第一篇:操作参数对旋风分离器分离性能的影响研究
操作参数对旋风分离器分离性能的影响研究
张振伟
(东北大学,辽宁 沈阳110004)
摘要:利用FLUENT的 RSM湍流模型对旋风分离器气固两相流场进行数值模拟得出:随着入口速度的增大,旋风分离器的压降也随之增大,且增大的幅度越来越大;随着流量的增加,旋风分离器的分离效率逐渐增大,小颗粒和中等颗粒的分离效率增加幅度较大,大颗粒的增加幅度稍小;随着气体中颗粒浓度的增大,分离总效率及各分离效率都逐渐增大,当浓度达到某一定值时,各种粒径颗粒的分离效率都会趋于稳定,大颗粒的分离效率在较低浓度时就已经趋于稳定,小颗粒的分离效率在较高浓度时才能趋于稳定。
关键词:数值模拟;颗粒;分离效率
1、旋风分离器工作原理
旋风分离器的结构如图1所示,主要由直筒和圆锥形灰斗、与直筒成切线布置的长方形进风管、顶部排气管和下部排尘管等几个部分组成。
出口
入口
颗粒出口
图1 旋风分离器结构简图
Fig.1 Structure graph of cyclone separator 旋风分离器的工作原理是:含尘气体由长方形进气管进入旋风分离器,由于筒壁的约束作用,气流由直线运动变成圆周运动,旋转气流的绝大部分沿直筒壁成螺旋状向下朝圆锥形灰斗流动,通常称为外旋流。气体中的粉料颗粒在旋转过程中,在离心力的作用下,将重度大于气体的颗粒甩向器壁,颗粒一旦与器壁接触,便失去惯性力,靠入口速度的初始动量随外螺旋气流沿壁面下落,最终进入下部排尘管。旋转向下的外旋气流在到达圆锥形灰斗时,因圆锥体形状的收缩按“旋转矩”不变原理,其切向速度不断提高(不考虑壁面摩擦损失)。在外旋流旋转过程中周边气流压力升高,在圆锥形灰斗中心部位形成低压区,由于低压区的吸引,当气流到达锥体下端某一位置时,便向分离器中心靠拢,即以同样的旋转方向在旋风分离器内部,由下反转向上,继续作螺旋运动,称为内旋流。最后,气流经上部排气管排出分离器,少部分未被分离出来的物料颗粒随气流逃出。气体中的颗粒在气体旋转向上进入排气管前碰到器壁,即可沿器壁滑落到排尘口,从而达到气固分离的目的。
2、操作参数对分离性能的影响
2.1入口速度的影响
考虑不同入口速度对旋风分离器压降的影响,利用数值模拟的方法分别对入口速度为5m/s、10m/s、15m/s、20m/s和25m/s时的压降和具有不同粒径颗粒的分离效率分别进行数值计算,得到不同入口速度下旋风分离器的压降。如表1所示,为了便于分析,将表中压降数据绘成曲线如图2所示。
表1速度-压强表
Table 1 Table of velocity and pressure 速度(m/s)压降(pa)
250020005 132 10 345 15 723 20 1428 25 2312 压降(pa)***05101520速度(m/s)25
图2速度对压强影响
Fig.2 Influence of velocity to pressure 从图2中可以看出,随着入口速度的增大,旋风分离器的压降也随之增大,且增大的幅度越来越大。从能量角度看,增大旋风分离器入口的速度会增大能量的损失,因为旋风分离器的磨损与气体速度的四次方成正比,所以过大的入口速度会增大旋风分离器的压降。因此,应当在保证旋风分离器的分离性能的基础上尽量采用较低的入口速度,节约能量。
表2不同速度下不同粒径分离效率值
Table 2 Separation efficiency of the different size and different velocity
颗粒粒径(μm)5m/s模拟效率(%)10.2 13.5 19.6
27.8 25.3 26.8 35.2 43.0 40.5 45.2 53.4 68.3 79.1 55.6 60.5 79.6 84.1 68.2 76.3 83.5 92 86.2 90.1 92.7 98.1 15m/s模拟效率(%)13.5 20m/s模拟效率(%)15.6 25m/s模拟效率(%)19.8
***15101520微粒(μm)25305m/s15m/s20m/s25m/s效率(%)
图3速度对分离效率影响
Fig.3 Influence of velocity to separation efficiency
考虑不同入口速度对旋风分离器中颗粒的分离效率的影响。不同入口速度下的颗粒分离效率的数值计算值如表2所示,并将其绘成曲线如图3所示,便于直观地分析。
