第一篇:配方法解一元二次方程的教案
配方法解一元二次方程的教案
教学内容:本节内容是:人教版义务教育课程标准实验教科书数学九年级上册第22章第2节第1课时。
一、教学目标
(一)知识目标
1、理解求解一元二次方程的实质。
2、掌握解一元二次方程的配方法。
(二)能力目标
1、体会数学的转化思想。
2、能根据配方法解一元二次方程的一般步骤解一元二次方程。
(三)情感态度及价值观
通过用配方法将一元二次方程变形的过程,让学生进一步体会转化的思想方法,并增强他们学习数学的兴趣。
二、教学重点
配方法解一元二次方程的一般步骤
三、教学难点
具体用配方法的一般步骤解一元二次方程。
四、知识考点
运用配方法解一元二次方程。
五、教学过程
(一)复习引入
1、复习:
解一元一次方程的一般步骤:(1)去分母;(2)去括号;(3)移项;(4)合并同类项;(5)系数化为1。
2、引入:
二次根式的意义:若x2=a(a为非负数),则x叫做a的平方根,即x=±√a。实际上,x2 =a(a为非负数)就是关于x的一元二次方程,求x的平方根就是解一元二次方程。
(二)新课探究
通过实际问题的解答,引出我们所要学习的知识点。通过问题吸引学生的注意力,引发学生思考。
问题1:
一桶某种油漆可刷的面积为1500dm2李林用这桶油漆刚好刷完10个同样的正方体形状的盒子的全部外表面,你能算出盒子的棱长吗?
问题1重在引出用直接开平方法解一元二次方程。这一问题学生可通过“平方根的意义”的讲解过程具体的解答出来,具体解题步骤:
2解:设正方体的棱长为x dm,则一个正方体的表面积为6xdm2 列出方程:60x2=1500 x2=25 x=±5 因为x为棱长不能为负值,所以x=5 即:正方体的棱长为5dm。
1、用直接开平方法解一元二次方程
(1)定义:运用平方根的定义直接开方求出一元二次方程解。
(2)备注:用直接开平方法解一元二次方程,实质是把一个一元二次方程“降次”,转化为两个一元二次方程来求方程的根。
问题2:
要使一块矩形场地的长比宽多6cm,并且面积为16㎡,场地的长和宽应各为多少?
问题2重在引出用配方法解一元二次方程。而问题2应该大部分同学都不会,所以由我来具体的讲解。主要通过与完全平方式对比逐步解这个方程。再由这个方程的求解过程师生共同总结出配方法解一元二次方程的一般步骤。让学生加深映像。
具体解题步骤:
解:设场地宽x m,长(x +6)m。
列方程: x(x +6)=16 即: x2+6x-16=0
x2+6x=16
x2+6x+9=16+9(x+3)2=25 x+3=±5
x+3=5 x+3=-5 x1=2,x2=-8
2、配方法解一元二次方程
(1)定义:通过配成完全平方的形式来解一元二次方程的方法。(2)配方法解一元二次方程一般步骤:
一化:先将常数移到方程右边,后将二次项系数化为1 二配:方程左右两端都加上一次项系数一半的平方
三成式:将方程左边化为一个含有未知数的完全平方式 四开:直接开平方
五写:写出方程的解
(三)应用举例
针对每个知识点各举了一个例子,每个例子有两个方程,逐渐加深。让学生更易接受。让学生在例题中进行思考和总结。具体的例1链接知识点1,例2链接知识点2。
例1 解方程(1)9x2-1=0;(2)x2+2x+1=16。解:(1)原方程变形为:9x2=1 x2=1/9 x=±1/3 即x1=1/3,x2=-1/3
2(2)原方程变形为:(x+1)=16 x+1=±4 x1=3,x2=-5
2例1讲解完之后,我会让学生思考:形如(ax +b)=c(a≠0;c≧0)的 一元二次方程的解。让学生能够从特殊的到一般的题目。例2 用配方法解下列方程:
