功放心得体会

时间:2019-05-12 13:20:29下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《功放心得体会》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《功放心得体会》。

第一篇:功放心得体会

调音预期达到目标

业内有一种说法:汽车音响效果不是买来的,而是设计安装调试出来的。可见,设计安装调试在音响安装过程中的重要性。同样一个主机、几个喇叭、几根电线,不同的安装工人施工,效果会迥jiǒnɡ然不同。专业店为了改善车主收听的环境,会对车辆进行科学的安装设计,安装后凭借专业的测试设备进行调音,使所有音响器材的效果发挥到最佳状态。

好的汽车音响应具备多种因素,以下为鉴别音质六要素。在调音预期要达到的目标。

1、清晰度。美妙的音质层次十分清晰,透明度好,每个字都能听得清。

2、丰满度。中、低音充分,高音适度,有温暖、舒适感,有弹性。如果混响的时间偏短,尤其是低频段的混响时间比中频段还要短,其丰满度不会太好;音响系统的输出频率特性差,缺乏中低音,这样的声音就会显得干瘪无力,也谈不上丰满。

3、亲切感。就是通常人们所说的传神,即听到的声音存在着一种交流、倾诉感。而一般或很差的音质是体会不到这种效果的,它会使你感到紧迫而遥远。

4、平衡感。指的是左、右扬声器,主扬声器和辅助扬声器之间的输出功率的比例协调与相位的正确。立体声的左右声道一致性好,声像正常。如果声像有时有偏移又不够协调,那就算不上是好的音质。

5、环境感。声音的空间感好,整个给人逼真的感觉,用身临其境来形容好的音质是最恰当不过了。

6、响度。在响度方面,好的音质听起来是适宜、舒服的。

特别提醒,在辨别音质时应该选择优秀的声源作为试听的节目源,还有选择自己熟悉的内容做测试是更有利的。

音响频率与音质的关系如表,在调音过程中针对具体感觉,参考下表,增强或减弱相应的频段增益。

各乐器所占的频率范围

熟悉音乐中乐器所占的频率范围对音响的校调非常重要.比如若想突出定音鼓,可以对频段为上段低频(20-40 hz)适当加强。以下就是各个乐器所涵盖的频率范围。

一、低频(20-160hz)

低频又分成两段,极低频(20-40hz)与上段低频(40-80hz)。

1、极低频(20-40hz)

管风琴(可达16hz)、巴松管、土巴号、低音大提琴(double cello)

2、上段低频(40-80hz)

定音鼓、低音木管、大提琴。

中频(160-1280hz)

中频也分成两段,中段中频(320-640hz)和上段高频(640-1280hz)

1、中段中频(320-640hz)

男低音、中提琴与铜管

2、上段高频 640-1280hz 女高音、小提琴与木管

高频(1280-20240hz)

较小乐器单纯发出纯高频声音。

常见乐器频率

一般乐器不会是发出纯低频、或纯中频、或纯高频。常出乐器对应频段如下。

1、管风琴 涵盖10个八度音

2、钢琴 27hz--4186hz

3、小提琴 208---2636hz,极限高频基音 2.2khz

4、中提琴 124---1308hz

5、大提琴 65-----657hz,低音大提琴41-----195hz。

6、竖琴 65-----3135hz

7、木琴 173---2093hz

8、管钟琴 261---696hz

9、吉他 164---987hz

10、班鸠 130---880hz

11、木管、长笛 261---2093hz

12、短笛 560---4186hz

13、竖笛 139---1760hz

14、中音萨克斯风246---1391hz

15、双簧管(英国管)246-1391hz

16、巴松管 61-----589hz

17、法国号 61-----695hz

18、小喇叭 164---1046hz

19、伸缩喇叭82-----440hz 以上的数据随资料来源不同会有些微差异。如何塑造汽车音响的声场

若对音响效果很高的评价可以用这样的一句话来表达:―声音真实,而且几乎感觉不出来是电声设备扩音的效果‖。这句话其实包含了两个方面的内容:―声音真实‖表示这次音响的音质很好,充分展现了演唱者高音高亢的歌喉!―感觉不出来是电声设备扩音的效果‖则说明声场塑造的自然、真实,让每一个人感觉到美妙的歌声是从舞台上的演唱者口中发出,而不是从来自于舞台周围的音箱。

好的声场就应该是让聆听者能够感受到舞台上表演者的存在,能够很清晰地分辨出乐器、演唱者的位置和远近。当声场处理得不好时,声音就会像是被压缩机直接塞到了听着的脑袋里,或者让人明显感觉到声音是从音箱中传出来的。另外需要特别注意的是当声音从听着的身后传出,会极大地破坏声场的真实和自然。所以,理想状态下,我们希望得到一个具有高度、深度、广度,层次分明并且是在听者的正前方成型的声场环境。

应该如何得到这样的好声场呢?最重要的就是扬声器的位置和方向!在这里我们首先需要明确一点:由于声音的方向性主要取决于高频部分,所以高音扬声器的安装也就显得至关重要了。比较理想的位置是:汽车仪表盘上方左右两侧。当高音扬声器安装在这里时,能够有效地将声场提高,而且能够很轻松地将声场成型于听者的前方。但这样安装的难度很大,如何在仪表盘上方找到合适的安装位置,如何将扬声器固定等等问题都需要更好的安装工艺支持。另外,当高音扬声器被安装到仪表盘之后,必然会和中频扬声器分开较远的距离,这是很不利于声场的准确性的。所以要尽量合理安排,高音扬声器和中音扬声器相距不要超过30厘米。而且,高音扬声器和中音扬声器的方向要尽量都指向听者的位置。

如何让声场呈现在听者的前方?通常在改装汽车音响时,会在后门或者后挡板位置安装补声扬声器,另后座的听者也拥有享受音乐的权利。但如果对后面的这些扬声器调整不当,往往会导致前排座的听者感觉声音从脑袋后面传出。避免这种情况的产生有两种方法可以参考。第一种最简单,只需要将后声场扬声器的增益稍稍减小一点就可以了,但后座的声压会相应变小。第二种复杂一点,需要将后声场扬声器的设置为带通(就是低通和高通组合运用,阿尔派mrv-f540具有该功能),例如:将高通设置为80hz,低通设置为3khz,这样一来只有80——3khz的声音从后声场传出,即保证不会产生低频失真又避免了高频声音把声场―拉‖到后面,同时后座听者也感觉到音量足够大。最后要考虑的就是全车的低频部分。超低音扬声器通常安装在汽车的后备箱中。虽然理论上超低音是没有方向性的,但如果超低音扬声器的频段和后声场扬声器的频段有过多的重叠部分,则会让人感到后声场扬声器的低音部分是超低音扬声器低音的一部分,整个超低音声场被―锁定‖在了后面。所以切记后声场扬声器的高通频率设置不要太低。当前声场扬声器和超低音扬声器的频率衔接得合适时,音乐中的鼓点声的基频由超低音扬声器发出,而鼓点的高次谐波部分(仍然属于低频段声音)则由前声场扬声器发出。这样一来,听起来会让人感觉鼓声是从前声场发出的!还有一个重要的问题没有提到。没有一种安装方法是永远正确的定律。因为车型不同、设备性能不同,甚至不同人的欣赏习惯不同,所以一个优秀的声场环境是需要在理论的基础上进行实验,自己的耳朵和感觉才是评判的标准。实践是检验真理的唯一条件,在汽车音响安装过程中也不例外。低通滤波器和高能滤波器的应用 低通滤波器(lpf)该功能包括一个打开低通滤波器的开关和一个用于选择频率点的旋钮。如果旋钮调在80hz处,并把低通功能打开,功放的输出信号中所有高于80hz的声音都会被切除,只有低于80hz的声音信号能够传送到扬声器并进行输出。

应用实例:每个扬声器都有自己合适的工作范围。如果把中高频信号输送给10寸的低音,那将会听到非常含混难听的效果。要想让10寸的低音工作得更―专心‖,就应该打开功放上的低通滤波器,并把频率点调在80hz的位置。这样就只有20hz——80hz的低频信号从功放传送到低音扬声器中。高通滤波器(hpf):

该功能包括一个打开高通滤波器的开关和一个用于选择频率点的旋钮。如果旋钮调在80hz处,并把高通功能打开,和低通相反,功放的输出信号中所有低于80hz的声音都会被切除,只有高于80hz的声音信号能够传送到扬声器并进行输出。

应用实例:由于车门扬声器尺寸比较小,车门门板薄、密封性差,所以安装在车门上的扬声器的低音效果不好,甚至根本就发不出很低的频率。我们就把播放低音的―工作‖让给10寸的低音扬声器,车门扬声器专职负责除了低音以外的―工作‖。这就应该打开功放上的高通滤波器,并把频率点调在80hz的位置。这样就只有80hz——20khz的信号从功放传送到车门扬声器中。

组合运用―高通‖、―低通‖,实现―带通‖功能。

当一个全频带(20hz——20khz)信号经过一个设置频点为80hz的高通滤波后,能通过的信号就只剩下了80hz——20khz了。

如果将这个经过了高通滤波后的信号在经过一个设置频点为400hz的低通滤波器,将是什么样的结果呢?80hz——20khz的信号经过400hz低通滤波,最后剩下的就只是80hz——400hz的信号了。这样全频带(20hz——20khz)信号经过80hz高通滤波以后又经过一个400hz低通滤波(先后顺序可颠倒,可以先经过400hz低通滤波再经过80hz),就从中保留了一个80hz——400hz的频带信号。这种组合使用高通滤波和低通滤波的方法就产生了带通滤波的功能。

应用实例1 富康车一台,前门原扬声器安装尺寸为5英寸。如果直接用阿尔派spr-136a扬声器替换原车扬声器,由于振膜尺寸较小,中低频段声音和车后安装的超低音扬声器衔接不完美。如果能用一只6.5寸的中低音单元负责中低频的声音,5英寸负责中音部分,超低音扬声器负责超低音部分,就能在频响范围内获得一个流畅的理想曲线。实现方法就需要用到带通滤波功能。

选用设备:阿尔派mrv-f540功放(4声道功放,支持同时使用高通和低通功能),spr-176a扬声器低音单元,spr-136a分体式扬声器一套(带分频器)。低音功放mrd-m300,超低音扬声器sws-1041d 连接方法:spr-136a一套(带分频器)连接mrv-f540功放的1/2声道;spr-176a扬声器低音单元连接mrv-f540功放的3/4声道;sws-1041d连接mrd-m300功放。

调节方法:mrv-f540功放1/2声道高通打开,频点400hz,低通关闭;mrv-f540公放3/4声道高通打开,频点80hz,低通打开,频点400hz。mrd-m300功放低通打开,频点80hz,超低音滤波打开,频点30hz。

应用实例2 任何车型,安装有超低音一只,前门一对扬声器,后隔板一对6x9寸扬声器(注意位置:一定是后隔板而不是后门)。由于装在后隔板的6x9寸扬声器发出的高频声音对全车的声场定位有糟糕的影响,特别另后座的听者感到声音几乎完全是从后脑勺的位置发出,听感极度不舒适。

解决原理是杜绝高频声音从6x9寸扬声器发出。可以把这对6x9寸扬声器连接在mrv-f540功放上,高通80hz,低通800hz。这样一来6x9寸扬声器就不会在对前声场的定位造成不良的干扰,也不会把低音往后拖后腿。同时又起到了良好的补充声场,增强声音根基的作用。