从图3中可以看出,当入口速度增大时,旋风分离器的分离效率也随之增大;当入口速度减小时,旋风分离器的分离效率也随之减小。同时从图3中看出,入口速度的变化对分离效率曲线的影响比较大。经模拟分析,当速度为25m/s时的小颗粒的分离效率比20m/s时略小。分析其可能原因,由于湍流及微粒碰撞弹跳等因素促使沉积在器壁处的微粒重新被卷扬起来;又由于入口气体速度的加大,使向心径向气速也增加;下行轴向气速也增加,微粒停留时间变短;圆锥形灰斗底部被捕集的微粒受到的返气夹带的影响更加严重,这些诸多不利因素的综合结果,使分离效率出现下降趋势。2.2颗粒直径的影响
旋风分离器的总效率是针对某一特定微粒群而言的,在不同的生产条件下,分离器的用途不同,处理的微粒性质也不同,用它作为旋风分离器的性能指标不具有通用的可比性。因而,还应该考虑分离器对于不同粒径微粒的分离效率,它是针对某一特定直径的微粒而言的,表示的是旋风分离器对特定直径微粒的分离效率,与总分离效率相比更能说明分离效率的分离性能。所以,这里讨论的是微粒的特定直径分离效率,以下简称分离效率。
颗粒随气体进入旋风分离器,在气流的带动下,由于受到方向向内的阻力和方向向外的离心力作用而沿着筒体作旋转运动。离心力正比于微粒质量,粒径大的微粒是容易被捕集的。对于小颗粒来讲,所受到的离心力较小,由于小微粒对气流的跟随性较好,有相当一部分微粒跟随气流在分离器内作旋转运动直至最后被气流带出分离器而逃逸,或最终落入圆锥形灰斗底部而被捕集。
表3不同微粒粒径下分离效率值
Table 3 Separation efficiency under different size of particle
粒径(μm)分离效率(%)15.6 5 27.8 1.0 43.2 15 72.3 20 87.6 25 92.3 从表3的数值计算值和图4中的颗粒粒径对分离效率的影响图中得出,随着微粒粒径的增加,分离效率呈现增大的趋势。分析其原因:大颗粒所受的离心力增大,因此进入分离器后随气流旋转运动的圈数要小于小颗粒,大颗粒较早就在筒体壁段碰壁,较快的落入圆锥形灰斗底部而被分离;对于小颗粒,所受的离心力较小,由于径向气流的向心作用,较容易被气流夹带出顶部排气管而逃逸。除此之外,由于小颗粒对气流的跟随性较好,有相当大一部分微粒跟随气流在分离器内作旋转运动,直至最后才被气流带出分离器而逃逸,或最终被捕集,也有的微粒在旋风分离器内作无限循环运动,此种情况被认为旋风分离器对该微粒无法分离。从数值模拟中可以看出,小粒径的颗粒被捕集的效率不高,因此旋风分离器常被用作含尘气体分离系统的一级回收。
100908070效率(%)***1015微粒(μm)2025
图4 颗粒粒径对分离效率的影响
Fig.4 Influence of particle diameter to separation efficiency 理论上讲,对任意旋风分离器都有一确定的临界粒径,小于临界粒径的颗粒是完全不能被捕集的,但在实际中,颗粒在进入分离器后,由于颗粒间的相互碰撞,颗粒的团聚夹带及静电和分子引力等因素,使颗粒的运动具有很大的随机性,一部分小于临界粒径的细颗粒也能被捕集,一部分大于临界粒径的大颗粒也会逃逸。2.3颗粒浓度的影响
入口气体颗粒浓度对旋风分离器的效率影响也较大。下面研究不同颗粒浓度下的分离效率,在相同流量下,考察气体含尘量分别为1%、3%、5%、7%下的分离效率。
表4为不同颗粒浓度总效率与分离效率的模拟计算值,为了直观绘制成曲线图。如图5所示为颗粒浓度对分离效率的影响,随着气体中颗粒浓度的增大,分离总效率及各分离效率都逐渐增大;小颗粒增大的幅度较大,而大颗粒增大的幅度较小。而且浓度越大,小颗粒分离效率提高越多,这是因为浓度较高时,气流对小颗粒的携带作用更加明显,所以效率提高较大。当浓度达到某一定值时,各种粒径颗粒的分离效率都会趋于稳定。大颗粒的分离效率在较低浓度时就已经趋于稳定,而小颗粒的分离效率将在较高浓度时才能趋于稳定。
表4不同颗粒浓度总效率与分离效率值
Table 4 The total efficiency and separation efficiency under different particle concentration 流量(m3/h)总效率(%)5μm颗粒分离效率 10μm颗粒分离效率 15μm颗粒分离效率 55 22.1 76.8 92.6
65.5 36.2 83.6 97.2
48.5 87.5 98.1
55.8 89.2 98.6
78.1 57.6 92.1 99.8 120100分离效率(%)***50流量(m3/h)55