(1)x2-3x-2=0(2)2x2-3x-6=0 解:(1)移项 x2-3x=2 配方 x2-3x+(3/2)2=2+(3/2)
2(x-3/2)2=17/4 x-3/2=±√17/2 x1= 3/2+√17/2,x2=3/2-√17/2(2)将二次项系数化为1 x2-3/2x-3=0 x2-3/2x=3 x2-3/2x+(3/4)2=3+(3/4)2
(x-3/4)2=57/16 x-3/4=±√57/4 x1= 3/4+√57/4,x2=3/4-√57/4
(四)反馈练习
了解学生知识的掌握程度,即时发现问题。而这道题目重在学生自己去发现错误,加深配方法解一元二次方程的一般步骤。从而突破这一重难点。练习:
观察下列用配方法解方程2x2-4x+1=0的两种解答是否正确,若不正确请你写出正确的解答。
解:(1)配方 2x2-4x+4-4=1,即(2x-2)2=5 所以,2x-2= √5或2x-2=-√5 所以,x1= 1+ √5 /2,x2=1-√5 /2(2)系数化为1 x2-2x=1/2 配方 x2-2x+1=1/2 即(x-1)2=1/2 所以 x-1=√2 /2或x-1=-√2 /2 所以x1= 1+ √2 /2,x2=1-√2/2。
六、课堂小结
对本堂课的内容进行巩固和反思。主要由学生归纳,老师补充总结。
小结:
1、本节课主要学习了用配方法解一元二次方程,其中运用到了解一元一次方程,二次根式等方面的知识。
2、重点理解和掌握配方法解一元二次方程一般步骤并会运用配方法解一元二次方程。
七、布置作业
对本堂课的知识进行巩固和提高。根据新课程标准“人人学习不同的数学”的理念,把作业分为必做题和选作题,给学生更大的空间。作业:必做题:教材p36(6)p39 2题的(5)(6)
选作题:若实数x满足条件(x2+4x-5)2+∣x2-x-30 ∣=0,求代数式√(x+2)2+ √(x-1)2的值
八、板书设计
22.2.配方法解一元二次方程
一、知识回顾
解一元一次方程的一般步骤:
二次根式的意义
二、配方法
1、用直接开平方法解一元二次方程 问题1 例1 思考: 总结:
2、用配方法解一元二次方程 问题2 思考:
(1)配方法:
(2)配方法解一元二次方程一般步骤: 例2 练习: 反思: 小结: 作业:
九、教学反思
在课堂完成后还应进行学生和我两方面的教学反思,以促进和提升以后的教学。
学生方面:上课时学生的哪些反应是意料中或意料外的。在练习反馈中学生是否掌握了这堂课的内容。
教师方面:教学方法是否得当,教学效果好不好。
第二篇:配方法解一元二次方程教案
配方法解一元二次方程教案
学习目标:
1、理解直接开平方法的意义和方法。
2、会用配方法求二次项系数为1的一元二次方程的根。学习重点:会用配方法解一元二次方程。
学习过程
一. 创设现实情景,引入新课
一个长为10 m的梯子斜靠在墙上,梯子的顶端距地面的垂直距离为8 m,如果梯子的顶端下滑1 m,那么梯子的底端滑动多少米?
分析可知:梯子底端滑动的距离x(m)满足72+(x+6)2=100 即 满足 x2+12x-15=0.,那么你能设法求出它的值吗?通过今天的学习,相信你一定能很快求出它的值。
回忆一下:什么叫做平方根?平方根有哪些性质? 你能求出适合等式x2=4的x的值吗? 你会解下列一元二次方程吗?你是怎么做的?(1)x2=5;(2)3x2=0;(3)x2-4=0;(4)(x+1)2=99(5)4(x-1)2=9(6)(x-3)2=6;
总结:大家利用平方根的定义求解了一类一元二次方程,这种解一元二次方程的方法叫做直接开平方法
二、自主探究
填上适当的数,使下列等式成立.