易犯错误:上面所说的是全频带信号通过80hz高通滤波和400hz低通滤波的共同作用,产生80hz——400hz的带通滤波。如果分频点设置反了是什么样呢?全频带信号通过400hz的高通滤波,保留的信号范围是400hz——20hz。这个信号在经过80hz低通滤波,我们发现在80hz以下根本不存在信号,所以输出结果是——什么信号都没有。

如何让汽车内的音响环境更接近于音乐厅

众所周知,世界上最好的音响环境是位于奥地利维也纳的―金色大厅‖。众多音响专家和学者对金色大厅出色的音响环境进行了研究,发现它的混响时间在2秒左右,这最适合交响乐的现场演奏,因而全世界的音乐盛会——新年音乐会每年都在―金色大厅‖中举行。

混响时间在学术上的定义是―当一个声源发声达到稳定声场后停止发生,声压级下降60分贝所用的时间‖。抛开晦涩的定义,简单解释就是我们通常所说的―余音‖。因为在一个空间内,声音总会因为碰到四周的墙壁或障碍物而反射回来。当一个声音停止后,仍然会有很多声波在这个空间内被反射来反射去,同时能量不断衰减。所以听上去就会存在―余音绕梁‖的感觉。这种余音能够持续时间的长短决定了音乐的浑厚、丰满程度。2秒左右的混响时间能令现场演奏厅的声音饱满、圆润。由于一般情况下的cd盘片在录制音乐时,已经包括了一部分―余音‖,所以用音响设备欣赏时,音乐厅的听音环境的混响时间在0.3-0.5秒就已经足够了。混响时间是受听音环境的形状、结构等很多因素影响的。经过工程师的实地测量,汽车内的混响时间仅仅连0.1秒都不到。所以在车内欣赏音乐时往往感受不到―音乐厅‖的特殊氛围。

如何让顾客坐在汽车内也能感觉自己坐在音乐厅内欣赏音乐呢?还是要从―混响时间‖入手。有些主机提供―声场模拟‖的功能,可以通过改变音乐信号,―制造‖出不同的―余音‖效果。由于这样的主机需要一块专用的dsp运算芯片,所以往往成本比较高。有些机器由于dsp算法的偏差,会对音质产生非常不利的影响。原本解析力很高的音乐经过声场模拟后,变得含混、不清晰。

其实有一种简单易行、不需要很高成本又能保证纯正音质的解决方法。您只需在后门加装一对扬声器,或者在后挡板加装一对6‖x9‖的扬声器。使用带有―时间校正‖功能的主机,把安装在车内后部的扬声器加一定的延时。具体设定延时的时间可以根据实际听音效果进行确定。这种方法的原理其实是利用加装的扬声器发出类似在音乐厅中出现的―余音‖。所以需要注意装在汽车后部的扬声器在设定延时的同时,还要把功率放大器上连接这对扬声器的增益适当减小。否则余音过强会出现喧宾夺主的效果。经过精心的调整,您也可以把―金色大厅‖搬到车中。尽情享受自然、悠扬、饱满的音乐吧。如何确定主机参数均衡的分频点

部分中高档主机都具有参数均衡这一功能,但是很多用户对于如何去设置那几个参数均衡点而感到头疼,今天我们来讲一下声音频点的区分。为了让形容的文字更精确,我们将人耳所能听到的20hz-20khz这部分频段分为极低频、低频、中低频、中频、中高频、极高频等7个频段。

一、极低频:20-40hz这个频段称为极低频。这个频段内的乐器很少,大概只有低音提琴、管风琴、钢琴等乐器能够到达那么低的音域。由于这段低频并不是乐器中最能表现音质的音域,因此作曲家们也很少将音域写得那么低。除非是流行音乐以电子合成器可以安排,否则极低频对于音响迷而言用处不大。所以,我们在调音的时候都会把这一个频段做出相应的衰减。

二、低频:40-80hz这个频段称为低频。这个频段内有什么乐器呢?有大鼓、低音提琴、大提琴、低音巴松管、巴松管、低音伸缩号、低音单簧管、法国号等。这个频段对于构成浑厚的低频基础有着举足轻重的作用。一般人会将这个频段误认为是极低频,因为听起来它的频段已经很低了。如果这个频段的量感太少,一定会没有丰润浑厚的感觉,而且会导致中高频、高频的突出,使得声音失去平衡感,不经久耐用。

三、中低频:80-160hz之间的这个频段称为中低频。这个频段是令音响迷最头疼的一段,因为它是造成耳朵轰轰然的元凶。为什么这个频段特别容易有峰值呢?这与听音环境的尺寸和共振有关。大部分人为了去处这段恼人的峰值,费尽心力吸收这个频段的声波,可惜,当耳朵听起来不致轰轰然时,低频和中频之间的声频谱都随着中低频的被吸收而呈现凹陷的状态,使得声音变瘦,缺乏丰润感。这个频段的乐器包括了刚才在低频段中所提及的乐器。

四、中频:160-1280hz这个频段之间横跨的幅度是最宽的,几乎把所有的乐器及人声都包含进去了,所以是最重要的频段。很多人对乐器音域的最大误解也发生在此处。例如小提琴的大半音域都在这个频谱,但一般人却误认为它的音域很高。另外,不要以为女高音的音域很高,一般而言,她的最高音域也才在中频的上限而已。

五、中高频:1280-2560hz这个频段称为中高频。这个频段有什么乐器呢?小提琴约有1/4的较高音域在此,中提琴的上限、长笛、单簧管、双簧管的高音域、短笛的1/2较低音域、钹、三角铁等。其实中高频很容易辨认,弦乐群的高音域都是中高频。这个频段很多人都会误认为是高频,因此请大家特别留意。

六、高频:2560-5120hz这个频段,称之为高频。这段频域对于乐器演奏而言,已经是很少有机会涉及了,因为除了小提琴音域的上限、钢琴、短笛的高音域以外,其余乐器大多不会出现在这个频段中。从扬声器的分频点中,我们可以发现到这段频域全部出现在高音扬声器中。将耳朵靠近高音单元时,所听到的不是乐器的声音,而是一片―嘶嘶‖声。

七、极高频:5120-20000hz这么宽的频段,称之为极高频。可以从高频就已经很少有乐器出现的事 实中,了解到极高频所容纳的尽是乐器与人声的泛音。一般乐器的泛音大多是越高处能量越小,换句话说,高音扬声器要制造的很敏锐,能够清楚的再生非常细微的声音。这里就发生了一件困扰扬声器单元的事情,一个高音扬声器为清楚再生所有细微的泛音,不顾一切的设计成为很小的电流就能推动振膜,那么同样由这个高音单元所负责的大能量高频时就有可能会时常处于失真的状态,因为高频段的能量要比极高频大多了。这也是目前市场上很多扬声器极高频很清晰,却很容易流于刺耳的原因之一。

以上我们划分频段的数字就是一般在调节参数均衡的时候所经常选取的点,当然这也不是绝对的,调音的时候还是要根据实际情况去选取参数均衡点,但是对于刚刚入门的人来说,利用以上的分频点去调节无疑是一种最简便的方法。

数字时间校正 是否具有数字时间校正功能,可以说,是专业的汽车音响主机和普通主机之间的最大差别!什么是数字时间校正?数字时间校正有什么作用?

从下面的图中可以明显地看到,驾驶者位于车辆的左前侧,车门上安装的4个扬声器和驾驶者耳朵之间的距离就会各不相同。如图所示,距离最近的是左前侧的扬声器,距离大约为0.5米(精确数据需要用尺子实地测量耳朵和扬声器的实际距离得出)。最远的扬声器为右后方的那只,距离人耳大约2.25米。除此之外,右前方、左后方的扬声器到人耳的距离也各不相同。这就是汽车环境和家庭听音环境的明显差别。驾驶者不可能坐在车辆正中,和各个扬声器距离相等的那个―黄金听音位‖。

这样的扬声器到人耳距离差会对声音产生影响。打个比方,4个扬声器的音响系统就好像是一个和谐的4人合唱队。大家步调一致地同时演唱才能表现出最强的气势,唱出最优美的乐曲。如果4人合唱的步调无法协调,只能让聆听者感到凌乱,整体感不强。他的影响还不止如此,根据哈斯效应对立体声的定义,人耳有―先入为主‖的现象,所以会感觉声音的声像偏向于先发声的那只扬声器。同时由于右后方扬声器到人耳的距离大约为左前方扬声器到人耳距离的4倍,右后方扬声器发出声音到人耳的声压比左前方的低12db左右(使用相同扬声器、功放增益相同的条件下)。哈斯效应的第二点,人耳会感觉声像偏向于音量大的扬声器。所以驾驶者通常会感觉到声像定位混乱,好像所有声音都来自于左前方。

数字时间校正就是为解决这样的问题提供的优秀方案。数字时间校正功能可以在主机上对每一个扬声器设定一个延时的数值。就相当于让先发出声音的扬声器等一段时间才开始发声。通过精心计算和调节,可以让车内的扬声器到达人耳的时间保持一致!如下图右侧显示,给那些先发出声音的扬声器设置延时后,等于虚拟地将扬声器退后了一段距离,最终形成了以驾驶位为圆心,扬声器落在了圆圈的边上的虚拟扬声器位置感。

数字时间校正的数值计算方法:

以最远的扬声器为调整的基准,右后扬声器距离最远,则只需要对左前、左后、右前三个扬声器进行分别计算和调整。

计算公式:

1、测量聆听位置(驾驶座等„)与各喇叭之间的距离。

2、计算最远的喇叭距离与各喇叭的距离差值 l=最远喇叭距离–其它喇叭距离

3、将所计算出的各喇叭距离除以声音的速度343m/s(20°c时),得出的数值就是不同喇叭的时间校正值。

设聆听位在驾驶座位,则左前扬声器,距离人耳0.5米,右后(最远的扬声器)距离人耳2.25米,它们之间的距离差为:2.25-0.5-1.75米。用距离差除以声速,可以得出需要对左前扬声器设置的时间校正数值为:1.75/343=0.0051秒=5.1毫秒(注:常温下声速为343米/秒)

再用同样的方法计算右前、左后扬声器需要调整的时间校正数值(单位为毫秒ms)。

然后就可以在主机上进行操作,对三个扬声器进行调整,用以达到和最远的扬声器同时到达人耳的效果。再通过对左前扬声器进行适量的音量衰减,就能在驾驶者眼前展示出一个真正准确的声像!篇二:用altium protel dxp设计制作单面印制电路板(tda2030功放)、心得体会

用altium protel dxp设计制作单面印制

电路板(tda2030功放)

这是网上别人卖成品功放tda2030电路板的样子

电源部分电路:(变压器没画)

功放电路部分:(其实音频输出端还有个耳机插孔的,没画)这是我用dxp根据上图画出来的电路原理图:

这是我画的部分元件的封装:

用dxp画封装的时候,要特别注意实际元器件的封装的大小,特别是引脚间距,间距不对的话到时板子刻出来可能会导致元件插不进去,孔径的大小也同样的重要的哦。

这是我的pcb排版的图,实话说,布得不好看,覆铜了。

吼吼,拿电路板雕刻机去雕刻电路就好了。

这个是我用实验室的电路板雕刻机雕刻出来的: 我觉得我覆的那些铜都是直角,看看去有点丑丑的„..实训的心得及体会: 经过本次实训,使我基本的了解了印制电路板的制作流程,记得在实训前,我们只是在计算机上学习些理论知识,例如画画电路图、做做封装,说实话,我觉得这未免有点脱离实践了,所以说,实训是很有必要的,当我们为之前的理论知识付之于实践的时候,出现了这样的那样的问题,这些实践中存在的实际的问题,我们不得不去考虑的,是不能忽视的,只

