铸造工艺参数对铸锭质量的影响
1、冷却速度对铸锭质量的影响
冷却速度指铸锭的降温速度,又称冷却强度,用单位时间内下降的温度来表示,常用单位是℃/s。但在实际生产中,这个单位不便于控制,由于在既定条件下,各种工具和工艺条件都是预先确定的,因此生产现场多采用冷却水压或冷却水流量作为冷却速度的度量。在连续铸造过程中,铸锭内各点在同一时刻的冷却速度以及同一点在不同时刻的冷却速度都是变化的。
(1)冷却速度对铸锭组织的影响
在直接水冷半连续铸造时,随着冷却强度的增加,铸锭结晶速度提高,熔体中溶质元素来不及扩散,过冷度增加,晶核增多,因而所得晶粒细小;同时,过渡带尺寸缩小,铸锭致密度提高,减小了疏松倾向。此外提高冷却速度,还可细化一次晶化合物尺寸,减小区域偏析的程度。
铸模的导热条件是显著影响铸锭组织的重要因素,尤其是边缘部位的组织。图1示出了扁铸锭中枝晶网尺寸分布情况:A是铸模中金属水平高的情况;B是铸模中金属水平低的情况;C是电磁铸造的,金属不和铸模接触,完全依靠喷射到铸锭上的水流把热量带走。
图1
在不同水平铸造或电磁铸造的扁锭中的IPP分布情况
(2)冷却速度对铸锭力学性能的影响。冷却速度是决定铸锭力学性能的基本因素。通常,随冷却速度增大,铸锭的平均力学性能得到提高。冷却速度的这种作用主要是由下面两个原因引起的:一是随冷却速度增大,铸锭结晶速度提高,晶内结构细化;二是随冷却速度增大,铸锭过渡带尺寸缩小,铸锭致密度提高。此外,提高冷却速度,还可细化一次晶化合物的尺寸,减小区域偏析的程度。
但是,合金成分不同,冷却速度对铸锭力学性能影响的程度是不一样的,对变形铝合金而言,大致可分为四个基本的类型:第一类是在所有温度下(从室温到熔点)均呈单相的合金,如各种牌号的高纯铝、工业纯铝、5A66、7A01等。这些合金的铸态力学性能同冷却速度的关系不太强烈,冷却速度仅在能消除破坏金属连续性的缺陷(疏松、气孔)的极限速度之前有影响(见图2a)。第二类是铸态呈多相,但在固溶热处理后变成固溶体的合金,如5A12、5A13等。这种合金的铸态性能同冷却速度的关系十分明显,但在固溶热处理后这种关系变得不明显。这种合金即使在很低的冷却速度下铸造,经热处理后,亦可达到很高的力学性能(见图2b)。然而当合金中存在较多的铁、硅杂质时,由于它们能生成不溶解的化合物,又使合金对冷却速度的关系变得很敏感。第三类是铸态呈多相,但任何热处理都不能使它们变成单相的合金,这种合金中,含有的第二相是可溶的,但第二相的数量超过其溶解度极限或是同时含有可溶和不可溶的第二相的合金,绝大多数工业变形铝合金都属于这一类。这些合金的铸态力学性能同冷却速度的关系很明显,随冷却速度增大,铸锭致密度提高,在晶粒内部和晶粒边界上分布的脆性化合物相愈细小,因而性能急剧提高(见图2c)。第四类是铸态呈多相,但其中基本上只有不可溶的第二相化合物存在,如4004、4A17、4047等。这些合金铸态力学性能与冷却速度也有明显的关系,但热处理后性能基本不变(见图2d)。
a
b
c
d
铸造后热处理状态;-----------
铸造状态
图2
合金机械性能与冷却速度的关系
a-第一类合金;b-第二类合金;c-第三类合金;d-第四类合金
(3)冷却速度对铸锭裂纹倾向性的影响。随冷却速度提高,铸锭中的温度梯度增大,如铸锭内部各处不能同步收缩,则热应力值也相应提高,因此,铸锭裂纹倾向性增大。连续铸造时,沿铸锭周边冷却的不均匀程度是产生裂纹的重要因素之一。局部供水不足将导致冷却速度的差别和凝壳厚度的变化,使铸锭裂纹倾向性急剧提高。这种情况对于大小面冷却速度本来就不一致的扁铸锭表现尤为明显。
