第一篇:2017年山西教师招聘面试《平行线的性质(一)》教案
山西《平行线的性质(一)》教案
一、教学目标
【知识与技能】探索并掌握平行线的性质,能用平行线的性质定理进行简单的计算、证明。
【过程与方法】1.经历探索直线平行的性质的过程,掌握平行线的三条性质,并能用它们进行简单的推理和计算。2.经历观察、操作、想像、推理、交流等活动,进一步发展空间观念,推理能力和有条理表达能力。
【情感态度价值观】
通过师生的共同活动,促使在学习活动中培养良好的情感、合作交流、主动参与的意识,在独立思考的同时能够认识他人。
二、教学重、难点
重点:平行线的性质定理及其应用
难点:平行线性质定理的应用以及平行线的性质定理和判定定理的区别和联系。
三、教学过程
(一)复习旧知识,提出问题
提问:上一节课我们学习过平行线的判定定理,平行线的判定定理是什么? 预设:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行
问题:平行线的判定定理是已知角的关系,得到两条直线平行的关系。如果我们已知两条直线平行,能够得到一些角的关系吗?(二)探索新知,实验猜想
1.让学生画图活动用直尺和三角板画两条平行线a//b,再画一条截线c与a,b相交,标出所形成的8个角中的同位角,山西教师招聘网
2.测量这些角的度数,把结果填在下列表格中,然后找出自己得到得结论。
同样的填写内错角,同旁内角的表格,提出我们的猜想:两平行直线被第三条直线所截得的同位角相等,内错角相等,同旁内角互补。
【设计意图】探究平行线的性质是本节的重点,让学生充分经历操作--独立思考--合作交流--得出猜想的探究过程,突出重点,锻炼学生的归纳,表达能力,鼓励学生敢于发表自己的观点。验证猜测
再任意画一条截线,度量并计算角的度数,看看你的猜想是否还成立。
【结果】两平行直线被第三条直线所截得的同位角相等,内错角相等,同旁内角互补。【设计意图】为了避免特殊性,再对一般的情形进行验证。(三)归纳性质,说理证明 1.归纳总结
我们得到两直线平行的三个性质定理;性质1:两直线平行,同位角相等
山西教师招聘网
性质2:两直线平行,内错角相等 性质3: 两直线平行,同旁内角互补
因为性质1是我们公认的,所以一般把性质1成为公理。2.符号语言表示
【设计意图】帮助学生理解文字语言,符号语言,图形语言之间的转化,为今后进一步的推理打下基础。
通过山西教师招聘网可以了解到2017年山西教师招聘当前的考试动态,一般山西教师招聘有笔试和面试两个重要环节,笔试科目为《教育基础理论》和《学科专业知识》,面试以试讲、说课等形式考察。
山西教师招聘网
第二篇:平行线的性质(一)教案
平行线的性质
(一)教案
教学目标
1.使学生理解平行线的性质和判定的区别.
2.使学生掌握平行线的三个性质,并能运用它们作简单的推理.
重点难点
重点:平行线的三个性质.
难点:平行线的三个性质和怎样区分性质和判定. 关键:能结合图形用符号语言表示平行线的三条性质. 教学过程
一、复习
1.如何用同位角、内错角、同旁内角来判定两条直线是否平行? 2.把它们已知和结论颠倒一下,可得到怎样的语句?它们正确吗?
二、新授
1.实验观察,发现平行线第一个性质
请学生画出下图进行实验观察.
设l1∥l2,l3与它们相交,请度量∠1和∠2的大小,你能发现什么关系?请同学们再作出直线l4,再度量一下∠3和∠4的大小,你还能发现它们有什么关系?
平行线性质1(公理):两直线平行,同位角相等. 2.演绎推理,发现平行线的其它性质
(1)已知:如图,直线AB,CD被直线EF所截,AB∥CD.
求证:∠1= ∠2.
(2)已知:如图2-64,直线AB,CD被直线EF所截,AB∥CD.
求证:∠1+∠2=180°.
在此基础上指出:“平行线的性质2(定理)”和“平行线的性质3(定理)”.