(1)x2+12x+ =(x+6)2;(2)x2-4x+ =(x-)2;(3)x2+8x+ =(x+)2.(4)x2-8x+ =(x-)2(5)x2+6x+ =(x+)2 总结: 等式的左边填常数是:一次项系数一半的平方;而右边填的是:一次项系数的一半。.
判断下列方程能否用开平方法来求解?如何解?
(1)x2-4x+4=2;(2)x2+12x+36=5.
提示: 解一元二次方程的基本思路是:把原方程变为(x+m)2=n,然后两边同时开平方,这样原方程就转化为两个一元一次方程.实际上解一元二次方程的关键是要设法将其转化为一元一次方程,即将原方程“降次”,“降次”也是一种数学方法.
三、小试身手
解方程: x2+4x=5,x2-6x-15=0 练习:解方程x2+8x-9=0.
四、总结规律
用配方法解二次项系数是1的一元二次方程有哪些步骤?
温馨提示:由配方法解一元二次方程的基本思路是将方程转化为(x+m)2=n的形式,它的一边是一个完全平方式,另一边是一个常数,当n≥0时,两边开平方便可求出它的根。因为在实数范围内任何非负数都有平方根,所以当n≥0时,方程有解;当n<0时,左边是一个完全平方式,右边是一个负数,因此方程在实数范围内无解.
五、达标测评
1.用配方法解下列方程
(1)x2-10x+25=7;(2)x2+6x=1.
六、拓展提高
已知代数式x2-5x+7,先用配方法说明,不论x取何值这个代数式的值总是正数,再求出当x取何值时,这个代数式值最小,最小值是多少?
七、学习反思
教学过程不仅是知识传授的过程,也是师生在情感和理性上双向交流互动的过程。因此,建立良好的教学气氛,是提高教学质量的首要条件。所以在引入新课时,我利用比较简单的学生感兴趣的实际问题,揭示了列一元二次方程解应用题方法步骤。使学生在轻松愉悦的状态下掌握了规律和方法
第三篇:配方法解一元二次方程-----公开课教案
配方法解一元二次方程教案
教学目标
(一)知识技能目标 1.会用直接开平方法解形如
(x+n)2=p
2.会用配方法解一元二次方程。
(二)能力训练目标
1.理解配方法;知道“配方”是一种常用的数学方法。2.了解用配方法解一元二次方程的基本步骤。
(三)情感态度与价值观
通过用配方法将一元二次方程变形的过程,让学生进一步体会转化的思想方法,并增强他们的数学应用意识和能力,激发学生的学习兴趣。重点难点
教学重点:用配方法解一元二次方程 教学难点:理解配方法的基本过程 教学过程
教学活动
一、复习引入
用直接开方法解下列方程:(1)2x²=8
(2)(x+3)² = 25(3)9x²+6x+1=4 2.你能解这个方程吗?
x²+6x+4=0
二、探究新知
填上适当的数或式,使下列各等式成立.填上适当的数或式,使下列各等式成立.2(1)x26x3=(+)x322x8x42=(x+)(2)42222x4x(3)=(x-2)2(4)x2px(p)22=(+xp2)2观察你所填的常数与一次项系数之间有什么关系?共同点:左边:所填常数等于一次项系数一半的平方.想一想如何解方程x26x40?