(4)冷却速度对铸锭表面质量的影响。在通常采用普通结晶器和铸造速度较慢的情况下,提高冷却速度会使铸锭表面产生冷隔的倾向性增大,而使铸锭表面产生偏析浮出物和拉裂的倾向性降低。
2、铸造速度对铸锭质量的影响
铸造速度是指铸锭相对结晶器的运动速度,常用mm/min或m/h表示。在连续铸造过程中,铸锭从结晶器中拉出的速度在正常铸造阶段是不变的,但在开头、结尾时以及在铸造过程中由于液面波动的影响,其实际铸造速度不尽一致。
(1)铸造速度对铸造组织的影响
在一定范围内,随着铸造速度的提高,铸锭晶内结构细小。但过高的铸造速度会使液穴变深(h液穴=kV铸),过渡带尺寸变宽,结晶组织粗化,结晶时的补缩条件恶化,增大了中心疏松倾向,同时铸锭的区域偏析加剧,使合金的组织和成分不均匀性增加。
(2)铸造速度对铸锭力学性能的影响。铸造速度对铸锭力学性能的影响取决于它对铸锭结晶速度和过渡带尺寸影响的综合结果。一般的规律是:随铸造速度的提高,铸锭的平均力学性能按具有极大值的曲线变化(见图3),但性能沿铸锭截面分布的不均匀程度增大。
结晶速度和过渡带尺寸是决定多相合金及按固溶体类型结晶的合金的力学性能的主要因素。随铸造速度提高,铸锭的平均结晶速度增大,晶内结构细化,因而铸锭的平均力学性能得到提高。在更高的铸造速度下,由于液穴变深,过渡带尺寸增加,铸锭致密度降低,因而铸锭的平均力学性能又开始下降。在提高铸造速度的同时,由于铸锭中心疏松程度增大以及化学成分区域偏析增大的结果,使性能沿铸锭截面的分布变得更不均匀。
a)直径280mm铸锭
b)5A06合金ф405铸锭
图3
铸锭的平均力学性能与铸造速度的关系
(3)铸造速度对铸锭裂纹倾向性的影响。在一般情况下,提高铸造速度时使铸锭形成冷裂纹的倾向性降低,而使形成热裂纹的倾向增加。这是因为提高铸造速度使铸锭中已凝固部分的温度提高,而合金在温度提高时塑性显著增加。如果把铸造速度提高到使铸锭凝固层的拉伸变形发生在具有足够塑性的温度区间(高于200~300℃),则铸锭就不会发生冷裂纹。但是,随着铸造速度的提高,铸锭中过渡带尺寸增加,形成热裂纹的脆性区的几何尺寸增大,熔体焊合裂纹的能力降低,由于区域偏析而引起的铸锭化学成分的不均匀性增加。同时,随铸造速度提高,铸锭各层冷却速度差别更大,导致拉伸变形量增大,因而使铸锭形成热裂纹的倾向增大。
由于对热裂纹和冷裂纹的区分往往是不严格的,加之热裂纹对冷裂纹的形成有促进作用,因此,在分析铸造速度对铸锭裂纹倾向性的影响时,还应该特别注意各种形状铸锭中不同类型裂纹产生的机理和具体原因,其关系往往比上述规律性要复杂。
对于扁铸锭,提高铸造速度,使形成侧面裂纹的倾向性降低,而使形成表面裂纹的倾向性增加。对于圆铸锭,提高铸造速度,使形成表面裂纹的倾向性降低,而使形成中心裂纹的倾向性增加。
(4)铸造速度对铸锭表面质量的影响。随铸造速度的提高,液穴加深,凝壳变薄,铸锭表面形成偏析浮出物的倾向增大。此时,带有偏析浮出物的较薄的凝壳在熔体静压力作用下发生变形,且在运动中与结晶器壁产生摩擦的趋势增大,因而铸锭表面产生拉痕和拉裂的倾向也增大。然而,在提高铸造速度时,铸锭表面温度升高,因而,形成冷隔的倾向性降低。
铸锭的铸造速度一般应按下述原则进行调控:
在保证铸锭质量符合技术条件(包括成品率)的前提下,采用尽可能高的铸造速度以发挥铸造机的最大生产能力。