有实践才会懂得其中的一些问题,理论知识和实践相结合是教学环节中相当重要的一个环节,只有这样才能提高自己的实际操作能力,并且从中培养自己的独立思考、勇于克服困难、团队协作的精神。其中出现了很多问题,例如元器件的封装问题,引脚的间距和孔径的大小等问题,我们之前没重视过认真考虑过这些问题,结果刻出来的电路板元器件就插不进去了,虽然这些都是些小问题,但就是这些小问题就会影响到制作电路板成功与否。对于我们,最具挑战的就是pcb排版的问题,需要我们的耐心和毅力,我们还需努力,这门课的知识对于我们的专业来说很重要,所以我必须进一步学好它,提升自己的专业技术水平。

感谢这一周以来老师的细心指导,由衷的向您说一声:老师,您辛苦了!篇三:功放制作与调试

《otl功率放大器的制作与调试》

设计人:学 校:江苏省六合职教中心日 期: 项 目 教 学 设 计 方 案

李 家 墅 2008年5月8日

《otl功率放大器的制作与调试》

项 目 教 学 设 计 方 案

一、项目教学设计所体现的教育教学理念 1.突出能力本位 将德育渗透于专业课程的教学过程中,将职业技能与职业知识有机

结合,在增强学生专业能力的基础上,着力培养学生职业情感、职业态度与团队协作精神,促进良好职业素养的形成,通过对自举电路的研究性实验,激发和提高学生开展研究性学习的动机与能力,从而提高学生专业能力、方法能力和社会能力等综合职业能力与就业创业能力。

2.体现实践主线 课程实施紧紧围绕项目和任务来开展,充分体现任务引领、行为导

向的项目化课程的思想。以常用电子仪器仪表、典型电子线路为载体,按电子工艺要求展开教学,让学生在掌握电路装接与调试技能的同时,引出相关专业理论知识,使学生在技能训练过程中加深对专业知识与专业技能的理解和应用。3.彰显以人为本 教学目标的确立将学生学习基础和课程标准有机结合;课程实施的过程符合中职学生形象思维能力强的特点,突出以教师为主导、学生为主体的教育教学理念,贯彻“做中学、练中学和干中学”的主导思想;教学效果的评价体现过程性、特质性和发展性等多元评价思想。

二、制定项目教学设计的依据 1.《国务院关于大力发展职业教育的决定》中提出:“职业教育要坚持以就业为导向,深化职业教育改革。” 2.《江苏省职业教育课程改革行动计划》的文件精神。3.以江苏省教育科学研究院职业教育与终身教育研究所开发的《职业教育课程开发及项目课程设计》为技术指导。

三、项目教学设计的背景分析

《otl功率放大器的制作与调试》项目教学设计方案是依据《新编电子技术项目教程》中的项目二任务五编写的。在学习该内容之前,学生已经掌握了函数信号发生器、直流稳压电源、示波器、万用表、直流毫安表等仪器仪表的使用方法及在面包板上装接电子电路的工艺。同时,学生对电压放大器的组成与工作原理也有一定的了解。1 课堂教学的课时为4节,以连堂形式进行。

四、项目教学实施的设计 2 3 4 篇四:电路实验心得体会

电路实验心得体会 经过了一个学期的电路实验课的学习,学到了很多的新东西,发现了自己在电路理论知识上面的不足,让自己能够真正的把点亮学通学透。

电路实验,作为一门实实在在的实验学科,是电路知识的基础和依据。它可以帮助我们进一步理解巩固电路学的知识,激发我们对电路的学习兴趣。

首先,在对所学的电路理论课而言,实验给了我们一个很好的把理论应用到实践的平台,让我们能够很好的把书本知识转化到实际能力,提高了对于理论知识的理解,认识和掌握。

其次,对于个人能力而言,实验很好的解决了我们实践能力不足且得不到很好锻炼机会的矛盾,通过实验,提高了自身的实践能力和思考能力,并且能够通过实验很好解决自己对于理论的学习中存在的一些知识盲点。

对于团队协作与待人处事方面,实验让我们懂得了团队协作的重要性,教导我们以谦虚严谨的态度对待生活中的人与事,以认真负责的态度对待队友,提高了班级的凝聚力和战斗力,通过实验的积极的讨论,理性的争辩,可以让我们更加接近真理。

实验中应注意的有几点。

一,一定要先弄清楚原理,这样在做实验,才能做到心中有数,从而把实验做好做细。一开始,实验比较简单,可能会不注重此方面,但当实验到后期,需要思考和理解的东西增多,个人能力拓展的方面占一定比重时,如果还是没有很好的做好预习和远离学习工作,那么实验大部分会做的很不尽人意。

二,在养成习惯方面,一定要真正的做好实验前的准备工作,把预习报告真正的学习研究过,并进行初步的实验数据的估计和实验步骤的演练,这样才能在真正实验中手到擒来,做到了然于心。

不过说实话,在做试验之前,我以为不会难做,就像以前做的实验一样,操作应该不会很难,做完实验之后两下子就将实验报告写完,直到做完几次电路实验后,我才知道其实并不容易做。它真的不像我想象中的那么简单,天真的以为自己把平时的理论课学好就可以很顺利的完成实验,事实证明我错了。

在最后的综合实验中,我更是受益匪浅。我和同组同学做的是甲乙类功率放大电路,因为次放大电路主要是模拟电子技术的范畴,而自己选修专业与此有很大的联系,所以在做综合实验设计的时候,本着实践性,创新性,可行性和有一 意义性的原则,选择了这个实验。实验本身的原理并不是很复杂,但那只针对有过相关学习的同学,对于我这样的初学者,对于实验原理的掌握本身就是一个挑战。通过翻阅有关书籍和查阅相关的资源,加深自己对功放的理解,通过ewb软件的仿真,比较实验数值与理论值之间的误差,最终输出正确而准确的波形和实验数据。

总结:电路实验最后给我留下的是:严谨以及求实。能做好的事就要把它做到最好,把生活工作学习当成是在雕刻一件艺术品,真正把心投入其中,最终命运会为你证明你的努力不会白费。篇五:音频功率放大器报告

学 院:

专 业:

组 员:

指导老师: 设计报告 ——音频功率放大器 机械与电子工程学院 电子科学与技术 2013.11.29 电子设计实践课程

一、设计要求和设计目的音频功率放大器具体要求:

1、恒流驱动 2、8欧扬声器

3、输出功率5w以上

4、音量数字控制(可以用拨动开关设置)

5、音源为mp3 最后要算出功耗、输出功率和频率响应曲线。

根据设计要求,完成对音频功率放大器的设计。

进一步加强对模拟电子技术知识的理解和对multisim软件的应用。

了解集成功率放大器内部电路工作原理,掌握其外围电路的设计与主要性能参数的测试方法。

学习音频功率放大器的设计方法与小型电子线路系统的安装调试方法。

二、设计总体方案 2.1设计思路

音频功率放大器的作用是将声音源输入的信号进行放大,然后输出驱动扬声器。声音源的种类有很多种,故输出信号的电压差别很大,从零点几毫伏到几百毫伏。一般动率放大器的输入灵敏度是一定的,这些不同的声音源信号如果直接输入到功率放大器的话,对于输入信号过低的,功率放大器功率输出不足,不能充分发挥功放的作用;加入输入信号的幅值过大,功率放大器的输出信号将严重过载失真。这样就失去了音频放大的意义了,所以一个实用音频功率放大系统必须设置放大器,同时弄个反馈电路来保持恒定电流。以便使放大器适应不同的输入信号,或放大,或衰减,或进行阻抗变换,使其与功率放大器的输入灵敏度相匹配。最后音频放大器由功率放大器和反馈电路两部分组成。

本次设计是大于5瓦音频放大器,由于时间有限,上网找了一些电路图,下幅电路图稍微修改后是最合适的。由于电路采用,使电路不用那么复杂。

放大器由3554am芯片实现和3288rt反馈,并通过电阻控制,最后采用功率放大电路。最后负载用扬声器。

三、选择器件及参数计算 3.1运放3554am介绍 35554am 是前置放大运放,与很多标准运放相似,它具有较好的噪声性能,优良的输出驱动能力及相当高的小信号与电源带宽。3.2运放3288rt介绍 3288rt 是反馈运放,与很多标准运放相似,它具有较好的噪声性能。3.3其他零件: r1___________1kω r2___________1kω r3__________0.3ω r4_________1600ω r5_________200kω r6____________8ω

r7___________1kω c1_________0.47uf电容器

c2___________1μf电容器 d1______________1dh62 二极管 d2______________1dh62 二极管 vin_________1v.40-4mhz信号源

电阻 电阻 电阻 电阻 电阻 电阻 电阻 3.4功率的计算

计算输出功率po输出功率用输出电压有效值v0和输出电流i0的乘积来表示。设 vom,则 因为输出电压的幅值为iom=vom/rl,所以.当输入信号足够大,使vim=vom= vcem= vcc-vces ≈vcc和iom=icm时,可获得最大的输出功率 o cc 由上述对p的讨论可知,要提供放大器的输出功率,可以增大电源电压v或降低负

载阻抗r。

第二篇:数字功放简介

数字功率放大器简介

班级:JS001104学号:2011300077姓名:李卫华

一. 数字放大器的定义及工作原理

功率放大器通常根据其工作状态分为五类。即A类、AB类、B类、C类、D类。在音频功放领域中,前四类均可直接采用模拟音频信号直接输入,放大后将此信号用以推动扬声器发声。D类放大器比较特殊,它只有两种状态,不是通就是断。因此,它不能直接输入模拟音频信号,而是需要某种变换后再放大。人们把此种具有“开关”方式的放大,称为“数字放大器”。

二. 数字功法与传统功放比较

数字功放由于工作方式与传统模拟功放完全不同,因此克服了模拟功放固有的一些缺点,并且具备了一些独有的特点。

1.过载能力与功率储备

数字功放电路的过载能力远远高于模拟功放。模拟功放电路分为A类、B类或AB类功率放大电路,正常工作时功放管工作在线性区;当过载后,功放管工作在饱和区,出现谐波失真,失真程度呈指数级增加,音质迅速变坏。而数字功放在功率放大时一直处于饱和区和截止区,只要功放管不损坏,失真度不会迅速增加。由于数字功放采用开关放大电路,效率极高,可达75%~90%(模拟功放效率仅为30%~50%),在工作时基本不发热。因此它没有模拟功放的静态电流消耗,所有能量几乎都是为音频输出而储备,加之前后无模拟放大、无负反馈的牵制,故具有更好的“动力”特

性,瞬态响应好,“爆棚感”极强。

2.交越失真和失配失真

模拟B类功放在过零失真,这是由于晶体管在小电流时的非线性特性而引起的在输出波形正负交叉处的失真(小信号时晶体管会工作在截止区,无电流通过,导致输出严重失真)。而数字功放只工作在开关状态,不会产生交越失真。

模拟功放存在推挽对管特性不一致而造成输出波形上下不对称的失配失真,因此在设计推挽放大电路时,对功放管的要求非常严格。而数字功放对开关管的配对无特殊要求,基本上不需要严格的挑选即可使用。

3.功放和扬声器的匹配

由于模拟功放中的功放管内阻较大,所以在匹配不同阻值的扬声器时,模拟功放电路的工作状态会受到负载(扬声器)大小的影响。而数字功放内阻不超过0.2Ω(开关管的内阻加滤波器内阻),相对于负载(扬声器)的阻值(4~8Ω)完全可以忽略不计,因此不存在与扬声器的匹配问题。