总效率(%)5μm颗粒分离效率10μm颗粒分离效率15μm颗粒分离效率图5 颗粒浓度对分离效率的影响
Fig.5 Influence of particle concentration to separation efficiency 此外,在旋风分离器的实际应用中,当处理气体的颗粒浓度较高时,颗粒对壁面的磨损也加剧,使得分离器的使用寿命变短,而颗粒也会被粉碎变细,更加不利于分离。因此,在很多情况下,人们并不指望只经过一次分离便达到分离目的,而是经过几次分离,逐级减小颗粒群的含量和粒度,最终达到分离要求。
3结论
随着入口速度的增大,旋风分离器的压降也随之增大,且增大的幅度越来越大。随着流量的增加,旋风分离器的分离效率逐渐增大,尤其是小颗粒和中等颗粒效率的增加幅度更大,大颗粒的增加幅度稍小。虽然增大处理气量可以提高分离效率,却是以过大的能量消耗为代价的,而且当处理气量增大到某一程度时,会伴随有颗粒粉碎、器壁磨损等负面效应。相同的流量下,随着颗粒粒径的增大,其分离效率逐渐增大,但增加的幅度越来越小,最终趋向稳定。随着气体中颗粒浓度的增大,分离总效率及各分离效率都逐渐增大,气流对小颗粒的携带作用更加明显,其分离效率提高较大,而大颗粒增大的幅度较小。当浓度达到某一定值时,各种粒径颗粒的分离效率都会趋于稳定。大颗粒的分离效率在较低浓度时就已经趋于稳定,而小颗粒的分离效率在较高浓度时才能趋于稳定。
参考文献
1.谭天佑,梁风珍.工业通风除尘技术[M].北京:中国建筑工业出版社,1984,3.2.王博.旋风分离器内气固两相运动的数值仿真研究[D].西安建筑科技大学硕士学位论文.2003:1-10.3.王子云,付祥钊.旋风除尘器的气固两相流内湍流的数值模拟与分析[J].河南科技大学学报,2007,4(8):53-56.4.毛羽,庞磊,王小伟等.旋风分离器内三维紊流场的数值模拟[J].石油炼制与化工.2002,33(2):1-6 5.王海刚,刘石.不同湍流模型在旋风分离器三维数值模拟中的应用和比较[J].热能动力工程,2003,18(4):337-342.
第二篇:海拔对离心泵吸入性能的影响研究论文
离心泵广泛应用于各种油料的输送,约占泵总量的70%~80%。在高原环境下,大气压力随海拔的提升不断降低,离心泵吸入口压力相应减小,吸入能力下降影响泵正常工作,导致工作效率降低。定量分析离心泵在不同海拔下的工作性能及变化规律,应进行实地实验,然而实地实验受场地等因素限制,设备展开、调试及撤收等较为困难,难以实施。因此,本文利用海拔与大气压力之间的关系,采用模拟的方法对离心泵在不同海拔下的工作性能进行实验研究。
1实验装置及方法
1.1实验装置
1.1.1泵
实验中使用的泵主要是离心泵和真空泵。离心泵为非自吸式,由发动机驱动,为实验研究对象;真空泵是水环式,由电动机驱动,用来对真空罐抽真空。
1.1.2含气率测试仪
为准确快速地监测、采集实验数据,采用了含气率测试仪。该测试仪基于电容探测法设计而成,其基本原理是在管路上布置电容器,电容值的大小与气液混合物的介电常数以及探针与液体接触的长度有关。当探针与被测流体接触长度发生变化,其输出电容值也发生变化,通过测量输出的电容值可推算出混合物的比率。含气率测试仪主要包括电容传感器和电容电压转换电路两大部分。电容传感器的两极由2根涂有聚四氟乙烯涂层的探针钢丝制成。电容电压转换电路由两部分组成:一是电容电压转换部分,采用CAV424芯片将电容转化为标准电压信号,可输出1~4 V标准电压;二是放大电路,采用AM401将前面的输出信号放大,提高采集系统的分辨率。
1.1.3真空罐
真空罐是实验中控制泵吸入口真空度的重要设备,由Q235-B型钢焊接而成,高3 m,直径1.35 m,容积4.3 m3,净重1 584 kg,设计温度0 ℃,设计压力1.1 MPa,耐压实验压力1.38 MPa,最高允许工作压力1.05 MPa。罐身配备有真空表及液位计,真空表的测量范围为0~0.09 MPa,测量精度0.001 MPa;液位计最高液位为3 m,精度0.1 m。
1.2实验流程
离心泵进出口管线通过DN100钢管与真空罐相连,形成一个封闭的循环系统。实验时,将管路及离心泵内充满清水,真空罐内注入约3/4的清水,实测水温32~34 ℃。首先利用真空泵对真空罐抽真空,通过蝶阀的开关控制真空管路与真空罐的互通,通过真空表的读数来确定真空罐内的气压值,待真空罐内气压达到指定数值时,关闭蝶阀。通过控制真空度来模拟不同海拔下的大气压力,实现离心泵吸入口压力的调整,进而实现泵高原吸入性能模拟实验。