(1)对于扁铸锭,铸造速度的选择首先应当保证铸锭没有裂纹。一般的原则是:
1)对于没有冷裂纹倾向的软合金,随铸锭宽厚比增大,应降低铸造速度。
2)对于冷裂纹倾向较大的硬合金,随铸锭宽厚比增大,应提高铸造速度。
3)在铸锭厚度和宽厚比一定的条件下,热裂纹倾向性较大的合金,应降低铸造速度。
(2)对于小直径圆铸锭,由于裂纹倾向性和过渡带绝对尺寸都不大,在保证铸锭具有良好表面质量的条件下,可以选择较高的铸造速度。反之,对于大截面圆铸锭应该采用较低的铸造速度。一般的原则是:
1)对同一种合金,铸锭直径愈大,铸造速度愈低。
2)铸锭直径相同时,铸造速度按软合金(工业纯铝、3A21、5A02等)→6000系合金(6063、6061、6A02等)→高镁合金(5A05、5A06、5056等)→高成分2000系合金(2A11、2A12、2B11等)→高成分7000系合金(7075、7A04、7A09等)的次序递减。
3)对于2A11合金圆铸锭,可以按下列规律调控铸造速度:
①在对平均力学性能的关系上,当使用普通结晶器时,最适宜的铸造速度可按关系式
U铸·D=2m2/h来近似确定,式中,U铸为铸造速度,m/h;D为铸锭直径,m。下同。
②保证性能沿铸锭截面具有较均匀分布的铸造速度可按U铸·D=1.6~1.7m2/h来确定。
③不论铸锭直径大小如何,在结晶器高度为180mm时,不调整合金的化学成分,只要铸造速度比关系式U铸·D=1m2/h所确定的铸造速度稍低—点,即能避免铸锭中心层在结晶区间里出现拉应力,从而避免热裂纹的出现。
(3)对于空心圆铸锭,在合金和外径相同的条件下,铸造速度随壁厚增加而提高;在合金和内径相同的条件下,铸造速度随壁厚增加而降低。在其他条件相同时,软合金空心圆铸锭的铸造速度约比具有相同外径的实心圆铸锭的高30%,硬合金空心圆铸锭的铸造速度约比相同外径实心圆铸锭的高50%~100%。
(4)热顶铸造、气幕铸造和电磁铸造时,在其他条件相同时,分别比普通铸造的铸造速度约高10%~20%、15%~25%和20%~30%。
最后应指出:铸造速度的调控与合金化学成分关系极大。对于同一种合金,在其他工艺参数不变的条件下,调整合金化学成分,可以提高保证铸锭不产生裂纹的允许铸造速度(见表1和表2)。在生产条件下,各种合金铸锭的比较适宜的铸造速度参见本章第五节连续铸锭工艺。
表1
2A12合金圆铸锭铸造速度与合金中硅和锌含量的关系
元素含量/%
不同铸锭直径(mm)的铸造速度/m·h-1
硅
锌
160
190
280
310
360
430
540
675
720
0.10
0.06
6.8
4.7
3.3
1.8
1.3
1.1
0.20
0.12
11.8
5.3
4.3
2.8
1.9
1.1
0.30
0.20
11.8
8.2
4.0
2.8
1.9
1.3
0.35
0.20
6.8
3.0
2.4
1.6
1.1
0.50
0.30
8.6
6.0
2.6
2.0
1.4
表2
7A04合金圆铸锭铸造速度与合金中硅含量的关系
硅含量/%
不同铸锭直径(mm)的铸造速度/m·h-1
160
190
280
310
360
430
540
675
720
0.06
10.0
7.1
4.0
3.0
2.4
1.7
1.3
0.9
0.8
0.12
8.6
6.0
3.4
2.8
2.0
1.5
1.2
0.25
6.8
5.3
2.8
2.3
1.7
1.2
0.9
0.45
6.0
4.6
2.2
1.8
1.3
3、铸造温度对铸锭质量的影响?