4.瞬态互调失真

模拟功放几乎全部采用负反馈电路,以保证其电声指标,在负反馈电路中,为了抑制寄生振荡,采用相位补偿电路,从而会产生瞬态互调失真。数字功放在功率转换上没有采用任何模拟放大反馈电路,从而避免了瞬态互调失真。

5.声像定位

对模拟功放来说,输出信号和输入信号之间一般都存在着相位差,而且在输出功率不同时,相位失真亦不同。而数字功放采用数字信号放大,使输出信号与输入信号相位完全一致,相移为零,因此声像定位准确。

6.升级换代

数字功放通过简单地更换开关放大模块即可获得大功率。大功率开关放大模块成本较低,在专业领域发展前景广阔。

7.生产调试

模拟功放存在着各级工作点的调试问题,不利于大批量生产。而数字功放大部分为数字电路,一般不需调试即可正常工作,特别适合于大规模生产。

三.DPA功放的工作原理

DPA--即数字脉冲功率转换器,是采用数字处理、量化、编码等手段,以时钟倍数的脉冲宽度来描述音频信号,实现数字化的功率转换。

四.数字功放的现状

以前,由于价格和技术上的原因,这种放大电路只是在实验室或高价位的测试仪器中应用。这几年的技术发展使数字功放的元件集成到一两块芯片中,价格也在不断下降。理论证明,D类放大器的效率可达到100%。然而,迄今还没有找到理想的开关元件,难免会产生一部分功率损耗,如果使用的器件不良,损耗就会更大些。但是不管怎样,它的放大效率还是达到90%以上。

由于功耗和体积的优势,数字功放首先在能源有限的汽车音响和要求较高的重低音有源音箱中得到应用。随着DVD家庭影院、迷你音响系统、机顶盒、个人电脑、LCD电视、平板显示器和移动电话等消费类产品日新月异的发展,尤其是SACD、DVDAudio等一些高采样频率的新音源规格的出现,以及音响系统从立体声到多声道环绕系统的进化,都加速了数字功放的发展。近年来,数字功放的价格呈不断下降的趋势,有关这方面的专利也层出不穷。

国外在数字音频功率放大器领域进行了二、三十年的研究,六十年代中期,日本研制出8bit数字音频功率放大器。1983年,M.B.Sandler等学者提出D类(数字)PCM功率放大器的基本结构。主要是围绕如何将PCM信号转化为PWM信号。把信号的幅度信号用不同的脉冲宽度来表示。此后,研究的焦点是降低其时钟频率,提高音质。随着数字信号处理(DSP)技术和新型功率器件及应用的发展,开发实用化的16位数字音频功放成为可能。

一个音响系统必须具备音源、功放和音箱三大部分。音源部分目前已数字化了,如CD、VCD、DVD、DAB和数字电视等。但 的功放和音箱仍然是模拟统治的天下。在人们进入数字化、信息化的开发过程中自然想到了功放的数字化这一问题。

模拟功放始终无法解决效率、成本、音质这三者之间的矛盾。国内市场开始出现AV数码功放,但所谓的数字功放实质上仅仅是指音频处理部分采用了数字处理,其功率放大器 则仍然采用模拟放大,这与真正意义的数字功放相差甚远。

音响产品的数字化是必然趋势。由于数字功放有很多优点,如体积小、功率大、高、与数字音源的无缝结合、能有效降低信号间传递干扰、实现高保真等。在数字音源已经大量普及的时代,数字功放将会取代现有的模拟功放。

五.数字功放的发展展望

21世纪将是数字化、信息化的时代,全新的技术体制将会引发全新的技术产业革命。目前最新提出的SACD格式更是层出不穷,从MPEG-1到MPEG-2,从数字杜比(AC-3)到DTS等。数字功放更是国际上各大厂商关注的焦点。据了解,全球最大的视听设备制造商SONY公司最近准备推出它的数字功放产品,就连非常著名的汽车音响制造商(Alpine)也将推出数字功放(这两家均采用美国Tripath的芯片)。在数字信号处理方面极具实力的德州器公司(TI),2000年3月16日宣布成立自己的数字功放事业部,致力发展采用数字技术把高保真音质带入各种类型的音频设备中。因此,数字功放的春天即将到来,而且,在这场数字功放技术竞争中,唯有不断创新才能保持技术的领先地位。

数字音频功放不仅仅能应用在家庭影院系统、高保真重放系统,同时也可将该技术应用到特别需要省电、体积小的地方,如数字电视、汽车音响功放、便携听音设备,甚至是移动电话等设备。应该说该项技术的应用十分广泛,既可用来做上千瓦功率输出的专业功放,也可以是用来做几十毫瓦的便携机。数字音频功放是全新一代的音频功放,是模拟功放发展的必然趋势和取代者。作为一种全新的技术,其

市场的推广需要一段培育过程。以下这几个方面是该数字音频技术的关键技术和突破口:

◆ 数字音频功放技术的体制和标准。它的制定在一定程度上起到了保护民族工业的兴起,保护国内市场的占有率,保证自己的专利技术。◆ 数字音频功放(DPA)技术及ASIC技术,特别是ASIC,如果不能开发自己的专用芯片(通用芯片除外),就不能有自己的专利技术和产业基础。

◆ 技术本身可在不同的领域内使用。

特别需要省电的便携设备使用;

应用范围极为广泛的电视、收音机等一般音频重放设备使用。Hi-Fi和家庭影院等要求高的场合使用。

◆ 高效、音质好、成本低是数字功放发展的方向。

◆ 模块化的功放单元开发,是决定数字功放命运的关键(质量、成本因素)

◆ 开发适合于DVD-Audio和SACD指标的数字功放。

第三篇:功放噪音消除经验

功放抗噪四大秘籍

功放噪音来由...................................................................................................................................1

1、电磁干扰.....................................................................................................................................1 1.1 电源变压器................................................................................................................................1 1.2 杂散电磁波........................................................................................................................2 1.3电磁干扰主要防治措施.............................................................................................3 2 地线干扰.......................................................................................................................................3 2.1 地线干扰原理分析....................................................................................................................3 2.2 解决地线干扰实例说明....................................................................................................4 2.3 实际的项目PCB板Layout图来详细说明.....................................................................5 3 机械噪声.......................................................................................................................................7 4 热燥声...........................................................................................................................................7

功放噪音来由

常见一些玩家被有源音箱的各种噪音困扰,这里就笔者在实践中总结出的一些经验与大家分享。顾名思义,有源音箱就是音箱与放大器的组合,因此有源音箱噪音分析与一般放大器噪音与放大器近似,分析、处理时可借鉴HIFI放大器。噪音与放大器相生相伴,是无可避免的,这里讨论降低噪音,目的是将其降低至可接受的范围,而不是、也无法将其彻底根除,换句话说,信噪比只能尽量提高,但不能无限大。有源音箱的噪音按来源可粗略分为电磁干扰、地线干扰、机械噪声与热噪声几类,下面来从噪音产生根源与机理方面简要分析一下,并提出一些经实践检验行之有效的解决方案。

1、电磁干扰

电磁干扰主要来源是电源变压器和空间杂散电磁波。

1.1 电源变压器

电源变压器工作过程是一个“电—磁—电”的转换过程,在电磁转换过程中必然会产生磁泄露,变压器泄磁被放大电路拾取放大,最终表现为由扬声器发出的交流声。电源变压器常见规格有EI型、环型和R型,无论是从音质角度还是从电磁泄露角度来看,这三种变压器各有优缺点,不能简单判定优劣。

1)EI型变压器是最常见、应用最广的变压器,磁泄露主要来源E与I型铁心之间的气隙以及线圈自身辐射。EI型变压器磁泄露是有方向性,如图1所示,X、Y、Z轴三个方向上,线圈轴心Y轴方向干扰最强,Z轴方向最弱,X轴方向的辐射介于Y、Z之间,因此实际使用时尽量不要使Y轴与电路板平行。

图1 EI型变压器

2)环型变压器由于不存在气隙、线圈均匀卷绕铁芯,理论上漏磁很小,也不存在线圈辐射。但环型变压器由于无气隙存在,抗饱和能力差,在市电存在直流成分时容易产生饱和,产生很强的磁泄露。国内不少地区市电波形畸变严重,因此许多用家使用环型变压器感觉并不比EI型变压器好,甚至更差。所谓环型变压器绝无泄露,或是因媒介误导,或是因厂商出于商业宣传需要而杜撰,环型变压器磁泄露极低的说法只是在市电波型为严格的正弦波时才成立。另外,环型变压器还会在引线处出现较强电磁泄露,因此环型变压器的漏磁也是一定方向性的,实际装机时旋转环型变压器,在某个角度上获得最高信噪比。

3)R型变压器可简单看做横截面圆型的环型变压器,但在线圈绕制手法上有区别,散热条件远比环型变压器为好,铁芯展开为渐开渐合型,R型变压器电磁泄露情况与环型变压器类似。由于每匝线长比环型变压器短,能紧贴铁心绕制,因此上述三类变压器中R型变压器的铜损最小。

条件允许,可考虑为变压器装一只屏蔽罩,并做妥善接地处理,该金属罩只能选用铁性材料,一般金属如铜、铝等只有电屏蔽作用而无磁屏蔽作用,不能作为变压器屏蔽罩。

1.2 杂散电磁波

杂散电磁波主要来自有源音箱的功率输出导线、扬声器及功率分频器、无线发射设备和计算机主机,产生原因在这里不做深入讨论。杂散电磁波在传输、感应的形式上与电源变压器类似,杂散磁场频率范围很宽,有用家反映有源音箱莫名其妙接收到当地电台广播就是典型的杂散电磁波干扰。

另外一个需引起重视的干扰源为整流电路。滤波电容在开机进入正常状态后,充电仅集中在交流电峰值时,充电波形是一个宽度较窄的强脉冲,电容量越大,脉冲强度也越大,从电磁干扰角度看,滤波电容并非越大越好,整流管与滤波电容之间走线应尽量缩短,同时尽量远离功放电路,PCB空间不允许则尽量用地线包络整流电路。

1.3电磁干扰主要防治措施

1.降低输入阻抗

电磁波主要被导线及PCB板走线拾取,在一定条件下,导线拾取电磁波基本可视为恒功率。根据P=U^U/R推导,感应电压与电阻值的平方成反比,即放大器实现低阻抗化对降低电磁干扰很有利。例如一个放大器输入阻抗由原20K降低至10K,感应噪声电平将降至1/4的水平。有源音箱音源主要是电脑声卡、随身听、MP3,这类音源带载能力强,适当降低有源音箱输入阻抗对音质造成的影响非常微弱不易觉察,笔者试验时曾尝试将有源音箱输入阻抗降至2KΩ,未感觉音质变化,长期工作也未见异常。

2.增强高频抗干扰能力

针对杂散电磁波多数是中高频信号的特点,在放大器输入端对地增设磁片电容,容值可在47——220P之间选取,数百皮法容值的电容频率转折点比音频范围高两、三个数量级,对有效听音频段内的声压响应和听感的影响可忽略不计。

3.注意电源变压器安装方式

采用质量较好的电源变压器,尽量拉开变压器与PCB之间的距离,调整变压器与PCB之间的方位,将变压器与放大器敏感端远离;EI型电源变压器各方向干扰强度不同,注意尽量避免干扰强度最强的Y轴方向对准PCB。