1.3 实验方法
地理学中将平均海拔超过1 000 m的广袤地区称为高原。机械设备通常将海拔2 500 m作为正常使用的分界点。为了能够准确对比离心泵吸入性能的变化规律,本文选取海拔0,1 500,2 000,2 500,3 000 m作为实验点。由表2可见,海拔每升高500 m,对应真空度约上升0.005 MPa。对应本文选取的海拔,真空罐内的真空度依次增大0,0.015,0.02,0.025,0.03 MPa。
由于真空度高于0.025 MPa、发动机转速超过1 600 r/min后,泵机组出现了剧烈抖动现象,为避免继续升速后损坏实验设备,各海拔下均选取泵机组发动机转速为1 100,1 200,1 300,1 400,1 500,1 600 r/min进行实验。泵由发动机经过增速器驱动运行,增速比为1.52,对应的泵转速为1 672,1 824,1 976,2 128,2 280,2 432 r/min,在各转速下测试泵入口持液率数据。
实验按照GB/T 3216—2005《回转动力泵 水力性能验收试验1级和2级》[13]、GB/T 18149—2000《离心泵、混流泵和轴流泵水力性能试验规范 精密级》[14]和GB/T 13929—1992《水环真空泵和水环压缩机试验方法》[15]等国家标准规定的方法进行。
2实验结果
按照上述方法开展实验,获取离心泵在不同海拔和转速下的泵吸入口持液率曲线。因持液率曲线较多且规律类似,本文只列出各海拔下泵转速为1 824和2 280 r/min时的持液率数据,并以海拔0 m、泵转速2 280 r/min时的持液率数据曲线为例对实验过程进行说明。700 s时发动机挂泵,因泵入口流体被吸走且后续流体未能及时补充,此时泵吸入口流体含量迅速降低,所以瞬间泵吸入口处气体含量急剧增大,而后随着管内流体的不断流动补充至泵吸入口处,持液率慢慢回升直至基本稳定于一固定值。2 250 s时,发动机与泵连接断开,泵吸入口持液率上升,因泵停止运转,而后续流体仍然继续流动,泵吸入口管线内瞬间充满流体,造成吸入口持液率大幅上升,而后随着流体流速的下降,持液率数值恢复至实验初始状态。
3数据分析
整理泵在不同海拔和转速下含气率测试仪输出的电压值 β,计算泵吸入口持液率 α 和泵吸入口持液率变化率 γ,得到泵在不同真空度下的持液率变化规律。
离心泵吸入口持液率 α 和持液率变化率 γ 的数值可以发现,泵吸入口的持液率符合以下规律:①不同海拔、相同转速下,泵的持液率随海拔的提升不断降低,即海拔越高,泵吸入口的持液率越低,海拔每升高500 m,泵吸入口持液率下降2%~5%;②相同海拔、不同转速下,泵的持液率随转速提高呈降低趋势,即泵的转速越高,泵吸入口持液率越低。
泵转速不变,海拔升高时,因大气压力 P 降低,而高差 Z 与动能 0.5ρv入2均不变,导致离心泵吸入口压力 P入降低,离心泵的吸入能力下降,泵吸入口持液率降低。海拔不变,泵转速升高时,泵吸入口流体流速升高,流体动能升高,若要继续保持方程两端平衡,则吸入口压力与流体密度至少有一项需要减小;若吸入口压力降低,则与第一种情况相同;若流体密度减小,则说明液体内混入气体,即吸入口持液率降低。
4结论
通过一系列不同海拔和转速下泵高原吸入性能模拟实验,获取了离心泵在不同海拔和转速下泵吸入口持液率,生成了泵的持液率变化曲线,分析实验数据得出以下结论:
1)不同海拔、相同转速下,泵的持液率随海拔的提升不断降低,即海拔越高,泵吸入口持液率越低,海拔高度每升高500 m,泵吸入口持液率下降2%~5%;
2)相同海拔、不同转速下,泵的持液率随转速提高呈降低趋势,即泵的转速越高,泵吸入口持液率越低;
3)随着泵吸入口持液率降低,泵内吸入气体增加,泵内流体流动状态不稳定,泵出入口压力及流量波动剧烈,泵机组工作状态趋于不稳定。
第三篇:浅析焊接工艺参数对焊接质量的影响
浅析焊接工艺参数对焊接质量的影响
一、焊接工艺在机械制造中的应用:
焊接由于节省大量的材料,生产效率高,是制造业中主要的加工工艺之一,几乎涉及到所有的产品。刚结构的焊接制作,工业产品及厂房的制作安装,民用产品的制造等等。利用现有设备及焊接材料和操作人员的技能情况,制定适合的焊接工艺规程,保证焊接质量,是产品的生产过程中,最为重要的环节。
焊接质量的保证,是在试验的基础上,根据不同材料的物理性能和化学成分,以及所采用的焊接设备、焊接方法和结构特性,制定能保证其加工质量的焊接工艺技术文件。在生产实践过程中,如何确保焊接工艺规程的实施,是钢结构生产及维修部门的重要工作。