铸造温度通常指铸造过程中静置炉内熔体的温度,由于液流转注过程中热量的散失,进入结晶器的熔体实际温度因转注路程的长短、保温或加热措施的好坏及气温的高低而不同,通常约比铸造温度低5~10℃。现在看来,铸造温度的确切含义应是进入结晶器时的熔体温度。
(1)铸造温度对铸锭组织的影响
提高铸造温度,使铸锭晶粒粗化的趋势增加;在一定范围内提高铸造温度,铸锭液穴变深,结晶前沿温度梯度变陡,结晶时冷却速度大,晶内结构细化,但同时形成柱状晶、羽毛晶的倾向增大。提高铸造温度还会使液穴中悬浮晶尺寸缩小,形成一次晶化合物的倾向变低,排气补缩条件得到改善,致密度得到提高。降低铸造温度,熔体黏度增加,补缩条件变坏,疏松、氧化膜缺陷增多。
(2)铸造温度对铸锭力学性能的影响。铸造温度是影响铸锭性能的一个很活跃的因素,它对铸锭力学性能的影响取决于下列因素的综合结果:
1)提高铸造温度,使铸锭晶粒度有粗化趋势,从而引起铸态力学性能降低;
2)提高铸造温度,使结晶前沿温度梯度变陡,结晶时的冷却速度增大,因而细化了晶内结构,引起铸态力学性能提高。但同时,铸锭形成柱状晶和羽毛晶的趋势增大,在提高铸态力学性能总水平的前提下,铸锭纵向和横向性能的差别增大;
3)提高铸造温度,使铸锭液穴中悬浮晶区的尺寸缩小,形成一次晶化合物的倾向性降低,排气补缩条件得到改善,铸锭致密度提高,从而,使铸态力学性能提高。
综上所述,可以认为:在一定范围内提高铸造温度,硬合金铸锭的铸态力学性能可相应提高(见图4);而软合金铸锭的铸态力学性能由于对晶粒度的关系很敏感,故有下降的趋势。
图4
直径280mm2A12合金铸锭的力学性能
铸造温度:1-800℃;2-700℃;3-700℃并搅拌液穴熔体
(3)铸造温度对铸锭裂纹倾向性的影响。在其他条件不变时,提高铸造温度通常使铸锭裂纹倾向性增大。这是因为提高铸造温度,使铸锭晶粒变得粗大,使合金热脆性提高;同时,使液穴加深,并提高了结晶器出口处铸锭的表面温度,减小了凝壳厚度。
(4)铸造温度对铸锭表面质量的影响。提高铸造温度,使铸锭液穴变深,凝壳变薄,在熔体静压力作用下,凝壳与结晶器壁的摩擦面积增大;同时,熔体对结晶器壁的烧附性增强,铸锭拉锭阻力增大,因而铸锭表面形成拉痕和拉裂的倾向提高。提高铸造温度时,由于凝壳变薄和表面氧化物破裂的结果,使铸锭表面形成偏析瘤的倾向也增加。如果此时结晶器较高或者二次水冷较弱,则可能形成凸起程度较大的偏析浮出物。但提高铸造温度使铸锭表面形成冷隔的倾向性降低。
调控铸造温度的基本原则是:
(1)为保证熔体在转注过程中具有充分的流动性,应视转注距离长短和气温情况,将铸造温度控制在比合金液相线温度高50~110℃的范围内。
(2)、对于扁铸锭,从防止裂纹这个主要问题出发,应选择较低的铸造温度。通常,扁铸锭铸造速度快,熔体流量大,转注过程中降温少,一般控制在690~710℃之间即可。对于7A04型合金,则可更低一些。
(3)对于圆铸锭,铸锭裂纹倾向性和铸造温度的关系不太敏感,而转注过程中,熔体流量一般较小,热量散失大,同时,为了加强铸锭结晶时析气补缩的能力,创造顺序结晶的条件,以提高铸锭致密度,故铸造温度多偏高选取。对于直径350mm及以上的铸锭一般控制在730~740℃之间;对于形成金属间化合物一次晶倾向比较大的合金,则控制在740~755℃之间,甚至更高;对于直径较小的圆铸锭,由于结晶速度较快,过渡带尺寸较小,铸锭性能通常较高,故铸造温度仅以满足流动性和不形成光晶为依据,一般控制在715~730℃