4.金属外壳须接地

对于HIFI独立功放来说,设计规范的产品在机箱上都有一个独立的接地点,该接地点其实是借助机箱的电磁屏蔽作用降低外来干扰;对于常见有源音箱来说,兼做散热器的金属面板也需接地;音量、音调电位器外壳,条件允许的话尽量接地,实践证明,该措施对工作于电磁环境恶劣条件下的PCB十分有效。地线干扰

2.1 地线干扰原理分析

电子产品的地线设计是极其重要的,无论低频电路还是高频电路都必须要个遵照设计规则。高频、低频电路地线设计要求不同,高频电路地线设计主要考虑分布参数影响,一般为环地,低频电路主要考虑大小信号地电位叠加问题,需

独立走线、集中接地。从提高信噪比、降低噪音角度看,模拟音频电路应划归低频电子电路,严格遵循“独立走线、集中一点接地”原则,可显著提高信噪比。

音频电路地线可简单划分为电源地和信号地,电源地主要是指滤波、退耦电容地线,小信号地是指输入信号、反馈地线。小信号地与电源地不能混合,否则必将引发很强的交流声:强电地由于滤波和退耦电容充放电电流较大(相对信号地电流),在电路板走线上必然存在一定压降,小信号地与该强电地重合,势必会受此波动电压影响,也就是说,小信号的参考点电压不再为零。信号输入端与信号地之间的电压变化等效于在放大器输入端注入信号电压,地电位变化将被放大器拾取并放大,产生交流声。增加地线线宽、背锡处理只能在一定程度上减弱地线干扰,但收效并不明显。有部分未严格将地线分开的PCB由于地线宽、走线很短,同时放大级数很少、退耦电容容量很小,因此交流声尚在勉强可接受范围内,只是特例,没有参考意义。

需注意的是,变压器电磁干扰引发的交流声频率一般为50HZ左右,而地线布线不当导致的交流声,由于整流电路的倍频作用频率约为100HZ,仔细区分还是可以察觉的。

2.2 解决地线干扰实例说明

正确的布线方法是,选择主滤波电容引脚作为集中接地点,强、弱信号地线严格区分开,在总接地点汇总。下面以最常见的LM1875(TDA2030A)为例,以生产商推荐线路说明一下:

图2

图中R1、R2是输入落地电阻,C2是直流反馈电容,接地点是小信号地,标记为蓝色,;C3、C4、C6、C7是退耦电容,接地端标记为红色,属电源地。正确的接地方式为:三个小信号接地点可混合在一条地线上,四个电源地汇集为另一条地线,电源地与小信号地在总接地点处汇合,除总接地点外,两种地不得有其他连通点!功放输出端的茹贝尔(zobel)移相网络(R5、C5)接地点处理方法较特殊,该接地点如并入电源地,地线电压扰动将经R4反馈至LM1875反相输入端,引起交流声;而并入小信号地的话,由于信号的相位、强度不一致,将导致音乐信号质量严重下降。因此,如印刷电路板空间允许,最好能单独走线。

2.3 实际的项目PCB板Layout图来详细说明

1.TDA2030 PCB图:

这张PCB图中,存在明显的地线设计错误,小信号地与电源地完全重合,因此该板必然存在交流噪声,且不受音量电位器控制。图中C2、C3、C4、C5是退耦电容,C7、R2、C6、JP1第一脚、JP2第三脚等五个接地点则属小信号地,大小信号地重叠后通过跳线引至C8、C9的总接地点。同时,zobel移相网络接地点(C1第二脚)也混杂在一条地线上,必然使实际情况更加复杂。

2.LM4766 PCB图:

该图中,C5、C11、C12为OP退耦电容,接地端属电源地,图中用红色细线标记出电流走向;而R5、R6、R7、R9等HPF电路电阻接地端属小信号地,与C5、C11、C12等退耦地共用一条地线走线的话,退耦电容工作电流与地线内阻引起的压降势必会叠加在R5、R6、R7、R9接地端,引发交流声甚至自激。

3.一张地线布线正确的PCB:

这张PCB中,大小信号地严格分开,同时采用了一些其他降噪手段,信噪比例很高,输入端开路时,实测输出端残留噪音不高于0.3mV,夜深人静时耳朵贴在扬声器单元上也没有任何噪声。为看图方便,仅画出一声道的地线做示范。C9、R1、C10及信号输入插座接地端是小信号地,通过红色地线接至总接地点,左侧

地线是扬声器及zobel网络地,右侧地线是退耦电容的电源地,三条地线在主滤波电容C4的1脚汇合,实现真正意义上的“一点接地”。机械噪声 4 热燥声

第四篇:主流功放芯片介绍专题

低档运放JRC4558。这种运放是低档机器使用得最多的。现在被认为超级烂,因为它的声音过于明亮,毛刺感强,所以比起其他的音响用运放来说是最差劲的一种。不过它在我国暂时应用得还是比较多的,很多的四、五百元的功放还是选择使用它,因为考虑到成本问题和实际能出的效果,没必要选择质量超过5532以上的运放。对于一些电脑有源音箱来说,它的应付能力还是绰绰有余的。

运放之皇5532。如果有谁还没有听说过它名字的话,那就还未称得上是音响爱好者。这个当年有运放皇之称的NE5532,与LM833、LF353、CA3240一起是老牌四大名运放,不过现在只有5532应用得最多。5532现在主要分开台湾、美国和PHILIPS生产的,日本也有。5532原来是美国SIGNE公司的产品,所以质量最好的是带大S标志的美国产品,市面上要正宗的要卖8元以上,自从SIGNE被PHILIPS收购后,生产的5532商标使用的都是PHILIPS商标,质量和原品相当,只须4-5元。而台湾生产的质量就稍微差一些,价格也最便,两三块便可以买到了。NE5532的封装和4558一样,都是DIP8脚双运放(功能引脚见图),声音特点总体来说属于温暖细腻型,驱动力强,但高音略显毛糙,低音偏肥。以前不少人认为它有少许的“胆味”,不过现在比它更有胆味的已有不少,相对来说就显得不是那么突出了。5532的电压适应范围非常宽,从正负3V至正负20V都能正常工作。它虽然是一个比较旧的运放型号,但现在仍被认为是性价比最高的音响用运放。是属于平民化的一种运放,被许多中底档的功放采用。不过现在有太多的假冒NE5532,或非音频用的工业用品,由于5532的引脚功能和4558的相同,所以有些不良商家还把4558擦掉字母后印上5532字样充当5532,一般外观粗糙,印字易擦掉,有少许经验的人也可以辨别。据说有8mA的电流温热才是正宗的音频用5532。NE5532还有两位兄弟NE5534和NE5535。5534是单运放,由于它分开了单运放,没有了双运放之间的相互影响,所以音色不但柔和、温暖和细腻,而且有较好的音乐味。它的电压适应范围也很宽,低到正负5V的电压也能保持良好的工作状态。由于以前著名的美国BGW-150功放采用5534作电压激励时,特意让正电源电压高出0.7V,迫使其输出管工作于更完美的甲类状态,使得音质进一步改善,所以现在一般都认为如果让正电源高出0.7V音质会更好。5534的引脚功能见(图),价格和5532相当。而NE5535是5532的升级产品,其特点是内电路更加简洁,且输出级采用全互补结构。转换速率比5532更高。不过有个缺点就是噪声较大,频带不够宽,底电压工作时性能不够好,所以用于模拟滤波时效果不如5532理想。但在工作电压大于或等于15V时用作线形放大电路,音乐味会比5532好一些,所以其价格也比5532要贵两三元,其引脚功能和5532一样。

双运放AD827。这枚是AD公司的较新产品,它原本是为视频电路设计的,所以它的增益带宽达50MHZ,SR达到300V/us,它与EL2244一样都是目前市场上电压反馈型双运放的顶级货,一般的运放难望其项背。其高频经营剔透,低频弹跳感优

越,其性能指标与实际听感全面胜过其他很多同类产品,音质被一些人形容为无懈可击。且在正负5V的供电下仍有优异的性能。但其价格也稍微昂贵,30多元。脚位功能和5532相同。

双运放OP249。该运放是美国PMI公司的产品,厂家声称是用以取代OP215、LT1057等运放的,LT1057是属于动态大,解析力高,音色冷艳清丽的一种,搭配东芝的暖色名管就很合适。而OP249则和它不同,其输入级采用JFET,主要特点是显中性,无什么个性,声音平衡、自然而准确,所以体现了HIFI的真谛。塑封的才15元,陶瓷封装30多元,具有较高的性价比。不过要是对音色的喜好有偏重的朋友可能不大喜欢。

双运放OP275、OP285:它们也是PMI公司的产品,内部电路采用双级型与JFET型混合结构。其音色很有个性,低噪声,声音轮廓鲜明,解析力高,声音柔顺,中频具有胆机柔美润泽的特点,人声亲近。价格适中,而且性能稳定。适合用来打摩声音单薄、毛糙的CD、解码或放大器。它们的封装形式和引脚功能也和5532一样。OP275现在的市面价格为10元、OP285 15元。

顶级运放OPA627。BB公司的OPA627是目前为止最高档的运放,也是采用场效应管输入方式,音色温暖迷人,但其价格简直吓人,达到150元,所以不是顶级的机器一般不会用到这么昂贵的运放,性能上是否能达到这个价格也见仁见智,不过听过OPA627的发烧友都一致认为AD827、LT1057等根本无法与之比拟。胆味运放OPA604与 OPA2604。这两种运放都是Burr Brown公司的产品,OPA604为单运放,OPA2604为双运放。它们都是专为音频而设计的专用运放,音色醇厚、圆润,中性偏暖、胆味甚浓,是被誉为最有电子管音色的运算放大器。当年的价格也不低,但还是被许多音响发烧友选为摩机升级机器的对象。现在这两种运放的价格都已较为合理,OPA604为25元,OPA2604要40多元,发烧友用来摩机是不错的选择。