3.平行线判定与性质的区别与联系
投影:将判定与性质各三条全部打出.
(1)性质:根据两条直线平行,去证角的相等或互补.(2)判定:根据两角相等或互补,去证两条直线平行.
联系是:它们的条件和结论是互逆的,性质与判定要证明的问题是不同的.
三、例题
例2如图所示,AB∥CD,AC∥BD.找出图中相等的角与互补的角.
A B
37C
12458D 6
此题一定要强调,哪两条直线被哪一条直线所截.
答:相等的角为:∠1=∠2,∠3=∠4,∠5=∠6,∠7=∠8.互补的角为:∠BAC+∠ACD=180°,∠ABD+∠CDB=180°,∠CAB+∠DBA=180°,∠ACD+∠BDC=180°. 相等的角还有:∠ACD=∠ABD,∠BAC=∠BDC.(同角的补角相等)例3如图所示.已知:AD∥BC,∠AEF=∠B,求证:AD∥EF. 分析:(执果索因)从图直观分析,欲证AD∥EF,只需∠A+∠AEF=180°,(由因求果)因为AD∥BC,所以∠A+∠B=180°,又∠B=∠AEF,所以∠A+∠AEF=180°成立.于是得证.
AD证明:因为 AD∥BC,(已知)所以 ∠A+∠B=180°.(两直线平行,同旁内角互补)因为 ∠AEF=∠B,(已知)EF所以 ∠A+∠AEF=180°,(等量代换)所以 AD∥EF.(同旁内角互补,两条直线平行)
四、练习:
1.如图所示,已知:AE平分∠BAC,CE平分∠ACD,且AB∥CD. 求证:∠1+∠2=90°. 证明:因为 AB∥CD,所以 ∠BAC+∠ACD=180°,又因为 AE平分∠BAC,CE平分∠ACD,BC11BAC,2ACD,2211故12(BACACD)1800900.
22所以1即 ∠1+∠2=90°.
2.如图所示,已知:∠1=∠2,求证:∠3+∠4=180°. 分析:(让学生自己分析)证明:(学生板书)小结
我们是如何得到平行线的性质定理?通过度量,运用从特殊到一般的思维方式发现性质1(公理),然后由公理通过演绎证明得到后面两个性质定理.从因果关系和所起的作用来看性质定理和判定定理的区别与联系.
作业:
1.如图,AB∥CD,∠1=102°,求∠
2、∠
3、∠
4、∠5的度数,并说明根据?
2.如图,EF过△ABC的一个顶点A,且EF∥BC,如果∠B=40°,∠2=75°,那么∠
1、∠
3、∠C、∠BAC+∠B+∠C各是多少度,为什么?
3.如图,已知AD∥BC,可以得到哪些角的和为180°?已知AB∥CD,可以得到哪些角相等?并简述理由.
第三篇:平行线性质教案
平行线的性质教案2 教学目标
1.经历观察、操作、想像、推理、交流等活动,进一步发展空间观念,推理能力和有条理表达能力。
2.经历探索直线平行的性质的过程,掌握平行线的三条性质,并能用它们进行简单的推理和计算.重点、难点
重点:探索并掌握平行线的性质,能用平行线性质进行简单的推理和计算.难点:能区分平行线的性质和判定,平行线的性质与判定的混合应用.教学过程
一、引导学生逆向思维
现在同学们已经掌握了利用同位角相等,或者内错角相等,或者同旁内角互补, 判定两条直线平行的三种方法.在这一节课里:大家把思维的指向反过来: 如果两条直线平行,那么同位角、内错角、同旁内角的数量关系又该如何表达?