由于各企业所加工构件的材料和结构不同,使用的焊接方法不同,在焊接试验和工艺评定方面,所做的内容也不尽相同,制定的焊接规程也有一定的差别。焊接规程做为焊接过程的技术性文件,不论生产何种产品,保证其质量的前提,就是焊接生产全过程完整的执行焊接工艺规程。
焊接工艺规程是在满足产品设计规程要求的前提下,经过焊接工艺评定制定的,是生产过程重要的技术文件之一。焊接工艺规程的完全执行,是控制焊接产品质量行之有效的程序和方法。
二、焊接参数对焊接的影响与控制
在结构材料已知的情况下,焊接工艺规程中,主要的几个参数如焊接材料、接头形式、焊接电流、焊接电压、保护气体流量、气体纯度、焊接层数,而合金钢及有色金属焊接过程,还要考虑层间温度、预热及后热温度。如任一参数的大幅度变动,都可能产生焊缝尺寸超差、成形不好、裂纹、夹渣、未焊透、咬边、焊瘤、烧穿、焊接变形等缺陷,甚至产品报废
焊接过程是一个不均匀加热和冷却过程。焊缝区及热影响区温度会随着焊条(焊丝)的移动而发生变化。是一个不均匀加热和冷却过程,熔池的冶金反应也是不充分的。焊接电流作为焊接过程重要的工艺参数之一,是决定焊接热输入量的重要参数,即线能量的的大小。当焊接电流增大时,焊接速度也应加快。才能保证线能量基本不变。日常操作中,基本是以提高生产效率为前提,尽可能的采用大的电流参数。大的电流参数,固然提高了生产效率,但对焊接质量和焊缝成形产生了一定的影响。会烧损一部分合金元素,随着合金元素含量的减少,焊缝冷却后的的组织结构发生变化,而且熔滴过渡形式也发生改变。短路过渡变为射流过度,熔滴尺寸变小,体表面积增大,气体带入熔池更多,产生气孔的几率增加。大的焊接电流作业时,熔合区和过热区的的晶粒粗大,冷却速度加快,极易出现脆化相,使焊缝的疲劳强度和冲击韧性降低。特别是淬火倾向大且有低温冲击韧性要求的材质,对其焊接接头的影响最为明显。同时,焊接电流过大,产生的咬边、焊穿、焊瘤、严重焊接变形致使焊接接头应力集中,疲劳强度和承载能力下降,严重时导致焊缝开裂。焊接电流过小易产生气孔、未焊透、夹渣等缺陷,降低接头的致密性,减少承载面积,致使接头强度和冲击强度降低。
焊接电流增加时,电弧的热量增加,因此熔池体积和弧坑深度都随电流而增加,所以冷却下来后,焊缝厚度就增加;焊接电流增加时,焊丝的熔化量也增加,因此焊缝的余高也随之增加。如果采用不填丝的钨极氩弧焊,则余高就不会增加;焊接电流增加时,一方面是电弧截面略有增加,导致熔宽增加;另一方面是电流增加促使弧坑深度增加。由于电压没有改变,所以弧长也不变,导致电弧潜入熔池,使电弧摆动范围缩小,则就促使熔宽减少。由于两者共同的作用,所以实际上熔宽几乎保持不变。
三、焊条电弧焊的电弧电压的决定因素
电弧长度越大,电弧电压越高,电弧长度越短,电弧电压越低。在焊接过程中,应尽量使用短弧焊接。立焊、仰焊时弧长应比平焊更短些,以利于熔滴过渡,防止熔化金属下滴。碱性焊条焊接时应比酸性焊条弧长短些,以利于电弧的稳定和防止气孔。弧长增加,金属飞溅越多,对母材金属的表面损伤严重。特别是对有防腐要求的不锈钢类和钛金属构件焊接过程中,应尽量减少飞溅物。
同时,焊接过程中,焊接速度应该均匀适当,既要保证焊透又要保证不焊穿,同时还要使焊缝宽度和余高符合设计要求。如果焊速过快,熔化温度不够,易造成未熔合、焊缝成形不良等缺陷;如果焊速过慢,使高温停留时间增长,热影响区宽度增加,焊接接头的晶粒变粗,力学性降低,同时使工件变形量增大。当焊接较薄工件时,易形成烧穿。
当其它条件不变时,电弧电压增长,焊缝宽度显著增加而焊缝厚度和余高将略有减少,电弧电压增大,严重时引起磁偏吹。这也是使焊缝成型不好,形成气孔、夹渣、未焊透的一个因素。在焊接电源为直流反接时,表现得尤为突出。
由此可见,电流是决定焊缝厚度的主要因素,而电压则是影响焊缝宽度的主要因素。因此,为得到良好的焊缝形状,即得到符合要求的焊缝成形系数,这两个因素是互相制约的,即一定的电流要配合一定的电压,不应该将一个参数在大范围内任意变动。
焊速对熔深和熔宽均有明显影响,焊速较小时(例如单丝埋弧焊焊速小于)熔深随焊速增加略有增加,熔宽减小。但焊速达到一定数值以后,熔深和熔宽都随焊速增大而明显减小。这是因为焊接速度增加时,焊缝中单位时间内输入的热量减少了。从焊接生产率考虑,焊接速度愈快愈好。但当焊缝厚度要求一定时,为提高焊接速度,就得进一步提高焊接电流和电弧电压,所以,这三个工艺参数应该综合在一起进行选用。四、焊速对焊接的影响