07.10.10

1.音频功率放大集成电路 音响系统中使用的音频功率放大集成电路除上述介绍的厚膜功率放大集成电路外,还有半导体运算功率放大集成电路(具有高放大倍数并有深度负反馈的直接耦合放大器).常用的音频功率放大集成电路有TA7227、TA7270、TA7273、TA7240P、TDA1512、TDA1520、TDA1521、TDA1910、TDA2003、TDA2004、TDA2005、TDA2008、TDA1009、TDA7250、TDA7260、μPC1270H、μPC1185、μPC1242、HA1397、HA1377、AN7168、AN7170、LA4120、LA4180、LA4190、LA4420、LA4445、LA4460、LA4500、LM12、LM1875、LM2879、LM3886等型号.2.数码延时集成电路 数码延时集成电路主要用于卡接OK系统中,其内部通常由滤波器、A/D转换器、D/A转换器、存储器、主逻辑控制电路、自动复位电路等组成.常用的数码延时集成电路有YX8955、TC9415、IN706、ES56033、CXA1644、CU9561、BU9252、BA5096、PT2398、PT2395、GY9403、GY9308、YSS216、M65850P、M65840、M65835、M65831、M50199、M50195、M50194等型号.3.二声道三维环绕声处理集成电路 音响系统中使用的二声道三维(3D)环绕声系统有SRS、Spatializer、Q Surround、YMERSION TM和虚拟杜比环绕声系统.常用的SRS处理集成电路有SRSS5250S、NJM2178等型号.Spatializer处理集成电路有EMR4.0、PSZ740等型号.Q Surround处理集成电路有QS7777等型号.YMERSION TM处理集成电路有YSS247等型号.4.杜比定向逻辑环绕声解码集成电路 杜比定向逻辑环绕声解码系统是将经过杜比编码处理过的左、右二声迹信号解调还原成四声道(前置左、右声道和中置声道、后置环绕声道)音频信号.常用的杜比定向逻辑环绕声解码集成电路有M69032P、M62460、LA2785、LA2770、NJW1103、YSS215、YSS241B、SSM-2125、SSM-2126等型号.5.数码环绕声解码集成电路 音响系统中使用的数码环绕声系统有杜比数码(AC-3)系统和DTS系统等,两种系统音频信号的记录与重放均为独立六声道(即5.1声道,包括前置左、右声道和中置、左环绕、右环绕、超重低音声道).常用的杜比数码环绕声解码集成电路有YSS243B、YSS902等型号.常用的DTS数码环绕声解码集成电路有DSP56009、DSP56362、CS4926等型号.BBE音质增强集成电路有BA3884、XR1071、XR1072、XR1075、M2150A、NJM2152等型号.7.电子音量控制集成电路 电子音量控制集成电路是采用直流电压或串行数据控制的可调增益放大器,其内部一般衰减器、锁存器、移位寄存器、电平转换电路等组成.常用的电子音量控制集成电路有TA7630P、TC9154P、TC9212P、LC7533、XR1051、M51133P、AN7382、TCA730A、TDA1524A、LM1035、LM1040、M62446等型号.8.电子转换开关集成电路 电子转换开关集成电路是采用直流电压或串行数据控制的多路电子互锁开关集成电路,内部一般由逻辑控制、电平转换、锁存器、变换寄存器、模拟开关等电路组成.常用的电子转换开关集成电路有LC7815(双4路)、LC7820(双10路)、LC7823(双7路)、TC9162N(双7路)、TC9163N(双8路)、TC9164N(双8路)、TC9152P(双5路)和TC4052BP(双4路)等型号.9.扬声器保护集成电路 扬声器保护集成电路可以在功放电路出现故障、过载或过电压时,将扬声器系统与功放电路断开,从而达到保护扬声器和功放电路的目的.扬声器保护集成电路内部一般由检测电路、触发器、静噪电路及继电器驱动电路等组成.常用的扬声器保护集成电路有TA7317、HA12002、μPC1237等型号.10.前置放大集成电路 前置放大集成电路属于低噪声、低失真、高增益、宽频带的运算放大器,有较高的输入阻抗和良好的线性.常用的前置放大集成电路有NE5532、NE5534、NE5535、OP248、TL074、TL082、TL084、LM324、LM381、LM382、LM833、LM837等型号.秀涛电子 www.xiexiebang.com更多资料请查看官方网站

TDA8920 2 x 50 W class-D power amplifier

NXP Semiconductors

TDA8920B 2 X 100 W class-D power amplifier

TDA8920BJ 2 X 100 W class-D power amplifier

TDA8920BTH 2 X 100 W class-D power amplifier

TDA8920J 2 x 50 W class-D power amplifier

TDA8920TH 2 x 50 W class-D power amplifier

TDA8922 2 x 25 W class-D power amplifier

TDA8922B 2 X 50 W class-D power amplifier

TDA8922BJ 2 X 50 W class-D power amplifier

TDA8922BTH 2 X 50 W class-D power amplifier

TDA8922J 2 x 25 W class-D power amplifier

TDA8922TH 2 x 25 W class-D power amplifier

TDA8924 2 x 120 W class-D power amplifier

TDA8924TH 2 x 120 W class-D power amplifier

TDA8925 Power stage 2 x 15 to 25Wclass-D audio amplifier

TDA8925J Power stage 2 x 15 to 25Wclass-D audio amplifier

TDA8925ST Power stage 2 x 15 to 25Wclass-D audio amplifier

TDA8926 Power stage 2 x 50 W class-D audio amplifier

TDA8926J Power stage 2 x 50 W class-D audio amplifierTDA8927 Power stage 2 x 80 W class-D audio amplifierTDA8927J Power stage 2 x 80 W class-D audio amplifierTDA8927ST Power stage 2 x 80 W class-D audio amplifierTDA8927TH Power stage 2 x 80 W class-D audio amplifierTDA8928J Power stage 2 x 10 or 1 x 20 W class-D audio amplifieTDA8928ST Power stage 2 x 10 or 1 x 20 W class-D audio amplifieTDA8929 Controller class-D audio amplifierTDA8929T Controller class-D audio amplifierTDA8931 Power comparator 1 X 20 WTDA8931T Power comparator 1 X 20 WTDA8939 Zero dead time Class-D 7.5 A power comparator

TDA8939TH Zero dead time Class-D 7.5 A power comparator

NXP SemiconductorsTDA8941 1.5 W mono Bridge Tied Load BTL audio amplifierTDA8941P 1.5 W mono Bridge Tied Load BTL audio amplifierTDA8942 2 x 1.5 W stereo Bridge Tied Load BTL audio amplifierTDA8942P 2 x 1.5 W stereo Bridge Tied Load BTL audio amplifierTDA8943 6 W mono Bridge Tied Load BTL audio amplifierTDA8943SF 6 W mono Bridge Tied Load BTL audio amplifierTDA8944 2 x 7 W stereo Bridge Tied Load BTL audio amplifierTDA8944J 2 x 7 W stereo Bridge Tied Load BTL audio amplifierTDA8945 15 W mono Bridge Tied Load BTL audio amplifierTDA8945S 15 W mono Bridge Tied Load BTL audio amplifierTDA8946 2 x 15 W stereo Bridge Tied Load BTL audio amplifierTDA8946J 2 x 15 W stereo Bridge Tied Load BTL audio amplifierTDA8947J 4-channel audio amplifier(SE: 1 W to 25 W;BTL: 4 W to 50 W)TDA8960 ATSC 8-VSB demodulator and decoderTDA8961 ATSC Digital Terrestrial TV demodulator/decoderTDA8961 ATSC/NTSC digital TV front-end chipsetTDA8980 ATSC/NTSC digital TV front-end chipset

397 TDA7240AH 20WBRIDGE AMPLIFIER FOR CAR RADIO

STMicroelectronics

396 TDA7240AV 20WBRIDGE AMPLIFIER FOR CAR RADIO

395 TDA7241 20W BRIDGE AMPLIFIER FOR CAR RADIO

394 TDA7241B 20W BRIDGE AMPLIFIER FOR CAR RADIO

393 TDA7241BH 20W BRIDGE AMPLIFIER FOR CAR RADIO

392 TDA7245 5W AUDIO AMPLIFIER WITH MUTING AND STAND-BY

391 TDA7245A 6W AUDIO AMPLIFIER WITH STAND-BY

390 TDA7250 6W AUDIO AMPLIFIER WITH STAND-BY

389 TDA7253 8W AMPLIFIER WITH MUTING

388 TDA7253L 6W AMPLIFIER WITH MUTING

387 TDA7255 22W FRONT REAR OR BRIDGE FULLY PROTECTED CAR RADIO AMPLIFIER

386 TDA7256 30W BRIDGE CAR RADIO AMPLIFIER

385 TDA7261 25W MONO AMPLIFIER WITH MUTE/ST-BY

384 TDA7262 20+20W STEREO AMPLIFIER WITH STAND-BY

383 TDA7263 12+12W STEREO AMPLIFIER WITH MUTING

382 TDA7263L 6 + 6W STEREO AMPLIFIER WITH MUTING

381 TDA7263M 12+12W STEREO AMPLIFIER WITH MUTING

STMicroelectronics

380 TDA7264 25+25W STEREO AMPLIFIER WITH MUTE/ST-BY

379 TDA7264A 25+25W STEREO AMPLIFIER WITH MUTE/ST-BY

378 TDA7265 25 +25W STEREO AMPLIFIER WITH MUTE & ST-BY

377 TDA7265SA 18W+18W STEREO AMPLIFIER WITH MUTE & ST-BY

376 TDA7266 7+7W DUAL BRIDGE AMPLIFIER

375 TDA7266 7+7W DUAL BRIDGE AMPLIFIER

374 TDA7266 7W+7W DUAL BRIDGE AMPLIFIER

373 TDA7266-J15-A-T 7+7W DUAL BRIDGE AMPLIFIER

372 TDA7266B 10+10W DUAL BRIDGE AMPLIFIER

STMicroelectronics

371 TDA7266B 7W+7W DUAL BRIDGE AMPLIFIER

370 TDA7266D 5W+5W DUAL BRIDGE AMPLIFIER

369 TDA7266L 5W MONO BRIDGE AMPLIFIER

368 TDA7266L-J15-A-T 7+7W DUAL BRIDGE AMPLIFIER

TDA7266M 7W MONO BRIDGE AMPLIFIER

STMicroelectronics

366 TDA7266M 7W+7W DUAL BRIDGE AMPLIFIER

365 TDA7266MA 7W+7W DUAL BRIDGE AMPLIFIER

364 TDA7266P 3+3W DUAL BRIDGE AMPLIFIER

363 TDA7266S 5+5W DUAL BRIDGE AMPLIFIER

362 TDA7266S 7W+7W DUAL BRIDGE AMPLIFIER

361 TDA7266SA 7W+7W DUAL BRIDGE AMPLIFIER

360 TDA7267 2W MONO AMPLIFIER

359 TDA7267A 3W MONO AMPLIFIER

358 TDA7268 2 x 2W STEREO AUDIO AMPLIFIER

357 TDA7269 10+10W STEREO AMPLIFIER WITH MUTE & ST-BY

356 TDA7269A 14+14W STEREO AMPLIFIER WITH MUTE & ST-BY

355 TDA7269ASA 14W+14W STEREO AMPLIFIER WITH MUTE & ST-BY

354 TDA7269SA 10W+10W STEREO AMPLIFIER WITH MUTE & ST-BY

353 TDA7272A HIGH PERFORMANCE MOTOR SPEED REGULATOR

352 TDA7273 SINGLE CHIP STEREO CASSETTE PLAYBACK SYSTEM

351 TDA7273D SINGLE CHIP STEREO CASSETTE PLAYBACK SYSTEM

350 TDA7274 LOW-VOLTAGE DC MOTOR SPEED CONTROLLER

349 TDA7275A MOTOR SPEED REGULATOR

348 TDA7278 HIGH-EFFICIENCY CD ACTUATOR DRIVER

347 TDA7282 DUAL LOW-VOLTAGE POWER AMPLIFIER

346 TDA7284 RECORD/PLAYBACK CIRCUIT WITH ALC

STMicroelectronics

345 TDA7284D RECORD/PLAYBACK CIRCUIT WITH ALC

344 TDA7285 STEREO CASSETTE PLAYER AND MOTOR SPEED CONTROLLER

343 TDA7285D STEREO CASSETTE PLAYER AND MOTOR SPEED CONTROLLER

342 TDA7286 SINGLE CHIP PREAMPLIFIER FOR DOUBLE DECK RADIO CASSETTE RECORDER

341 TDA7286D SINGLE CHIP PREAMPLIFIER FOR DOUBLE DECK RADIO CASSETTE RECORDER

340 TDA7293 120V100W DMOS AUDIO AMPLIFIER WITH MUTE/ST-BY

338 TDA7293HS 120V-100W DMOS AUDIO AMPLIFIER WITH MUTE/ST-BY

第五篇:功放芯片与效果器芯片简介

几款功放芯片与效果器芯片简介

2010-11-27 14:46

http://更多优惠天成批发商城

TDA1521/TDA1514A

TDA1521/TDA1514A是荷兰飞利浦公司专门为数字音响在播放时的低掉真度及高稳度而设计推出的两款芯片。所以用来接驳CD机直接输出的音质出格好。此中的参数为:TDA1521在电压为±16V、阻抗为8Ω时,输出功率为2×15W,此时的掉真仅为0.5%。TDA1514A的工作电压为±9V~±30V,在电压为±25V、RL=8Ω时,输出功率达到50 W,总谐波掉真为0.08%。输入阻抗20KΩ, 输入灵敏度600mV,信嘈比达到85dB。其电路设有等待、静嘈状态,具有过热庇护,低掉调电压高纹波按捺,而且热阻极低,具有极佳的高频解析力和低频力度。其音色通透纯正,低音力度丰满厚实,高音清亮明快,很有电子管的韵味。以上两款功放的外围零件都比力少,是“傻瓜”型的功放芯片,非常适合初级发烧友组装,只要按照电路图,不需调试就可获得很好的效果。由于该芯片的输入电平比力低,我们在制作是不需前置放大器,只要直接接到我们的电脑声卡、光驱、随身听上即可。著名的电脑多媒体音箱安步者也是采用这两种芯片。