二、实践探究
1.学生画图活动:用直尺和三角尺画出两条平行线a∥b,再画一条截线c与直线a、b相交,标出所形成的八个角(如课本P21图5.3-1).2.学生测量这些角的度数,把结果填入表内.角 ∠1 ∠2 ∠3 ∠4 ∠5 ∠6 ∠7 ∠8
度数
3.学生根据测量所得数据作出猜想.图中哪些角是同位角?它们具有怎样的数量关系? 图中哪些角是内错角?它们具有怎样的数量关系? 图中哪些角是同旁内角?它们具有怎样的数量关系? 在详尽分析后,让学生写出猜想.4.学生验证猜测.学生活动:再任意画一条截线d,同样度量并计算各个角的度数,你的猜想还成立吗? 5.师生归纳平行线的性质,教师板书.平行线具有性质: 性质1:两条平行线被第三条直线所截,同位角相等,简称为两直线平行, 同位角相等.性质2:两条平行线被第三条直线所截,内错角相等,简称为两直线平行, 内错相等.性质3:两条直线按被第三条线所截,同旁内角互补,简称为两直线平行, 同旁内角互补.教师让学生结合右图,用符号语言表达平行线的这三条性质,教师同时板书平行线的性质和平行线的判定.平行线的性质平行线的判定
因为a∥b, 因为∠1=∠2,所以∠1=∠2 所以a∥b.因为a∥b, 因为∠2=∠3,所以∠2=∠3, 所以a∥b.因为a∥b, 因为∠2+∠4=180°,所以∠2+∠4=180°, 所以a∥b.6.教师引导学生理清平行线的性质与平行线判定的区别.学生交流后,师生归纳:两者的条件和结论正好相反: 由角的数量关系(指同位角相等,内错角相等,同旁内角互补), 得出两条直线平行的论述是平行线的判定,这里角的关系是条件,两直线平行是结论.由已知的两条直线平行得出角的数量关系(指同位角相等,内错角相等, 同旁内角互补)的论述是平行线的性质,这里两直线平行是条件,角的关系是结论.7.进一步研究平行线三条性质之间的关系.教师:大家能根据性质1,推出性质2成立的道理吗? 结合上图,教师启发分析:考察性质
1、性质2的结论发生了什么变化? 学生回答∠1换成∠3,教师再问∠1与∠3有什么关系?并完成说理过程,教师纠正学生错误,规范地给出说理过程.因为a∥b,所以∠1=∠2(两直线平行,同位角相等);又∠3=∠1(对顶角相等),所以∠2=∠3.教师说明:这是有两步的说理,第一步推理根据平行线性质1,第二步推理的条件不仅有∠1=∠2,还有∠3=∠1.∠2=∠3是根据等式性质.根据等式性质得到的结论可以不写理由.学生仿照以下说理,说出如何根据性质1得到性质3的道理.8.平行线性质应用.例(课本P23)如图是一块梯形铁片的线全部分,量得∠A=100°,∠B=115°, 梯形另外两个角分别是多少度?
教师把学生情况,可启发提问:①梯形这条件如何使用?②∠A与∠D、∠B 与∠C的位置关系如何,数量关系呢?为什么? 讲解按课本.三、巩固练习
2.补充:如图,BCD是一条直线,∠A=75°,∠1=53°,∠2=75°,求∠B的度数.本题综合应用平行线的判定和性质,教师要引导学生观察图形,考察已知角的数量关系,确定解题的思路.一、判断题.1.两条直线被第三条直线所截,则同旁内角互补.()2.两条直线被第三条直线所截,如果同旁内角互补,那么同位角相等.()3.两条平行线被第三条直线所截,则一对同旁内角的平分线互相平行.()
二、填空题.1.如图(1),若AD∥BC,则∠______=∠_______,∠_______=∠_______,∠ABC+∠_______=180°;若DC∥AB,则∠______=∠_______,∠________=∠__________,∠ABC+∠_________=180°.(1)(2)(3)