焊速较小时,电弧力的作用方向几乎是垂直向下的,随着焊速增大,弧柱后倾有利熔池液体金属在电弧力作用下向尾部流动,使熔池底部暴露,因而有利于熔深的增加。
焊速增加时,从焊缝的热输入和热传导角度来看,焊缝的熔深和熔宽都要减小。
以上两方面因素综合的结果,低焊速时前者起主导作用,熔深随焊速增加而略有增加。当焊速超过一定值时,后者起主导作用,熔深就随焊速增加而减小。熔宽及增高则总是随焊速增加而减小的。
从焊接生产率角度来考虑,焊速是愈快愈好,因此焊速减慢熔深降低的这一段区间是没有实际意义的。当焊件熔深要求确定时,为提高焊速,就得进一步提高焊接电流和电弧电压,即意味着电弧功率提高,因此,焊接电流和焊速的选取就要考虑综合经济效果。简单的提高功率来提高焊速是有限制的。焊速对熔深和熔宽均有明显影响,焊速较小时(例如单丝埋弧焊焊速小于)熔深随焊速增加略有增加,熔宽减小。但焊速达到一定数值以后,熔深和熔宽都随焊速增大而明显减小。
实践证明,提高电弧电压会使熔池保护性能变差,氮气孔倾向增加。提高焊接速度,会使结晶速度增加,气孔倾向也增加。
五、常用焊接材料包括焊条、焊丝、保护气体、焊剂。焊芯(焊丝)其作用主要是填充金属和传导电流。
焊条按用途可分为10大类;按熔渣酸碱度分为酸性和碱性两大类;焊剂有酸性、中性、碱性三大类。焊丝按结构有实芯和药芯两类,按用途有8大类。手弧焊和埋弧焊作业中,焊缝区是通过气渣联合保护的。气保焊和气焊是以气保护为主。碱性焊条由于加入CaF2,影响气体电离,电弧的稳定性变差,一般要求采用直流反接。焊条工艺性能是通过药皮配方来实现的。以电弧稳定性、焊缝脱渣性、再引弧性、飞溅率、熔敷系数、熔敷率、掺合金作用强弱等性能体现的。焊条(焊丝)质量检验有相关的国家标准作为依据。在实际使用中,一般都是定型生产的产品,可根据结构和焊缝金属强度要求,做相应的检验。焊条(焊丝)的选用的基本原则是,确保焊接结构安全使用的前提下,尽量选用工艺性能好和生产率高的焊条(焊丝)和焊剂。根据被焊构件的结构特点、母材性质和工作条件,对焊缝金属提出安全使用的各项要求,所选焊条(焊丝)、焊剂都应使之满足。必要时通过焊接性试验来确定。在生产中主要有同种金属材料焊接和异种金属焊接两种情况,选用焊条(焊丝)焊剂时考虑的因素应有所区别。焊条(焊丝)、焊剂的保管也是焊接质量保证的重要环节之一,是不容忽视的。出现的药皮脱落、焊丝表面锈蚀、药皮(焊剂)含水量增加,均会导致焊缝含氢量过高,气孔增加几率升高,焊缝抗裂性能、韧性下降。有色金属和不锈钢构件防腐性能下降等工艺质量问题。特别是压力容器及特殊钢结构制造中尤为重要。为了保证焊接质量,原材料的质量检验很重要。在生产的起始阶段,就要把好材料关,才能稳定生产,稳定焊接产品的质量。
六、加强焊接原材料的进厂验收和检验,必要时要对其理化指标和机 械性能进行复验。
建立严格的焊接原材料管理制度,防止储备时焊接原材料的污损。实行在生产中焊接原材料标记运行制度,以实现对焊接原材料质量的追踪控制。选择信誉比较高、产品质量比较好的焊接原材料供应厂和协作厂进行订货和加工,从根本上防止焊接质量事故的发生。
总之,焊接原材料的把关应当以焊接规范和国家标准为依据,及时追踪控制其质量,而不能只管进厂验收,忽视生产过程中的标记和检验。
七、焊接接头在焊接时的方法
焊接接头是组成焊接结构的最基本要素。也是焊接结构的薄弱环节。主要有对接、角接、搭接、T形、卷边五种形式。为使焊缝的厚度达到规定的尺寸不出现焊接缺陷和获得全焊透的焊接接头,焊缝的边缘应按板厚和焊接工艺要求加工成各种形式的坡口。
常用焊接接头坡口形式有V形、X形、U形及双U形。设计和选择坡口焊缝时,应考虑坡口角度、根部间隙、钝边和根部半径。
焊条电弧焊时,为保证焊条能够接近焊接接头根部以及多层焊时侧边熔合良好,坡口角度与根部间隙之间应保持一定的比例关系。当坡口角度减小时,根部间隙必须适当增大。因为根部间隙过小,根部难以熔透,必须采用较小规格的焊条,降低焊接速度;反之如果根部间隙过大,则需要较多的填充金属,提高了焊接成本和增大了焊接变形。
熔化极气体保护焊由于采用的焊丝较细,且使用特殊导电嘴,可以实现厚板(大于200mm)I形坡口的窄间隙对接焊。
开有坡口的焊接接头,一般需要留有钝边来确保焊缝质量。钝边高度以既保证熔透又不致烧穿为佳。焊条电弧焊V形或双面U形坡口取0~3mm,双面V形或双面U形坡口取0~2mm。埋弧焊的熔深比焊条电弧焊大,因此钝边可适当增加,以减少填充金属。带有钝边的接头,根部间隙主要取决于焊接位置和焊接工艺参数,在保证焊透的前提下,间隙尽可能减小。