(4)空心圆铸锭的铸造温度可参照同合金相同外径的实心圆铸锭,按下限选取。
4、结晶器有效高度对铸锭质量的影响
结晶器有效高度指铸锭从液态冷凝成型过程中与结晶器工作面开始接触点到结晶器底缘的距离。可以说,几十年来连续铸造的发展史,在某种程度上,也就是不断降低结晶器有效高度的历史。从普通结晶器到矮结晶器,再到热顶、气幕结晶器,直到电磁结晶器,结晶器有效高度一路下降,直至为零。结晶器有效高度对铸锭质量的重要性可见一斑。
(1)结晶器有效高度对铸锭组织的影响。
随着结晶器有效高度的降低,一次冷却强度下降,二次直接冷却速度加快,溶质元素来不及扩散,活性质点多,晶内结构细(见图1)。由于液穴变浅,过渡带变窄,有利于气体和非金属夹杂物的上浮,疏松倾向小,铸锭致密度提高。
(2)结晶器有效高度对铸锭力学性能的影响。
降低结晶器有效高度等于提早铸锭接受二次直接水冷的时间,使铸锭冷却强度增大,导致两个结果:一是晶内结构更细小,二是液穴更平坦,组织致密性提高,从而使铸锭平均力学性能(强度和塑性)提高(见表3)。提高结晶器有效高度,在铸锭边缘层首先发生性能降低,这显然与结晶面形状和过渡带尺寸改变有关。
表3
结晶器高度对2A50合金铸锭力学性能的影响①
铸锭直径/mm
结晶器高度/mm
铸态性能
均匀化后性能
σb
/MPa
δ/%
σb
/MPa
δ/%
横向
纵向
横向
纵向
横向
纵向
横向
纵向
192
249.0
243.0
8.80
9.66
218.1
211.0
11.21
11.10
158
224.7
214.0
7.94
7.15
204.5
208.5
10.49
8.14
290
223.9
217.5
6.33
6.80
201.4
215.3
8.18
9.18
150
204.3
209.5
5.34
5.73
198.0
202.0
8.08
7.61
350
120
212.8
217.7
5.38
5.89
200.8
199.1
7.66
7.63
180
203.5
210.3
4.98
4.75
196.5
195.1
7.87
6.97
①规格相同的铸锭,矮结晶器采用的铸造速度比高结晶器的低5~10mm/min。
(3)结晶器有效高度对铸锭裂纹倾向性的影响。
这是个很复杂的问题。降低结晶器有效高度使铸锭见水时间普遍提前,在其他条件不变的情况下,对于圆铸锭而言,从增大了冷却强度的角度看,液穴底部有向结晶器内收缩的趋势;但结晶器的有效高度绝对值减小,液穴底部又有向结晶器外伸展的趋势。如果两个趋势的综合结果是前者,则使铸造开始时,铸锭表面形成拉应力的倾向性增大,因而产生表面裂纹的倾向性增大;如果是后者,则有利于消除圆铸锭的表面裂纹,但同时却增大了圆铸锭产生中心裂纹和其他类型裂纹的倾向性。经验表明,降低结晶器有效高度,使扁铸锭产生热裂纹的倾向性增加。
(4)结晶器有效高度对铸锭表面质量的影响。