平行线的性质教案2 2.如图(2),在甲、乙两地之间要修一条笔直的公路, 从甲地测得公路的走向是南偏西56°,甲、乙两地同时开工,若干天后公路准确接通, 则乙地所修公路的走向是_________,因为____________.3.因为AB∥CD,EF∥CD,所以______∥______,理由是________.4.如图(3),AB∥EF,∠ECD=∠E,则CD∥AB.说理如下: 因为∠ECD=∠E,所以CD∥EF()又AB∥EF,所以CD∥AB().三、选择题.1.∠1和∠2是直线AB、CD被直线EF所截而成的内错角,那么∠1和∠2 的大小关系是()A.∠1=∠2 B.∠1>∠2;C.∠1<∠2 D.无法确定
2.一个人驱车前进时,两次拐弯后,按原来的相反方向前进, 这两次拐弯的角度是()A.向右拐85°,再向右拐95°;B.向右拐85°,再向左拐85°
C.向右拐85°,再向右拐85°;D.向右拐85°,再向左拐95°
四、解答题
1.如图,已知:∠1=110°,∠2=110°,∠3=70°,求∠4的度数.2.如图,已知:DE∥CB,∠1=∠2,求证:CD平分∠ECB.答案:
一、1.× 2.∨ 3.×
二、1.∠1,∠5,∠8,∠4,∠BAD;∠2,∠6,∠3,∠7,∠BCD 2.北偏东56°,两直线平行,内错角相等 3.AB、EF,两条直线都与第三条直线平行,这两条直线也互相平行 4.内错角相等,两直线平行, 两条直线都与第三条直线平行,这两条直线也互相平行
三、1.D 2.A
四、1.70° 2.因为DE∥CB,所以∠1=DCB(两直线平行,内错角相等)又∠1=∠2 所以∠2=∠DCB 即CD平分∠ECB.5.3平行线的性质(第2课时)平行线的性质(二)教学目标
1.经历观察、操作、推理、交流等活动,进一步发展空间观念,推理能力和有条理表达能力.2.理解两条平行线的距离的含义,了解命题的含义,会区分命题的题设和结论.3.能够综合运用平行线性质和判定解题.重点、难点 重点:平行线性质和判定综合应用,两条平行的距离,命题等概念.难点:平行线性质和判定灵活运用.教学过程
一、复习引入
1.平行线的判定方法有哪些?(注意:平行线的判定方法三种,另外还有平行公理的推论)2.平行线的性质有哪些.3.完成下面填空.已知:如图,BE是AB的延长线,AD∥BC,AB∥CD,若∠D=100°,则∠C=_____, ∠A=______,∠CBE=________.4.a⊥b,c⊥b,那么a与c的位置关系如何?为什么?
二、进行新课
1.例1 已知:如上图,a∥c,a⊥b,直线b与c垂直吗?为什么? 学生容易判断出直线b与c垂直.鉴于这一点,教师应引导学生思考:(1)要说明b⊥c,根据两条直线互相垂直的意义, 需要从它们所成的角中说明某个角是90°,是哪一个角?通过什么途径得来?(2)已知a⊥b,这个“形”通过哪个“数”来说理,即哪个角是90°.(3)上述两角应该有某种直接关系,如同位角关系、内错角关系、同旁内角关系,你能确定它们吗? 让学生写出说理过程,师生共同评价三种不同的说理.2.实践与探究
(1)下列各图中,已知AB∥EF,点C任意选取(在AB、EF之间,又在BF的左侧).请测量各图中∠B、∠C、∠F的度数并填入表格.∠B ∠F ∠C ∠B与∠F度数之和
图(1)图(2)通过上述实践,试猜想∠B、∠F、∠C之间的关系,写出这种关系,试加以说明.(1)(2)教师投影题目: 学生依据题意,画出类似图(1)、图(2)的图形,测量并填表,并猜想:∠B+∠F=∠C.在进行说理前,教师让学生思考:平行线的性质对解题有什么帮助? 教师视学生情况进一步引导: ①虽然AB∥EF,但是∠B与∠F不是同位角,也不是内错角或同旁内角.不能确定它们之间关系.②∠B与∠C是直线AB、CF被直线BC所截而成的内错角,但是AB与CF不平行.能不能创造条件,应用平行线性质,学生自然想到过点C作CD∥AB,这样就能用上平行线的性质,得到∠B=∠BCD.