坡口加工可以采用机械加工或热切割法。V形坡口和X形坡口可以在机械气割下料时,采用双割据或三割据同时完成坡口的加工。坡口加工的尺寸公差对于焊件的组装和焊接质量有很大的影响,应严格检查和控制。坡口的尺寸公差一般不超过±0.5mm。
八、焊接方法的重要性
焊接质量对工艺方法的依赖性很强,焊接方法在影响焊接工序质量的诸因素中占有非常突出的地位。工艺方法对焊接质量的影响主要来自两个方面,一方面是工艺制订的合理性;另一方面是执行工艺的严格性。工艺方法是根据模拟相似的生产条件所作的试验和长期积累的经验以及产品的具体技术要求而编制出来的,是保证焊接质量的重要基础,它有规定性、严肃性、慎重性和连续性的特点。通常由经验比较丰富的焊接技术人员编制,以保证它的正确性与合理性。在此基础上确保贯彻执行工艺方法的严格性,在没有充足根据的情况下不得随意变更工艺参数,即使确需改变,也得履行一定的程序和手续。
不合理的焊接工艺不能保证焊出合格的焊缝,但有了经评定验证的正确合理的工艺规程,若不严格贯彻执行,同样也不能焊出合格的焊缝。两者相辅相成,相互依赖,不能忽视或偏废任何一个方面。在焊接质量管理体系中,对影响焊接工艺方法的因素进行有效控制的做法是:必须按照有关规定或国家标准对焊接工艺进行评定。
选择有经验的焊接技术人员编制所需的工艺文件,工艺文件要完整和连续。按照焊接工艺规程的规定,加强施焊过程中的现场管理与监督。
在生产前,要按照焊接工艺规程制作焊接产品试板与焊接工艺检验试板,以验证工艺方法的正确性与合理性。还有,就是焊接工艺规程的制定无巨细,对重要的焊接结构要有质量事故的补救预案,把损失降到最低。可根据在特定环境下,焊接质量对环境的依赖性也是较大的。焊接操作常常在室外露天进行,必然受到外界自然条件(如温度,湿度、风力及雨雪天气)的影响,在其它因素一定的情况下,也有可能单纯因环境因素造成焊接质量问题。所以,也应引起一定的注意。在焊接质量管理体系中,环境因素的控制措施比较简单,当环境条件不符合规定要求时,如风力较大,风速大于四级,或雨雪天气,相对湿度大于90%,可暂时停止焊接工作,或采取防风、防雨雪措施后再进行焊接,在低气温下焊接时,低碳钢不得低于-20℃,普通合金钢不得低于-10℃,如超过这个温度界限,可对工件进行适当的预热。
第四篇:原材料对混凝土性能的影响—粉煤灰
原材料对混凝土性能的影响—粉煤灰、SO3含量、fCaO含量、含水量。按上述品质指标将能用于混凝土和砂浆的粉煤灰分为Ⅰ、Ⅱ、Ⅲ级。GB/T1596—2005《用于水泥和混凝土中的粉煤灰》中对粉煤灰上述品质指标有明确的规定。
粉煤灰在水泥基材料中的作用主要有:形态效应、活性效应、微集料效应。粉煤灰的形态效应主要表现为填充作用和润滑作用;粉煤灰的活性效应是指混凝土中粉煤灰的活性成分所产生的化学效应。如将粉煤灰用作胶凝组分,则这种效应自然就是最重要的基本效应,活性效应的高低取决于反映的能力、速度及其反应产物的数量、结构和性质等因素。粉煤灰的微集料效应是指粉煤灰微细颗粒均匀分布于水泥浆体的基相之中,就像微细的集料一样。在水泥浆体中掺加矿物质粉料,可取代部分水泥熟料,混凝土的硬化过程及其结构和性质的形成,不仅取决于水泥,而且还取决于微集料。
1、粉煤灰细度对混凝土性能的影响:
粉煤灰的细度对混凝土的性能有着重要的影响,这种影响主要体现在两个方面:一是影响粉煤灰的活性,粉煤灰越细,火山灰反应能力越强;二是影响需水性,一般来说原状粉煤灰越粗,需水性越大。在混凝土中,用水量是影响其结构和性能的最敏感因素,通过机械粉磨,可以提高粉煤灰的细度,但通常不能够降低粉煤灰的需水量。
2、粉煤灰烧失量对混凝土性能的影响:
粉煤灰中未燃尽的碳粉都可以按烧失量来估量。碳粒是对混凝土有害的物质,它能使混凝土的用水量增加,粉煤灰中的含碳量越高,它的需水量也就越多。随着含碳量的变化,粉煤灰的颜色可以从乳白色变到黑色,高钙粉煤灰往往呈浅黄色,含铁量较高的粉煤灰也有可能呈现出较深的颜色。原状粉煤灰通常颜色较浅,机械粉磨作用将这些颗粒打破,使得一些未燃烧的炭露出来,因此,磨细粉煤灰常常呈现出较黑的颜色。
3、粉煤灰fCaO含量对混凝土性能的影响:
在低钙粉煤灰中CaO绝大部分结合在玻璃体中,在高钙粉煤灰中,除大部分被结合外,还有一部分是游离的。“死烧”状态的游离CaO具有利于激发活性和不利于安定性的双重作用,因此必须重视高钙粉煤灰的安定性问题。
4、粉煤灰SO3含量对混凝土性能的影响:
SO3过高会产生破坏性的钙矾石,我国规范规定为粉煤灰中SO3含量必须不大于3%。