LM3886

LM38863TF是美国NS公司(美国国家半导体公司)于90年代初推出的一款大功率音频功放芯片。该芯片的主要参数:工作电压为±9V~±40V(保举±25V~±35V)RL=8Ω时的持续输出功率达到68W(峰值135 W)。如果接成BLT时的输出功率可以达到100W,而它的掉真小于0.03%,其内部设计有非常完善的过耗庇护电路。本人也在使用使芯片,它的音色非常甜美,音质醇厚,颇有电子管的韵味,适合播放比力柔和的音乐。NS公司还有LM1875、LM1876、LM4766等大师都熟悉的芯片,此中LM4766是最新的,为双声道设计,内含过压、欠压、过载、超温等庇护电路。其输出功率不小于2×40W.低音深沉而有弹性,颇具胆机的风格。

TDA7294

TDA7294是欧洲著名的SGS-THOMSON意法微电子公司于90年代向中国大陆摧出的一款颇有新意的DMOS大功率的集成功放电路。它一扫以往线性集成功放和厚膜集成的生、冷、硬的音色,广泛应用于HI-FI规模:如家庭影院、有源音箱等。该芯片的设计以音色为重点,兼有双极信号措置电路和功率MOS的长处。具有耐高压、低噪音、低掉真度、重放音色极具亲和力等特色;短路电流及过热庇护功能使其性能更完善。TDA7294的主要参数:Vs(电源电压)=±10~±40V;Io(输出电流峰值)为10安培;Po(RMS持续输出功率)在Vs=±35V、8Ω时为70W,Vs=±27V、4Ω时为70W;音乐功率(有效值)Vs=±38V、8Ω时为100W,Vs=±29V、4Ω时为100W。总谐波掉真极低,仅为0.005%。此外,SGS-THOMSON意法微电子公司还有几种代表作的功放芯片,如:TDA7295 TDA7296 TDA7264、TDA2030A(我们常用的麦蓝低音炮就是采用此芯片)等。

LM4610N

LM4610是美国国家半导体公司的高品质直流控制音响电路。它是一块操纵直流电压控制调子、音量和声道平衡的立体声集成电路,而且具有3D音场措置、等响度抵偿功能。该电路控制光滑流畅,音质自然流畅,高频清晰、解析力佳,其发生的3D环绕声场具有很强的三维空间感和包抄感,主不雅观感受与SRS的效果类似。LM4610N的主要电气参数如下:具有3 D声场措置功能和响度抵偿功能。响度抵偿是针对人耳在音量较小时对凹

凸频信号的灵敏度下降,因而在分歧音量时对高、低频端作适度的提升抵偿,使人耳在任何响度下始终听到平坦、均衡的响应。它的电压规模是:9V~16V(典型为12伏,电流为35毫安);掉真度仅0.03%;信嘈比高达80dB;频宽达250 kHz,音量调节为75dB;平衡调节为1~20dB;调子调节规模为±15dB;最大增益2dB;LM4610N具有输入阻抗高(30Ω),输出电阻低(20Ω)的长处。用LM6410N调子控制电路对提高音质和加强低频力度及三维空间感感化突出。可以说LM4610N是组装功放系统或替换调音部门的精品。

BBE技术

BBE是一种声音增强和改善的专利技术。它的全称是Barcus-BerryElectronice,是美国BBE.sound公司于1985年开始就推出市场的新技术。一呈现就得到广泛的应用,好比国外的松下、索尼,国内的TCL、创维、乐华等新一代彩电。在灌音和唱片上也纷纷操纵BBE技术,而一些广播电台如加拿大的广播公司、瑞士国际广播、韩国广播及日本的NHK当局开通的广播电视系统,都应用了这种技术。高解析力BBE电路XR1075 XR1075是美国XEAR公司最新推出的高解析力 BBE芯片。是在XR1071的根本上,采用新的双极性技术,使其芯片的噪声系数更低、总谐波掉真更小,而芯片的体积更小,外围元件进一步简化,凹凸频延伸、高频解析力增强调节规模和低频抵偿规模均比XR1071更宽。高频调节规模-0.5~+13 db,低频抵偿调节规模-0.5~+13db.数码超重低音措置器M51134P M51134P

是日本三菱公司专门为AV影音系统开发的专用超低音检测加强电路。其内部包罗:频率检测、调整器、电平检测、低通滤波VCA压控放大等。道理是采用数码滤波方式检测输入信号中的低频成分的电平的凹凸,加强相应低频成分并进行低频动态扩展(又压控放大器完成),其道理与一般的低通滤波器形式的重低音加强电路分歧。M51134P供给的重低音效果有强烈的震撼感,出格是雷声、炮声、爆炸声等尤为突出。M51134P只是检测低于120Hz的信号,如果输入信号中没有低于120Hz的成分,则没有输出。

最新尺度虚拟杜比环绕声芯片QS7779/QS7785

QS7779/QS7785是加拿大Qsound音频尝试室推出的单片虚拟化环绕音效措置电路,是目前业界公认的措置效果最接近自然原声的虚拟杜比环绕芯片!QS7779为2入2出方式,QS7785为2入5出,两者内部都包罗了杜比定向逻辑和DVD(AC-3)混合信号解码器,使用Qsound尝试室的专利Qsurround虚拟环绕技术,并由Qsound尝试室授权使用,该芯片的主要功能是:(1)如果输入的是普通的立体声信号,则进行立体声效果增强:(2)如果输入的是2声道的矩阵编码信号(杜比定向逻辑或混合AC-3信号)则先将其解码,再虚拟化合成2声道或5声道输出。QS7779主要特点: 1.内带杜比定向逻辑和 DVD(AC-3)混合信号解码输器,使用2只扬声器实现虚拟化环绕声。2.信噪比11db, 动态规模

110db.QS7785主要特点: 1.内带杜比定向逻辑和 DVD(AC-3)混合信号解码输器,解出的环绕信号为2声道全频带,和AC-3环绕声不异,优于杜比定向逻辑系统。2.前方采用3 D立体声增强技术,后方采用3D合成虚拟环绕技术,分两种增强方式(低增强和高增强),具有中置输出及低音增强功能。3.使用5声道实现环绕声,也可用2声道输出方式。4..信噪比11db, 动态规模110db

运放(运算放大器)我们常见或常用到有:4558(比力便宜一般用于一些随身听)。

NE5532曾经被誉为运算放大器之皇。AD712K.AD827(非常不错的运放在市面上很难买到正货,传闻定货也要等三个月。市面价大约100元每块).以上的都是双运放,还有四运放如:TL084.LT058 等等.TDA1521/TDA1514A是荷兰飞利浦公司专门为数字音响在播放时的低掉真度及高稳度而设计推出的两款芯片。所以用来接驳CD机直接输出的音质出格好。此中的参数为:

TDA1521在电压为±16V、阻抗为8Ω时,输出功率为2×15W,此时的掉真仅为0.5%。TDA1514A的工作电压为±9V~±30V,在电压为±25V、RL=8Ω时,输出功率达到50 W,总谐波掉真为0.08%。输入阻抗20KΩ, 输入灵敏度600mV,信嘈比达到85dB。其电路设有等待、静嘈状态,具有过热庇护,低掉调电压高纹波按捺,而且热阻极低,具有极佳的高频解析力和低频力度。其音色通透纯正,低音力度丰满厚实,高音清亮明快,很有电子管的韵味。以上两款功放的外围零件都比力少,是“傻瓜”型的功放芯片,非常适合初级发烧友组装,只要按照电路图,不需调试就可获得很好的效果。由于该芯片的输入电平比力低,我们在制作是不需前置放大器,只要直接接到我们的电脑声卡、光驱、随身听上即可。著名的电脑多媒体音箱安步者也是采用这两种芯片。

LM3886

LM38863TF是美国NS公司(美国国家半导体公司)于90年代初推出的一款大功率音频功放芯片。该芯片的主要参数:工作电压为±9V~±40V(保举±25V~±35V)RL=8Ω时的持续输出功率达到68W(峰值135 W)。如果接成BLT时的输出功率可以达到100W,而它的掉真小于0.03%,其内部设计有非常完善的过耗庇护电路。本人也在使用使芯片,它的音色非常甜美,音质醇厚,颇有电子管的韵味,适合播放比力柔和的音乐。NS公司还有LM1875、LM1876、LM4766等大师都熟悉的芯片,此中LM4766是最新的,为双声道设计,内含过压、欠压、过载、超温等庇护电路。其输出功率不小于2×40W.低音深沉而有弹性,颇具胆机的风格。

TDA729

4TDA7294是欧洲著名的SGS-THOMSON意法微电子公司于90年代向中国大陆摧出的一款颇有新意的DMOS大功率的集成功放电路。它一扫以往线性集成功放和厚膜集成的生、冷、硬的音色,广泛应用于HI-FI规模:如家庭影院、有源音箱等。该芯片的设计以音色为重点,兼有双极信号措置电路和功率MOS的长处。具有耐高压、低噪音、低掉真度、重放音色极具亲和力等特色;短路电流及过热庇护功能使其性能更完善。TDA7294的主要参数:Vs(电源电压)=±10~±40V;Io(输出电流峰值)为10安培;Po(RMS持续输出功率)在Vs=±35V、8Ω时为70W,Vs=±27V、4Ω时为70W;音乐功率(有效值)Vs=±38V、8Ω时为100W,Vs=±29V、4Ω时为100W。总谐波掉真极低,仅为0.005%。此外,SGS-THOMSON意法微电子公司还有几种代表作的功放芯片,如:TDA7295 TDA7296 TDA7264、TDA2030A(我们常用的麦蓝低音炮就是采用此芯片)等。

LM4610NLM4610是美国国家半导体公司的高品质直流控制音响电路。它是一块操纵直流电压控制调子、音量和声道平衡的立体声集成电路,而且具有3D音场措置、等响度抵偿功能。该电路控制光滑流畅,音质自然流畅,高频清晰、解析力佳,其发生的3D环绕声场具有很强的三维空间感和包抄感,主不雅观感受与SRS的效果类似。LM4610N的主要电气参数如下:具有3 D声场措置功能和响度抵偿功能。响度抵偿是针对人耳在音量

较小时对凹凸频信号的灵敏度下降,因而在分歧音量时对高、低频端作适度的提升抵偿,使人耳在任何响度下始终听到平坦、均衡的响应。它的电压规模是:9V~16V(典型为12伏,电流为35毫安);掉真度仅0.03%;信嘈比高达80dB;频宽达250 kHz,音量调节为75dB;平衡调节为1~20dB;调子调节规模为±15dB;最大增益2dB;LM4610N具有输入阻抗高(30Ω),输出电阻低(20Ω)的长处。用LM6410N调子控制电路对提高音质和加强低频力度及三维空间感感化突出。可以说LM4610N是组装功放系统或替换调音部门的精品。