③如果要说明∠F=∠FCD,只要说明CD与EF平行,你能做到这一点吗? 以上分析后,学生先推理说明, 师生交流,教师给出说理过程.作CD∥AB,因为AB∥EF,CD∥AB,所以CD∥EF(两条直线都与第三条直线平行, 这两条直线也互相平行).所以∠F=∠FCD(两直线平行,内错角相等).因为CD∥AB.所以∠B=∠BCD(两直线平行,内错角相等).所以∠B+∠F=∠BCF.(2)教师投影课本P23探究的图(图5.3-4)及文字.①学生读题思考:线段B1C1,B2C2……B5C5都与两条平行线的横线A1B5和A2C5垂直吗?它们的长度相等吗? ②学生实践操作,得出结论:线段B1C1,B2C2……,B5C5同时垂直于两条平行直线A1B5和A2C5,并且它们的长度相等.③师生给两条平行线的距离下定义.学生分清线段B1C1的特征:第一点线段B1C1两端点分别在两条平行线上,即它是夹在这两条平行线间的线段,第二点线段B1C1同时垂直这两条平行线.教师板书定义:(像线段B1C1)同时垂直于两条平行线, 并且夹在这两条平行线间的线段的长度,叫做这两条平行线的距离.④利用点到直线的距离来定义两条平行线的距离.教师画AB∥CD,在CD上任取一点E,作EF⊥AB,垂足为F.学生思考:EF是否垂直直线CD?垂线段EF的长度d是平行线AB、CD的距离吗? 这两个
问题学生不难回答,教师归纳: 两条平行线间的距离可以理解为:两条平行线中,一条直线上任意一点到另一条直线的距离.教师强调:两条平行线的距离处处相等,而不随垂线段的位置改变而改变.3.了解命题和它的构成.(1)教师给出下列语句,学生分析语句的特点.①如果两条直线都与第三条直线平行,那么这条直线也互相平行;②等式两边都加同一个数,结果仍是等式;③对顶角相等;④如果两条直线不平行,那么同位角不相等.这些语句都是对某一件事情作出“是”或“不是”的判断.(2)给出命题的定义.判断一件事情的语句,叫做命题.教师指出上述四个语句都是命题,而语句“画AB∥CD”没有判断成分,不是命题.教师让学生举例说明是命题和不是命题的语句.(3)命题的组成.①命题由题设和结论两部分组成.题设是已知事项,结论是由已知事项推出的事项.②命题的形成.命题通常写成“如果……,那么……”的形式,“如果”后接的部分是题设,“那么”后接的部分是结论.有的命题没有写成“如果……,那么……”的形式,题设与结论不明显,这时要分清命题判断了什么事情,有什么已知事项,再改写成“如果……,那么……”形式.师生共同分析上述四个命题的题设和结论,重点分析第②、③语句.第②命题中,“存在一个等式”而且“这等式两边加同一个数”是题设, “结果仍是等式”是结论。
第③命题中,“两个角是对顶角”是题设,“这两角相等”是结论。
三、巩固练习
1.“等式两边乘同一个数,结果仍是等式”是命题吗?它们题设和结论分别是什么? 2.命题“两条平行线被第三第直线所截,内错角相等”是正确的?命题“如果两个角互补,那么它们是邻补角”是正确吗?再举出一些命题的例子,判断它们是否正确.解答:1.是命题,题设是“等式两边乘同一个数”,结论是“结果仍是等式”.2.第一个命题正确,第二个命题错误。可举出例子说明,如两条直线平行,同旁内角互补,但这两个同旁内角不是邻补角。对于学生所举的错误命题,教师应给归纳一下,有两类:第一类是命题题设不足于确定命题结正确,如“同位角相等”,这里条件不够;第二类命题是在命题的题设下,结论不正确。
一、填空题.1.用式子表示下列句子:用∠1与∠2互为余角,又∠2与∠3互为余角,根据“同角的余角相等”,所以∠1和∠3相等_________________.2.把命题“直角都相等”改写成“如果……,那么……”形式___________.3.命题“邻补角的平分线互相垂直”的题设是_____________, 结论是____________.4.两条平行线被第三条直线所截,同旁内角的度数的比为2:7, 则这两个角分别是____________度.二、选择题.1.设a、b、c为同一平面内的三条直线,下列判断不正确的是()A.设a⊥c,b⊥c,则a⊥b B.若a∥c,b∥c,则a∥b