一、解方程x2+6x+4=0 并写出过程
(1)学生思路: 教材思路: x2+6x+4=0 x2+6x+4=0
解: x2+6x+4+5=5 解: x2+6x=−4 x+6x+9=5 x2+6x+9=−4+9
(x+3)2=5(x+3)2=5
x+3=±√5 x+3=±√5 x1=√5−3 x2=−1 √5−3 x1=√5−3 x2=−√5−3 共同探索
例1.解方程:
x2+8x-9=0
随堂练习
用配方法解下列方程:
(1)x²+10x+9=0
(2)
(3)x² + 4x + 9=2x + 11
目标测试
一、用配方法解下列方程:
1、x²+2x-8=0 2、3x²=4x+1x2x
21、代数式的植为0,求x2x
12、已知三角形两边长分别为2和4,第三边是方程x²-4x+3=0 的解,求这个三角形的周长
二、选做题:
1.一般地,对于形如x2=a(a≥0)的方程,根据平方根的定义,可解得x1a,x2a这种解一元二次方程的方法叫做直接开平方法.2.把一元二次方程的左边配成一个完全平方式,然后用开平方法求解,这种解一元二次方程的方法叫做配方法.注意:配方时, 等式两边同时加上的是一次项系数一半的平方.一半
第四篇:配方法解一元二次方程学案
2、2 用配方法解一元二次方程学案
班级姓名时间:——
学习目标:
(1)理解配方法,会用配方法解数字系数的一元二次方程。
(2)、自学课本P82-83页,小组讨论不明白的地方。
学习重难点
(1)
(2)
学习过程
1.自主学习
(1)用适当的代数式填空:
2222①x-4x+=(x-)②x-8x+=(x-)③x27x2④x2+10x+=(x+)
22(2)解方程
x2+4x+4=1
1(3)探究活动
课本活动2
解方程3x2-6x-2=0
(4)及时小结
什么叫做配方法?配方时,方程两边同时加是什么?
配方法的一般步骤是:①二次项系数化为;移项 :把常数项——-------------------配方:两边都加上;③开平方得解。
2跟踪练习
用配方程解方程
22(1)x+4x+2=0(2)x-3x-1=0(3)x(x-3)=3x-9
3.课堂小结:本节课的收获是什么?
4拓展延伸若a、b、c是ABC的长,且满足abc506a8b10c你能用配方法判断出这个三角形的形状吗?22
2用心爱心专心
1三、精讲点拨
例1:有配方法解方程:(x+1)2+2(x+1)=8
例2:已知a2b24a6b130,a,b为实数,求ab.(4)x2-4x+y2+6y+13=0,求x-y的值。
五、课堂小结:本节课的收获是什么?
六、当堂检测
1、用配方法解下列方程
(1)x2-6x-2=0(2)x2-2x-3=0
课后提升
2、若a、b、c是ABC的长,且满足abc506a8b10c你能用配方22
2法判断出这个三角形的形状吗?
3、2 用配方法解一元二次方程学案(3)
班级姓名时间:
10、17
课前延伸
21、有配方法解方程:x+10x+9=0
解:移项得:配方得:
2即:(x+5)=开平方得x+5=
所以x1=x2=
22、用配方法解方程:2x-4x-1=0
解:方程两边同除以2,得移项得
2配方得即:()=
开平方得x-1=所以,x1=,x2=
3、用配方法解一元二次方程,先将一元二次方程化为一般形式为再配方成x=p或(mxn)2p(p≥0)的形式,关键在于配方,配方时,方程两边都
2。
课内探究
一、自主学习
1、学习目标:会用配方法解一元二次方程。
2、自学课本P84-85页,小组讨论不明白的地方。
二、合作交流
用配方法解下列方程
2222(1)6x-x-12=0(2)2x+1=3x(3)3x-6x+1=0(4)9x=4(3x-1)
三、精讲点拨
例1:(1)2x-7x+3=0
2(22x1x
四、跟踪练习
用配方法解下列方程
2222(1)3x-6x=0(2)2x-3x-2=0(3)4x-7x-2=0(4)3x-12=x+
2五、课堂小结:本节课的收获是什么?
六、当堂检测
1、用配方法解下列方程
(1)2x2-3x-1=0(2)3x2-7x+2=0
课后提升
2、用配方法证明:多项式10x27x4的值小于0。
第五篇:解一元二次方程配方法练习题
解一元二次方程配方法练习题
1.用适当的数填空:
①、x2=(2;
②、x2-5x+=(x-)2;
③、x2()2;
④、x2-9x+=(x-)
22.将二次三项式2x2-3x-5进行配方,其结果为_________.