5、粉煤灰的碱含量较高,也会导致硬化水泥石产生较大的干缩变形,这对混凝土的抗裂性能也是不利的。
另外,使用优质粉煤灰,其掺量越大,减水效果越显著。反之,使用劣质粉煤灰,其掺量越大,混凝土的用水量增加也越多。粉煤灰与氢氧化钙结合,会使混凝土碱度有所降低这些都是粉煤灰化学稳定行为带来的副作用。
第五篇:家电对电力线适配器性能的影响
家电对电力线适配器性能的影响
前文已经介绍过家用电器会对TL-PA201电力线适配器的性能造成影响,那么影响究竟有多大呢?我们通过一个插线板来进行实际测试。
如图所示,我们把TL-PA201和电脑、音箱、路由器、台灯、笔记本、打印机的电源全部插在一个插线板上,看看TL-PA201的性能变化。(测试地点依然是书房中的A、B两点)
小结:影响显著
相比使用独立的插座,TL-PA201与电器设备共用插座后的实际测试性能降低了20Mbps,降幅达到了25%。可见家用电器对电力线适配器的性能影响还是非常明显的,因此建议大家在使用TL-PA201时,应尽量选择独立的电源插座,以便获得更好的性能。
在TL-PA201的使用说明中,明确写到TL-PA201应远离充电器等设备使用。那么充电器对TL-PA201的影响会有多大呢?一起来看看我们的测试。
我们把手机充电器和TL-PA201共同插在一个插线板上,测试地点同样是书房中的A、B两点,测试结果如下:
小结:请远离充电器
相比使用独立的插座,TL-PA201与充电器共用插座后的实际测试性能降低了15Mbps,降幅接近20%,可见 充电器对TL-PA201的影响还是非常明显的。造成这种现象的主要原因是普通充电器的电磁屏蔽效果较差,电磁波对“电力线”的通信产生了干扰,致使数据 传输性能下降。因此,为了保证用户的正常使用,请不要吧TL-PA201和充电器放在一个插座上使用。
优、劣质电线对电力线适配器性能的影响
考虑到优、劣质电线的不好区分,以及实际测试的不方便性,我们选择了两个质量不同的插线板来替代优、劣质电线,看看它们对TL-PA201的性能会产生怎样的影响。
小结:对比差距明显
结果非常明显,优质插线板的测试成绩领先劣质插线板23M,领先幅度非常明显。因此用户在使用TL-PA201时,如果必须要配合插线板使用,请选择质量可靠的产品,而且不要选择带有滤波功能的插线板哦。
通过对TL-PA201电力线适配器的全面测试,我们的疑问也已全部解开。首先,TL-PA201非常安全,用户大可 放心使用;其次,TL-PA201的性能大约是百兆网线的一半,完全可以满足现代家庭对网络带宽的需求;而TL-PA201的性能和稳定性相比300M无 线网络则要高出不少,因此更加适合作为家庭现有网络的有效补充;最后,TL-PA201“怕”很多东西,用户在使用时需要注意。
“电力猫”最怕以下几样东西:
1、滤波产品。无论是电表、还是滤波插座,TL-PA201均无法正常使用。
2、电源适配器。无论是哪种电器的电源适配器,在其使用过程中均会对TL-PA201的性能产生影响,因此不建议大家把TL-PA201和电源适配器共用。
3、充电器。充电器在工作时产生的电磁波会严重影响TL-PA201的实际性能,因此用户需注意远离其使用。
4、劣质电线或插线板。
综合来看,TP-Link TL-PA201电力线适配器的表现还是非常不错的,它的性能处于有线网络和无线网络之间,但它的灵活性远胜有线网络,而稳定性相比无线网络也更加出色。因此用户只要是在同一个电表下使用,并且尽量做到每台TL-PA201单独使用一个插座,那么你将获得非常出色的“第三类”网络体验,享受到完全不逊于有 线网络的“新生活”。
更多常见问题解答:
1、用电力线适配器还需要用传统Modem吗?
答:需要,电力线适配器只是在家庭内部构建局域网使用,如果需要接入互联网还是需要通过小区宽带或传统的ADSL Modem 等方式。
2、电力线适配器单个可以使用吗?
答:不可以,至少需要两个才能使用,1个连接ADSL Modem 或路由器LAN 口,1个连接电脑。如有两台电脑,则需要3个,三台电脑,则需要4个,依此类推。
3、家庭空气开关会影响电力线适配器使用吗?
答:电力线适配器可以跨越大多数空气开关或漏电保护开关。
4、TL-PA101与TL-PA201可以相互通信么?
答:TL-PA101与TL-PA201采用不同的标准协议,因此是不可以互通的。现市场上PLC 产品大多依循统一标准协议,85M产品可与85M产品互通,200M产品可与200M产品互通。