降低结晶器有效高度等于降低铸锭一次冷却强度,使由结晶器壁单独冷却形成的凝壳缩短,从而使铸锭形成拉痕和拉裂的倾向性降低;又由于液穴变得更为平坦,铸锭表面形成偏析浮出物的倾向性也降低。但是,结晶器有效高度的降低使铸锭冷却强度增加,这样在其他条件相同时,铸锭形成冷隔(成层)的倾向性增大。热顶铸造和气幕铸造时通过在结晶器上加热帽解决这个问题,普通铸造时,可通过提高铸造速度或铸造温度来解决,还可通过精确控制液面来解决。
在实际生产条件下,铸造工具基本上都是确定的,在现场除采用普通结晶器进行立式铸造时可通过液面控制器对结晶器有效高度做有限的调节外,在其他情况下,比如卧式铸造、热顶铸造等都是不可调的(除非更换结晶器)。可以认为,结晶器高度是与铸造方法同时确定的。当然,通过调整铸锭见水线位置也可调整水冷高度,但与结晶器有效高度的定义不符。
5、显著影响铸锭铸锭质量的另一因素是结晶过程中结晶前沿熔体的运动。
图5给出了园铸锭的枝晶网格尺寸的分布情况,比较了垂直液流、水平液流、倾斜液流(通过流口下面不同宽度的浮子使液流倾斜某一角度)三种分布情况。液流流射的区域对应于网格尺寸的最小值,液流流射不到的“死区”显示最大的网格尺寸。正确使用液流倾斜度,可得到比较均匀的显微组织,作为优质的挤压毛料。
图5
在以垂直喷咀、倾斜液流和水平液流铸造的园铸锭中的枝晶网格尺寸的分布情况
上述现象可以用图6来解释,液流出口处降低了熔体的过热(应为冷)?,使固相线的温度梯度变徒,因而使过渡区变薄。这里不容忽视的是晶核(悬浮晶体)向“死区”的迁移。在计算热平衡时,必须考虑这种作为潜热转移的晶核迁移。其结果是被液流冲刷区的固相表面失去了热量,既包括金属的凝固热,也包括晶核迁移的潜热。在“死区”,迁入的悬浮晶体作为晶核进入结晶前沿,把少量的结晶热释放出来。
根据观察结果,DAS和IPP的极小值可归因于晶核群的迁移,此时进入结晶前沿的熔体没有过热。
图6
液流流入结晶前沿对结晶顺序和导热条件的影响
6、铸锭规格对铸锭质量的影响(铸锭规格是指铸锭横断面的几何尺寸和铸锭长度)
铸锭规格是根据加工车间的要求,并考虑到合金本身的铸造性能、熔铸设备的能力,以及为了便于管理和提高铸造生产效率,对铸锭规格标准化提出的要求,由加工车间和铸造车间具体磋商而确定的。
在—般条件下,铸锭愈厚或直径愈大,铸锭中心愈易产生疏松,铸态性能愈差,产生裂纹的倾向性愈大。对于扁铸锭,裂纹倾向性还随宽厚比增大而提高。因此,在确定铸锭横断面尺寸时,除了考虑铸造机的性能外,还必须考虑能否铸成,铸出的铸锭性能(包括化学成分的反偏析程度)能否满足技术要求以及铸造成品率的高低和对全厂成品率的影响等因素。
铸锭规格对枝晶网格大小的分布情况影响很大(见图7),它关系到热量从铸锭中心向表面传导所经过的距离。另一方面,所选定的铸造速度(或牵拉速度)一定要和铸锭规格相适应。
图7
不同厚度连续铸造铸锭的(IPP)分置情况(沿过中点垂直于铸锭表面的直线测量)
通常,铸锭长度的确定要考虑静置炉的容量、铸造机的负荷和有效行程,天车轨道标高及下一步工序加工设备的特点(包括均热炉的尺寸、能否实现锯切等),以尽可能提高铸锭长度,提高成品率为原则。目前,国内大多数工厂在半连续铸造时采用的铸锭长度为6-7m。