BBE技术

BBE是一种声音增强和改善的专利技术。它的全称是Barcus-BerryElectronice,是美国BBE.sound公司于1985年开始就推出市场的新技术。一呈现就得到广泛的应用,好比国外的松下、索尼,国内的TCL、创维、乐华等新一代彩电。在灌音和唱片上也纷纷操纵BBE技术,而一些广播电台如加拿大的广播公司、瑞士国际广播、韩国广播及日本的NHK当局开通的广播电视系统,都应用了这种技术。高解析力BBE电路XR1075 XR1075是美国XEAR公司最新推出的高解析力 BBE芯片。是在XR1071的根本上,采用新的双极性技术,使其芯片的噪声系数更低、总谐波掉真更小,而芯片的体积更小,外围元件进一步简化,凹凸频延伸、高频解析力增强调节规模和低频抵偿规模均比XR1071更宽。高频调节规模-0.5~+13 db,低频抵偿调节规模-0.5~+13db.数码超重低音措置器M51134P M51134P

是日本三菱公司专门为AV影音系统开发的专用超低音检测加强电路。其内部包罗:频率检测、调整器、电平检测、低通滤波VCA压控放大等。道理是采用数码滤波方式检测输入信号中的低频 成分的电平的凹凸,加强相应低频成分并进行低频动态扩展(又压控放大器完成),其道理与一般的低通滤波器形式的重低音加强电路分歧。M51134P供给的重低音效果有强烈的震撼感,出格是雷声、炮声、爆炸声等尤为突出。M51134P只是检测低于120Hz的信号,如果输入信号中没有低于120Hz的成分,则没有输出。

最新尺度虚拟杜比环绕声芯片QS7779/QS778

5QS7779/QS7785是加拿大Qsound音频尝试室推出的单片虚拟化环绕音效措置电路,是目前业界公认的措置效果最接近自然原声的虚拟杜比环绕芯片!QS7779为2入2出方式,QS7785为2入5出,两者内部都包罗了杜比定向逻辑和DVD(AC-3)混合信号解码器,使用Qsound尝试室的专利Qsurround虚拟环绕技术,并由Qsound尝试室授权使用,该芯片的主要功能是:(1)如果输入的是普通的立体声信号,则进行立体声效果增强:(2)如果输入的是2声道的矩阵编码信号(杜比定向逻辑或混合AC-3信号)则先将其解码,再虚拟化合成2声道或5声道输出。QS7779主要特点: 1.内带杜比定向逻辑和 DVD(AC-3)混合信号解码输器,使用2只扬声器实现虚拟化环绕声。2.信噪比11db, 动态规模

110db.QS7785主要特点: 1.内带杜比定向逻辑和 DVD(AC-3)混合信号解码输器,解出的环绕信号为2声道全频带,和AC-3环绕声不异,优于杜比定向逻辑系统。2.前方采用3 D立体声增强技术,后方采用3D合成虚拟环绕技术,分两种增强方式(低增强和高增

强),具有中置输出及低音增强功能。3.使用5声道实现环绕声,也可用2声道输出方式。4..信噪比11db, 动态规模110db

运放(运算放大器)我们常见或常用到有:4558(比力便宜一般用于一些随身听)。

NE5532曾经被誉为运算放大器之皇。AD712K.AD827(非常不错的运放在市面上很难买到正货,传闻定货也要等三个月。市面价大约100元每块).以上的都是双运放,还有四运放如:TL084.LT058 等等.在音响中,功放是担任『讯号放大』的功能,由于他不做换能工作,因此就电器设计理论而言,功放不需要高深的技术,而且他的制造出产设备可以最简单,测试调校仪器的需求也是最普通。当然,设计是一回事,制造又是一回事,音色的好坏又是一回事。有些厂商把机器制做的很复杂,代价卖的很贵,音色自然也不错;而有些厂商把机器做的非常小,内部也很单,代价卖的很公共化,音色也不差。在这种情况下,身为消费者要如何来选购功放?可以有以下的建议:一个是驱动能力(即功率多少),另一个是主动原件(便是胆机还是晶体管机)。功放可大致区分为几大派系,首先我们先来讲讲英国派:这个地域,由于国情保守,所以所设计的功放输出功率都不高,出格是归并功放(integrate damplifier)这是英国厂家最拿手的杰作,其输出功率一般都不会超过70W X 2以上。而美国功放则完全是「地大物博」的表示,200W X 2仅是尺度数值.这种分袂相当显然,相信您到音响店看一看就可以很快发现这样的情况。而输出功率和驱动能力之间则是十分微妙的.讲到「输出功率」的凹凸与「驱动能力」的强弱,两者固然没有绝对的关系,但却有相对的联系。输出功率很容易从数字显示,50W,100W,200W甚至更多,但是驱动能力的辨识就得依靠慧眼,甚至得真正试过才知道了。后级「功率」功放的驱动对象是喇叭,驱动能力越强,也就暗示越能压得住喇叭。当然您会问,什么样的喇叭很难推?我的观点是:低效率的(86db以下的),低阻抗的(4欧或以下的),静电式和铝带式等等,都是很考你所选择的功放的。而功放的驱动能力则完全表此刻电流的供给上,电压X电流,就是真正的「功率」.如果有一部功放,其功率标称是100W X 2(8Ω),200W X 2(4Ω),400W X 2(2Ω),我们凡是称他是「大电流」设计,这种功放的驱动能力就会比力强,但是环顾您四周的使用者,能达到「功率倍增」的功放,往往都是MADE IN U.S.A.;而英国或是日本的产物,在这一方面就显的比力弱一些。因为大电流功放设计并不容易,输出级,电源供应部,都要非常讲究,故大电流功放在机体上都不容易迷你小巧,英国归并功放在功率,体型上固然比不上美国产物,但是因为走的路线分歧,当在斗室间驱动喇叭时,他们的表示,也有令人称道之处。而日产功放虽在Hi-end市场上一直无法安身。初入门者却往往会考虑采办日产功放。这是因为日本厂商也有它的绝活,出格是带DOLBY PROLOGIC, AC-3, THX,DTS的AV环绕功放,在AV的规模,百分之九十以上都是MADE IN JAPAN。所以各国各派都是各走各的LM1875最常用的功放芯片之一,为单声道设计,不仅具有音质醇厚功率大的长处,还具

有完整的庇护电路,在同类型芯片中属于高档型号...功放芯片就好象是多媒体音箱的“心脏”,是为音箱供给动力的部件,也是关系到音质的重要环节之一,所以很多伴侣都想一探究竟,以下为小编搜集来的常见多媒体音箱功放芯片资料(国半篇),但愿能给大师一点参考价值。

1,LM1875

LM1875最常用的功放芯片之一,为单声道设计,不仅具有音质醇厚功率大的长处,还具有完整的庇护电路,在同类型芯片中属于高档型号,好比说老版的惠威D1080就使用了这个芯片。可惜的是这款芯片已经公布颁发停产(传说风闻),众多使用LM1875的音箱型号也纷纷升级,使用了代换芯片。

此外DIY的伴侣,采办零件时要注意,由于LM1875单价较高,所以仿冒者很多,分袂起来也比力困难,这方面常识以后将单独撰文说明。

2,LM3886

LM3886同样是单声道设计,共有11个引脚,相对LM1875来说,LM3886具有更大的功率,更宽的动态,在其它参数上也有优势,所以只有最高端多媒体音箱才会采用LM3886做为功放芯片,此外甚至在HI-FI功放里面也经常见到它的身影,可见LM3886本质的优秀。

3,LM1876

LM1876在多媒体音箱中使用并不多,但也是国半的经典功放芯片之一,它的音色表示和LM1875如出一辙,但是为双声道设计,同时功率也要大一点,很适合DIY。4,LM4766

网上凡是的说法是,LM4766等于将两个LM3886封装在一起,这样说是比力形象的,从性能参数来看,LM4766刚好和LM3886相当,甚至音色表示也如出一辙。不外DIY的伴侣要注意了,LM4766引脚较多,具有“蜈蚣芯片”的“美称”,在业余情况的焊接下,具有必然的难度。

好了,常见多媒体音箱功放芯片资料(国半篇)就介绍到这里,请关注我们近期的:常见多媒体音箱功放芯片资料(意法[ST]篇)。

尝试10.TDA7294 发烧级功放制作

TDA7294是欧洲著名的SGS-THOMSON意法微电子公司于90年代向中国大陆推出的一款颇有新意的场效应大功率的集成功放电路。它一扫以往线性集成功放和厚膜集成的生、冷、硬的音色,颇具电子管功放韵味,并广泛应用于HI-FI规模:如家庭影院、有源音箱等。迄今为止,可以说它是目前世界上为数不多的最好的功放集成电路之一。

该芯片的设计以音色为重点,兼有双极信号措置电路和功率MOS的长处。具有耐高压、低噪音、低掉真度、重放音色极具亲和力等特色;而且具有静音待机功能,短路电流及过热庇护功能使其性能更完善,有关电器参数如下。

工作电压规模:(VCC+VEE)=80V

输出功率:高达100W

电压规模:|VCC|+|VEE|=20V-80V

下载功放心得体会word格式文档
下载功放心得体会.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    教学移频功放说明书

    DSP-AP2100数字教学功放说明书 特点: 无需佩戴领夹。 无需安装电池。 讲台安装4只界面话筒,即可实现在讲台全面拾音。 DSP-AP2100教学数字移频功放是本公司结合中国国情和学校......

    车载超短波电台功放技术指标

    车载超短波电台 功放技术指标 主要技术要求 2.1 主要功能  完成激励信号放大;  具有正反向功率检测功能;  具有驻波比检测功能;  具有温度检测功能;  具有自检功能。 2.2 指标......

    音乐功放与AV功放的区别

    什么是前极? 前置放大器:接在音源和功率放大器之间。别名:前级 什么是后极? 功率放大器:接在音箱之前,能驱动音箱。别名:后级、功放、纯功放等 它们的功能: 前级主要是后级功放提......

    音频功放电路教学项目设计(★)

    音频功放电路教学项目设计 韩焰林 广州城建职业学院 摘要:配合音频技术实践教学及培养学生工程实践能力的要求,设计以TDA7250为核心的音频功放电路实习制作项目,并介绍音频功......

    几款功放芯片与效果器芯片简介

    几款功放芯片与效果器芯片简介 TDA1521/TDA1514ATDA1521/TDA1514A是荷兰飞利浦公司专门为数字音响在播放时的低失真度及高稳度而设计推出的两款芯片。所以用来接驳CD机直接......

    电子工艺实训报告书(功放版)

    韶 关 学 院 课程设计报告书 课程名称:电子工艺实训 题目:TDA2822双声道小功率集成功放制作 学生姓名: 学号: 院系:物理与机电工程学院 专业班级:13级机制(5)班 指导教师姓名及职称:......

    模电课程设计论文-音频功放电路

    序号课 程 论 文 课程名称 论文题目 学 院 专业班级 学 号 姓 名 联系方式 模电课程设计 音频功率放大电路 2013 年 6 月 10 日 一、设计题目: 音频功率放大电路 二、设计任......

    用Altium Protel DXP设计制作单面印制电路板(TDA2030功放)、心得体会

    用Altium Protel DXP设计制作单面印制电路板(TDA2030功放) 这是网上别人卖成品功放TDA2030电路板的样子 电源部分电路:(变压器没画) 功放电路部分:(其实音频输出端还有个耳机插孔......