技术操作规程 一、熔炼工部 (一)发泡机操作工 (二)成型机操作工......

    金属铸造工艺论文[五篇范例]

    金属铸造工艺论文 摘要: 铸造是将通过熔炼的金属液体浇注入铸型内,经冷却凝固获得所需形状和性能的零件的制作过程。铸造是常用的制造方法,铸造是一种古老的制造方法,在我国可......

    铸造工艺具体分析与介绍(最终版)

    铸造工艺具体分析与介绍 1. 铸造 铸造还可按金属液的浇注工艺分为重力铸造和压力铸造。 重力铸造是指金属液在地球重力作用下注入铸型的工艺,也称浇铸。广义的重力铸造包括砂......