C.若a∥b,b⊥c,则a⊥c D.若a⊥b,b⊥c,则a⊥c
2.若两条平行线被第三条直线所截,则互补的角但非邻补角的对数有()A.6对 B.8对 C.10对 D.12对
3.如图,已知AB∥DE,∠A=135°,∠C=105°,则∠D的度数为()A.60° B.80° C.100° D.120°
4.两条直线被第三条直线所截,则一组同位角的平分线的位置关系是()A.互相平行 B.互相垂直;C.相交但不垂直 D.平行或相交
三、解答题.1.已知,如图1,∠AOB纸片沿CD折叠,若O′C∥BD,那么O′D与AC平行吗?请说明理由.2.如图,已知B、E分别是AC、DF上的点,∠1=∠2,∠C=∠D.(1)∠ABD与∠C相等吗?为什么.(2)∠A与∠F相等吗?请说明理由.3.如图,已知EAB是直线,AD∥BC,AD平分∠EAC,试判定∠B与∠C的大小关系,并说明理由.4.如(图4),DE∥AB,DF∥AC,∠EDF=85°,∠BDF=63°.(1)∠A的度数;(2)∠A+∠B+∠C的度数.答案:
一、1.因为∠2+∠1=90° 又∠2+∠3=90°,所以∠1=∠3(同角的余角相等)
2.如果两个角是直角,那么这两个角相等
3.两个角是邻补角,这两个角的平分线互相垂直 4.40°,140°
二、1.D 2.B 3.D 4.D
三、1.平行
因为O′C∥BD
所以∠2=∠3(两直线平行,内错角相等)
又∠1=∠2,∠3=∠4
所以∠1=∠4
所以AC∥O′D(内错角相等,两直线平行)
2.(1)相等.因为∠1=∠2,所以BD∥CE(内错角相等,两直线平行)
所以∠ABD=∠C(两直线平行,同位角相等)
(2)相等 因为∠ABD= ∠C 又∠D=∠C
所以∠D=∠ABD
所以DF∥AC(内错角相等,两直线平行)
所以∠A=∠F(两直线平行,内错角相等)
3.∠B=∠C 因为AD∥BC
所以∠B=∠EAD(两直线平行, 同位角相等), ∠C=∠CAD(两直线平行,内错角相等)
又∠EAD=∠CAD(角平分线定义)所以∠B=∠
第四篇:平行线的性质(一)
教案背景
课题:5.3.1平行线的性质
(一)教学任务分析
教材分析
板书设计
教学过程设计
教学反思
第五篇:2017 年山西教师招聘面试《劝学》教案
山西《劝学》教案
教学目标: 掌握和积累“中”“参”“知”等文言字词,理清文章的论证结构 2 学习本文比喻论证的方法 3 体会学习的重要性,感悟人生道理 教学重难点:
理解文意,学习比喻论证方法 教学过程:
一、导入
以荀子的“性善论”导入,提出荀子如何劝学的问题。
二、整体感知
1、听读课文(在听的过程中,同学们可以跟着录音默读这篇课文,注意字词的读音,朗读的节奏和停顿)齐读课文,完成研讨与练习三 教师出示文言字词,进行归纳和总结。
2、理清论证思路
解决导入时提出的问题:荀子是如何劝学 学生讨论明确本文的论证思路
三、品读语言,学习论证法
荀子在论述的过程中采用了大量的比喻来论证自己的观点 教师以第二段为范例指导学生掌握比喻论证的方法
学生分组讨论第三、四段相对应的比喻,并阐述其说明和学习相关的道理(从文本中找出相关语句朗读翻译,再进行阐述)
山西教师招聘网
教师小结
四、拓展训练:你认为荀子的观点过时了吗?
五、作业: 1 背诵全文
2运用比喻论证法写一组句子阐述一个道理
通过山西教师招聘网可以了解到2017年山西教师招聘当前的考试动态,一般山西教师招聘有笔试和面试两个重要环节,笔试科目为《教育基础理论》和《学科专业知识》,面试以试讲、说课等形式考察。
山西教师招聘网