3.已知4x2-ax+1可变为(2x-b)2的形式,则ab=_______.
4.将一元二次方程x2-2x-4=0用配方法化成(x+a)2=b的形式为_______,以方程的根为_________.
5.若x2+6x+m2是一个完全平方式,则m的值是()
A.3B.-3C.±3D.以上都不对
6.用配方法将二次三项式a2-4a+5变形,结果是()
A.(a-2)2+1B.(a+2)2-1C.(a+2)2+1D.(a-2)2-
17.把方程x+3=4x配方,得()
A.(x-2)2=7B.(x+2)2=21C.(x-2)2=1D.(x+2)2=2
8.用配方法解方程x2+4x=10的根为()
A.2
±B.-2
C.
D.
9.不论x、y为什么实数,代数式x2+y2+2x-4y+7的值()
A.总不小于2B.总不小于7
C.可为任何实数D.可能为负数
10.用配方法解下列方程:
(1)3x2-5x=2.(2)x2+8x=9
(3)x2+12x-15=0(4)x2-x-4=0
所•
11.用配方法求解下列问题
(1)求2x2-7x+2的最小值 ;
(2)求-3x2+5x+1的最大值。
12.用配方法证明:
(1)a2a1的值恒为正;(2)9x28x2的值恒小于0.
13.某企业的年产值在两年内从1000万元增加到1210万元,求平均每年增长百分率.
解一元二次方程公式法练习题
一、双基整合步步为营
1.一般地,对于一元二次方程ax2+bx+c=0(a≠0),当b2-4ac≥0时,它的根是_____,当b-4ac<0时,方程_________.
2.方程ax2+bx+c=0(a≠0)有两个相等的实数根,则有________,•若有两个不相等的实数根,则有_________,若方程无解,则有__________. 3.若方程3x2+bx+1=0无解,则b应满足的条件是________. 4.关于x的一元二次方程x2+2x+c=0的两根为________.(c≤1)
5.用公式法解方程x2=-8x-15,其中b2-4ac=_______,x1=_____,x2=________. 6.已知一个矩形的长比宽多2cm,其面积为8cm2,则此长方形的周长为________. 7.一元二次方程x2-2x-m=0可以用公式法解,则m=().A.0B.1C.-1D.±
18.用公式法解方程4y2=12y+3,得到()
A.
B.
y=C.
D.
9.已知a、b、c是△ABC的三边长,且方程a(1+x2)+2bx-c(1-x2)=0的两根相等,•则△ABC为()
A.等腰三角形B.等边三角形C.直角三角形D.任意三角形 10.不解方程,判断所给方程:①x2+3x+7=0;②x2+4=0;③x2+x-1=0中,有实数根的方程有()
A.0个B.1个C.2个D.3个
11.解下列方程;
1(1)2x2-3x-5=0(2)2t2+3=7t(3)x2+x-=0
3(4)x
2(5)0.4x2-0.8x=1(6)
221
y+y-2=0 33
二、拓广探索:
1x2x2x
112.当x=_______时,代数式与的值互为相反数.
413.若方程x-4x+a=0的两根之差为0,则a的值为________.
14.如图,是一个正方体的展开图,标注了字母A的面是正方体的正面,•如果正方体的左面与右面所标注代数式的值相等,求x的值.
三、智能升级:
15.小明在一块长18m宽14m的空地上为班级建造一个花园,所建花园占空地面积的请你求出图中的x.
1,2
16.要建一个面积为150m2的长方形养鸡场,为了节约材料,•鸡场的一边靠着原有的一堵墙,墙长为am,另三边用竹篱笆围成,如果篱笆的长为35m.
(1)求鸡场的长与宽各是多少?(2)题中墙的长度a对解题有什么作用.